Approximate nonlinear explicit MPC based on reachability analysis

D.M. Raimondo¹, M. Schulze Darup², M. Mönnigmann²

Università degli studi di Pavia Ruhr-Universität Bochum

The system

$$x_{k+1} = f(x_k, u_k) \quad k \ge 0$$

- $f: \mathcal{X} \times \mathcal{U} \to \mathcal{X}$ is a \mathscr{C}^0 nonlinear function and $f(\bar{x}, \bar{u}) = \bar{x}$
- $x_k \in \mathcal{X}$, \mathcal{X} is a compact set
- $u_k \in \mathcal{U}$, \mathcal{U} is a compact set
- A target set $\mathcal{T} \subseteq \mathcal{X}$

The optimization problem

$$J^*(x) = \min_{\{u_0,...,u_{N-1}\}} V_N(x_N) + \sum_{i=0}^{N-1} L(x_i, u_i)$$
 subject to $x_{i+1} = f(x_i, u_i), \ \forall i = 0, ..., N-1$ $(x_i, u_i) \in \mathcal{X} \times \mathcal{U}, \ \forall i = 0, ..., N-1$ $x_N \in \mathcal{T}, \ x_0 = x,$ where $L(x_i, u_i) = (x_i - \bar{x})' Q(x_i - \bar{x}) + (u_i - \bar{u})' R(u_i - \bar{u})$

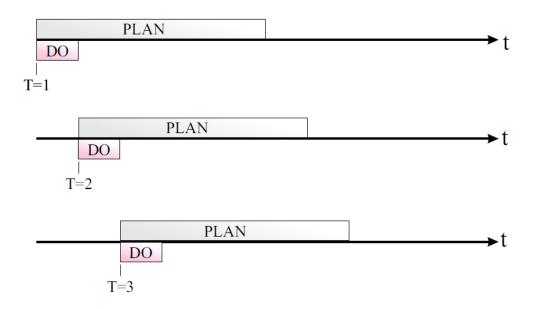
The optimization problem

$$J^*(x) = \min_{\{u_0,...,u_{N-1}\}} V_N(x_N) + \sum_{i=0}^{N-1} L(x_i, u_i)$$

subject to $x_{i+1} = f(x_i, u_i), \ \forall i = 0, ..., N-1$
 $(x_i, u_i) \in \mathcal{X} \times \mathcal{U}, \ \forall i = 0, ..., N-1$
 $x_N \in \mathcal{T}, \ x_0 = x,$
where $L(x_i, u_i) = (x_i - \bar{x})' Q(x_i - \bar{x}) + (u_i - \bar{u})' R(u_i - \bar{u})$

Given a stabilizing control law $\kappa_f(x)$ defined in \mathcal{T} , V_N is a Lyapunov function and \mathcal{T} is a positively invariant set.

The Receding Horizon approach



Closed-loop control law $k(x) = u_o^*(x)$

Objectives

Controller requirements

- Fast online computation
- Suitable for inexpensive hardware
- Feasibility and stability guarantees

Objectives

Controller requirements

- Fast online computation
- Suitable for inexpensive hardware
- Feasibility and stability guarantees

Explicit MPC

Linear Explicit MPC

- multi-parametric program can be solved exactly
- feasible set is closed and convex
- continuous polyhedral piecewise affine control law

Explicit MPC

Linear Explicit MPC

- multi-parametric program can be solved exactly
- feasible set is closed and convex
- continuous polyhedral piecewise affine control law

Drawbacks?

Explicit MPC

Complexity

- Strongest dependence on the number of constraints
- Strong dependence on the number of free moves
- Weak dependence on the number of states

One approach to alleviate complexity (will be used in the nonlinear case..)

Solve iteratively 1-step optimization problems with varying terminal set constraint (P. Grieder and M. Morari 2003)

min
$$_{u_0}$$
 $x_1'Qx_1 + u_0'Ru_0$
subject to $x_1 = f(x_0, u_0)$
 $x_0 \in \mathcal{X}, x_1 \in \mathcal{T}_i, u_0 \in \mathcal{U}$

where
$$\mathcal{T}_i = \left\{ egin{array}{ll} \mathcal{T} & \emph{i} = 0 \\ \mathcal{Q}(\mathcal{T}_{\emph{i}-1}) & \emph{i} = 1, \ldots, \textit{N}-1 \end{array}
ight.$$

One approach to alleviate complexity (will be used in the nonlinear case..)

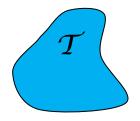
Solve iteratively 1-step optimization problems with varying terminal set constraint (P. Grieder and M. Morari 2003)

min
$$_{u_0}$$
 $x_1'Qx_1 + u_0'Ru_0$
subject to $x_1 = f(x_0, u_0)$
 $x_0 \in \mathcal{X}, x_1 \in \mathcal{T}_i, u_0 \in \mathcal{U}$

One-step set

Set of states which can be steered to a target set within one time step (Bertsekas, 1971)

$$\mathcal{Q}(\mathcal{T}) = \{ x \in \mathcal{X} \mid \exists u \in \mathcal{U} : f(x, u) \in \mathcal{T} \}$$



One approach to alleviate complexity (will be used in the nonlinear case..)

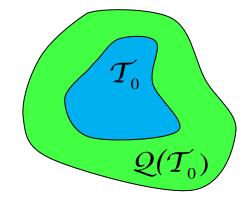
Solve iteratively 1-step optimization problems with varying terminal set constraint (P. Grieder and M. Morari 2003)

min
$$_{u_0}$$
 $x_1'Qx_1 + u_0'Ru_0$
subject to $x_1 = f(x_0, u_0)$
 $x_0 \in \mathcal{X}, x_1 \in \mathcal{T}_i, u_0 \in \mathcal{U}$

One-step set

Set of states which can be steered to a target set within one time step (Bertsekas, 1971)

$$\mathcal{Q}(\mathcal{T}) = \{ x \in \mathcal{X} \mid \exists u \in \mathcal{U} : f(x, u) \in \mathcal{T} \}$$



One approach to alleviate complexity (will be used in the nonlinear case..)

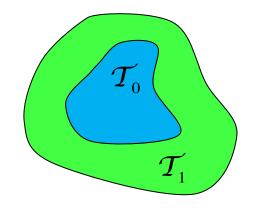
Solve iteratively 1-step optimization problems with varying terminal set constraint (P. Grieder and M. Morari 2003)

min
$$_{u_0}$$
 $x_1'Qx_1 + u_0'Ru_0$
subject to $x_1 = f(x_0, u_0)$
 $x_0 \in \mathcal{X}, x_1 \in \mathcal{T}_i, u_0 \in \mathcal{U}$

One-step set

Set of states which can be steered to a target set within one time step (Bertsekas, 1971)

$$\mathcal{Q}(\mathcal{T}) = \{ x \in \mathcal{X} \mid \exists u \in \mathcal{U} : f(x, u) \in \mathcal{T} \}$$



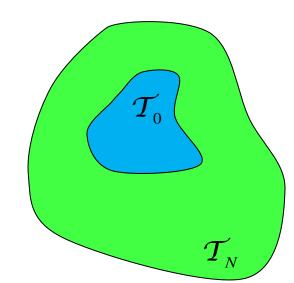
One approach to alleviate complexity (will be used in the nonlinear case..)

Solve iteratively 1-step optimization problems with varying terminal set constraint (P. Grieder and M. Morari 2003)

min
$$_{u_0}$$
 $x_1'Qx_1 + u_0'Ru_0$
subject to $x_1 = f(x_0, u_0)$
 $x_0 \in \mathcal{X}, x_1 \in \mathcal{T}_i, u_0 \in \mathcal{U}$

Feasible set of the original OP

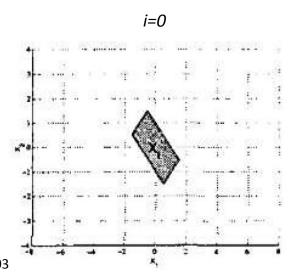
$$\mathcal{F}_{N}(\mathcal{T}) = \underbrace{\mathcal{Q}(\mathcal{Q}(\dots \mathcal{Q}(\mathcal{Q}(\mathcal{T}))))}_{N \text{ times}}$$



One approach to alleviate complexity (will be used in the nonlinear case..)

Solve iteratively 1-step optimization problems with varying terminal set constraint (P. Grieder and M. Morari 2003)

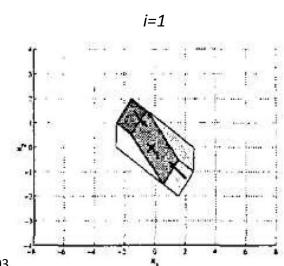
min
$$_{u_0}$$
 $x_1'Qx_1 + u_0'Ru_0$
subject to $x_1 = f(x_0, u_0)$
 $x_0 \in \mathcal{X}, x_1 \in \mathcal{T}_i, u_0 \in \mathcal{U}$



One approach to alleviate complexity (will be used in the nonlinear case..)

Solve iteratively 1-step optimization problems with varying terminal set constraint (P. Grieder and M. Morari 2003)

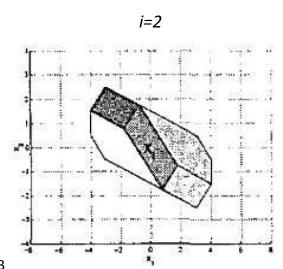
min
$$_{u_0}$$
 $x_1'Qx_1 + u_0'Ru_0$
subject to $x_1 = f(x_0, u_0)$
 $x_0 \in \mathcal{X}, x_1 \in \mathcal{T}_i, u_0 \in \mathcal{U}$



One approach to alleviate complexity (will be used in the nonlinear case..)

Solve iteratively 1-step optimization problems with varying terminal set constraint (P. Grieder and M. Morari 2003)

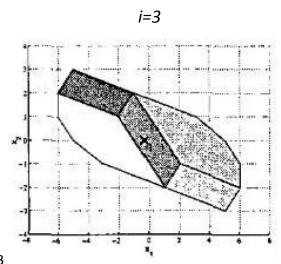
min
$$_{u_0}$$
 $x_1'Qx_1 + u_0'Ru_0$
subject to $x_1 = f(x_0, u_0)$
 $x_0 \in \mathcal{X}, x_1 \in \mathcal{T}_i, u_0 \in \mathcal{U}$



One approach to alleviate complexity (will be used in the nonlinear case..)

Solve iteratively 1-step optimization problems with varying terminal set constraint (P. Grieder and M. Morari 2003)

min
$$_{u_0}$$
 $x_1'Qx_1 + u_0'Ru_0$
subject to $x_1 = f(x_0, u_0)$
 $x_0 \in \mathcal{X}, x_1 \in \mathcal{T}_i, u_0 \in \mathcal{U}$



One approach to alleviate complexity (will be used in the nonlinear case..)

Solve iteratively 1-step optimization problems with varying terminal set constraint (P. Grieder and M. Morari 2003)

min
$$_{u_0}$$
 $x_1'Qx_1 + u_0'Ru_0$
subject to $x_1 = f(x_0, u_0)$
 $x_0 \in \mathcal{X}, x_1 \in \mathcal{T}_i, u_0 \in \mathcal{U}$

Online: since the regions of the 1-step multiparametric programs may overlap apply the *feedback control* computed at the smallest iteration number *i*.

Guaranteed feasibility and stability of the approach

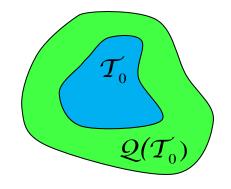
Making use of the previous approach in the nonlinear case

- Solving mp-NLP is difficult
- Exact solutions cannot be found in the general nonlinear case
- Feasible set non convex in general

One-step set in the nonlinear case

$$Q(\mathcal{T}) = \{ x \in \mathcal{X} \mid \exists u \in \mathcal{U} : f(x, u) \in \mathcal{T} \}$$

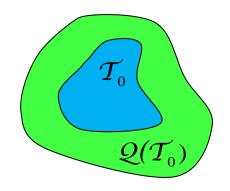
- The exact computation of this set is not possible in general
- The objective is to obtain a tight inner approximation



One-step set in the nonlinear case

$$Q(\mathcal{T}) = \{ x \in \mathcal{X} \mid \exists u \in \mathcal{U} : f(x, u) \in \mathcal{T} \}$$

- The exact computation of this set is not possible in general
- The objective is to obtain a tight inner approximation

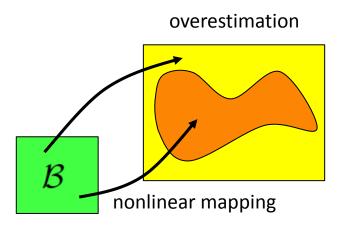


Reachability analysis

Overestimate one-step ahead reachable set for

$$\{f(x, u(x))|x \in \mathcal{B}, u(x) \in \mathcal{U}\}$$

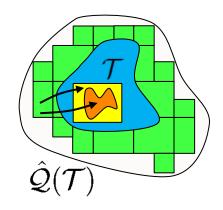
Methods: interval-arithmetic, DC-programming



One-step set in the nonlinear case

$$Q(\mathcal{T}) = \{ x \in \mathcal{X} \mid \exists u \in \mathcal{U} : f(x, u) \in \mathcal{T} \}$$

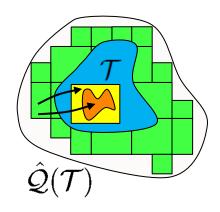
- The exact computation of this set is not possible in general
- The objective is to obtain a tight inner approximation



One-step set in the nonlinear case

$$Q(\mathcal{T}) = \{ x \in \mathcal{X} \mid \exists u \in \mathcal{U} : f(x, u) \in \mathcal{T} \}$$

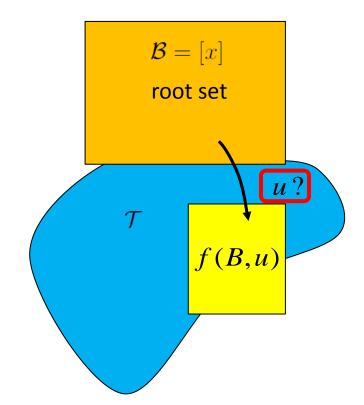
- The exact computation of this set is not possible in general
- The objective is to obtain a tight inner approximation



Partitions

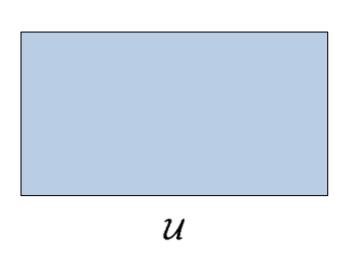
- Choose a partitioning that results in fast online computation
- Hyperrectangles + binary tree structure

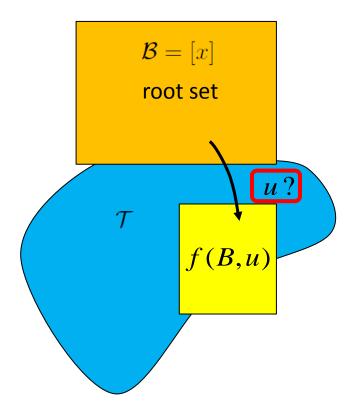
How to choose u(x) for each hyperrectangle?



How to choose u(x) for each hyperrectangle?

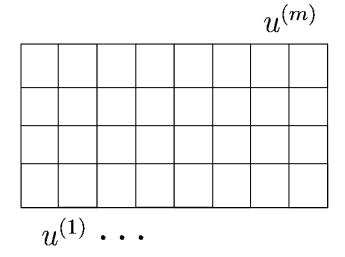
• Entire *U* set

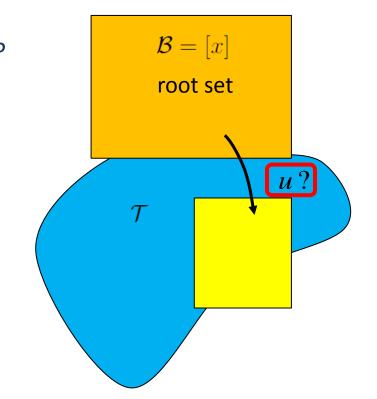




How to choose u(x) for each hyperrectangle?

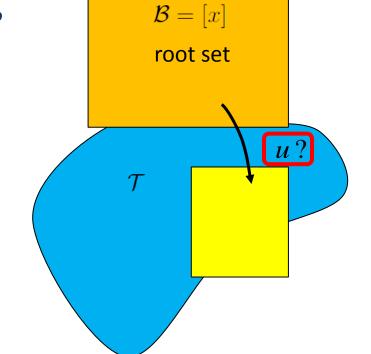
• Set of hyperrectangles





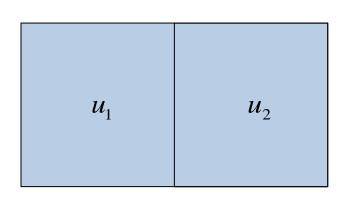
How to choose u(x) for each hyperrectangle?

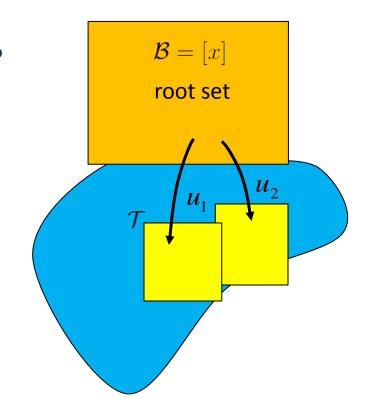
• Bisect the input space



How to choose u(x) for each hyperrectangle?

Bisect the input space





How to choose u(x) for each hyperrectangle?

• Solve the NLP at the vertices and interpolate

X₁

x₁

x₁

x₁

x₁

x₁

x₁

x₂

x₃

x₄

x₅

x₁

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

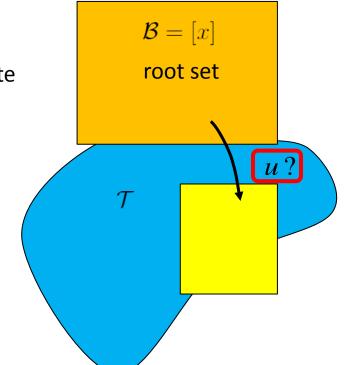
0.8

1

level 2

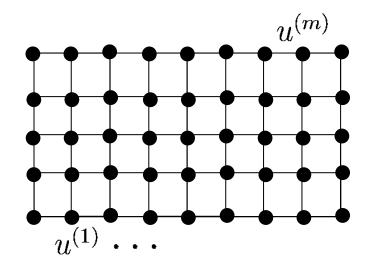
1-dimensional case

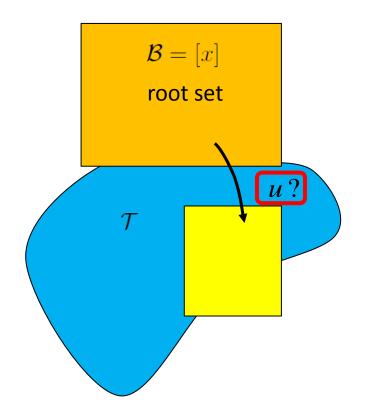
e.g. Hierarchical function approximation with interpolets



How to choose u(x) for each hyperrectangle?

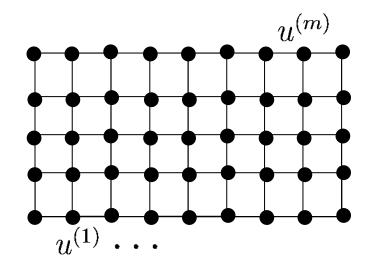
• Input space gridding

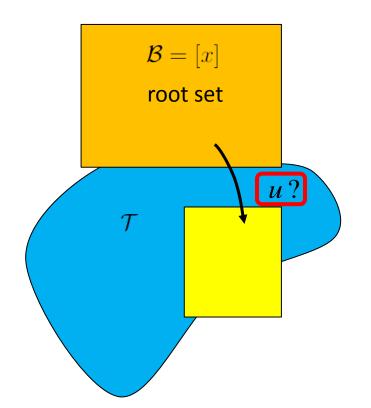




How to choose u(x) for each hyperrectangle?

Input space gridding

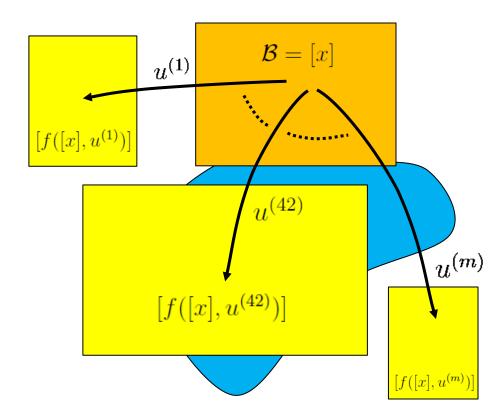




How to organize hyperrectangular state space representation?

Use bisection and binary tree

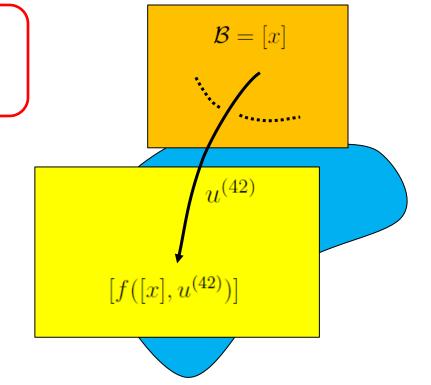
can not be steered towards \mathcal{T} uncertain can be steered towards \mathcal{T}



How to organize hyperrectangular state space representation?

Use bisection and binary tree

If $f(\mathcal{B}, u)$ intersects the target set bisect \mathcal{B} to find the subsets entering \mathcal{T}



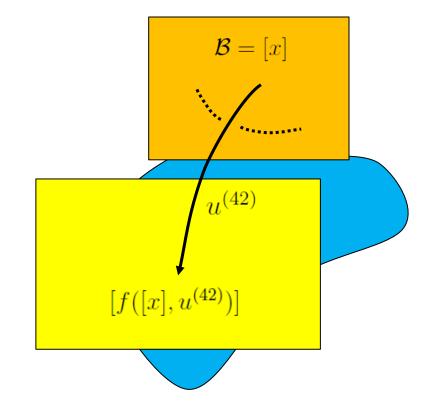
can not be steered towards \mathcal{T} uncertain can be steered towards \mathcal{T}

How to organize hyperrectangular state space representation?

Use bisection and binary tree

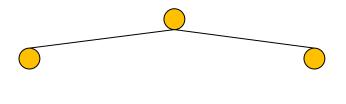
root node

can not be steered towards \mathcal{T} uncertain can be steered towards \mathcal{T}

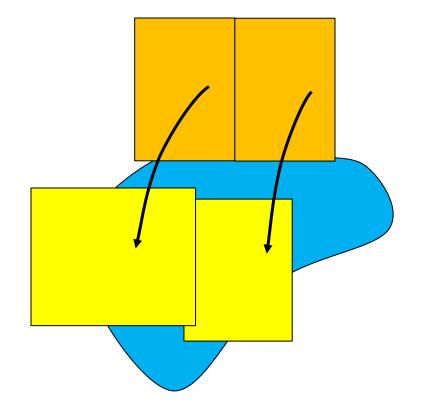


How to organize hyperrectangular state space representation?

Use bisection and binary tree

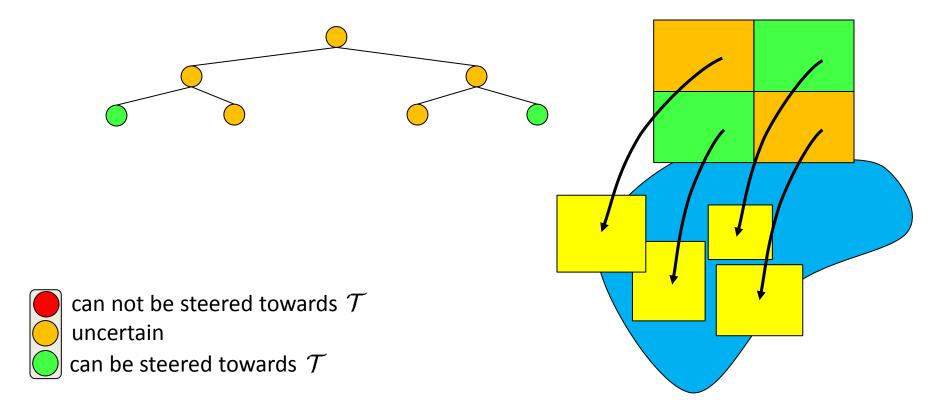


can not be steered towards ${\mathcal T}$ uncertain can be steered towards ${\mathcal T}$



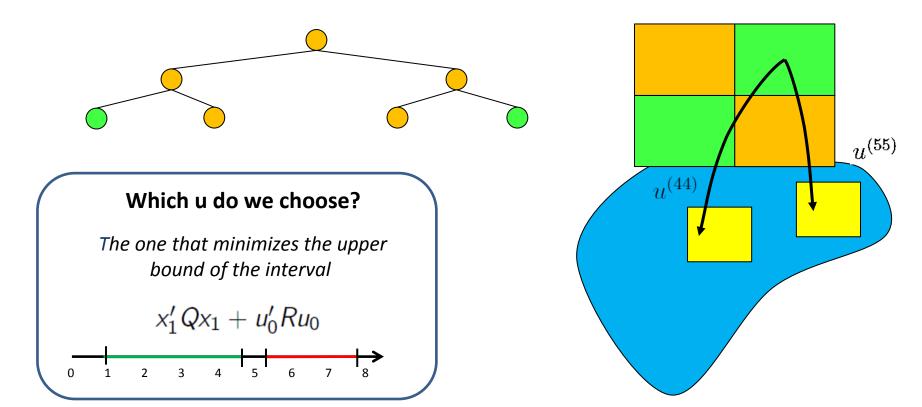
How to organize hyperrectangular state space representation?

Use bisection and binary tree



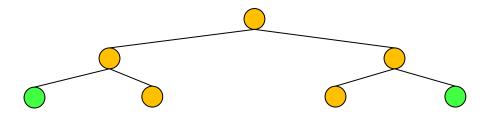
How to organize hyperrectangular state space representation?

Use bisection and binary tree

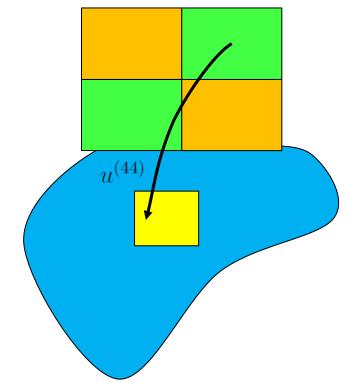


How to organize hyperrectangular state space representation?

Use bisection and binary tree

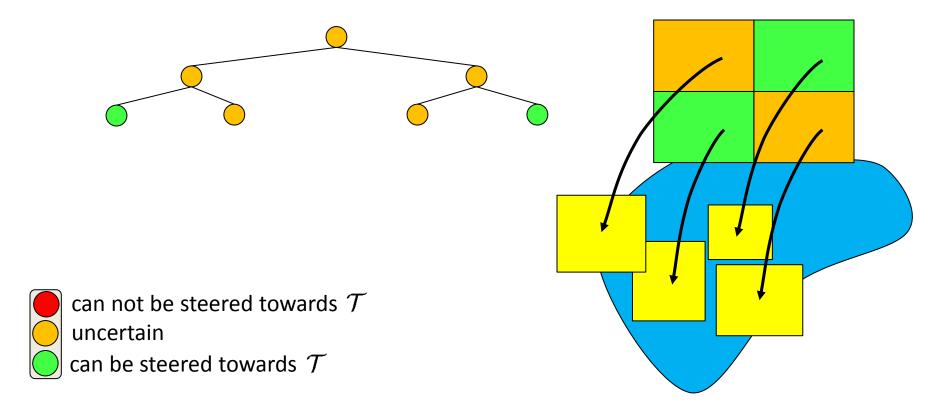


can not be steered towards ${\mathcal T}$ uncertain can be steered towards ${\mathcal T}$



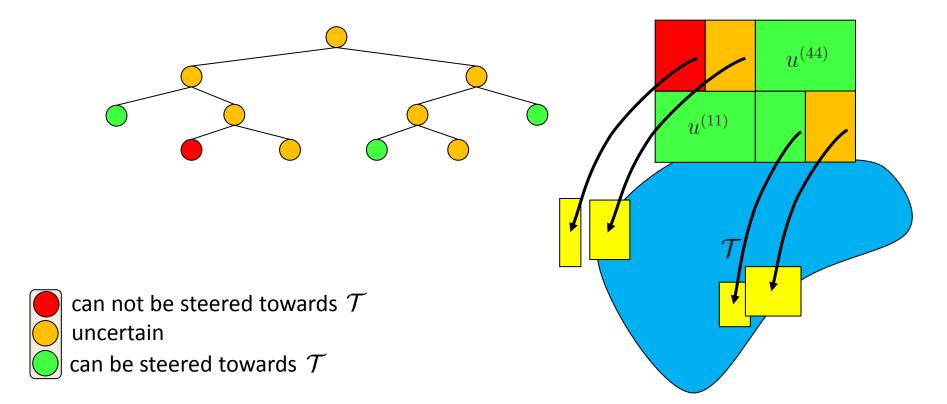
How to organize hyperrectangular state space representation?

Use bisection and binary tree



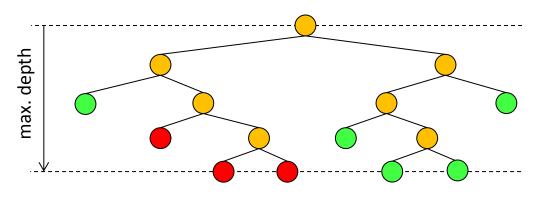
How to organize hyperrectangular state space representation?

Use bisection and binary tree

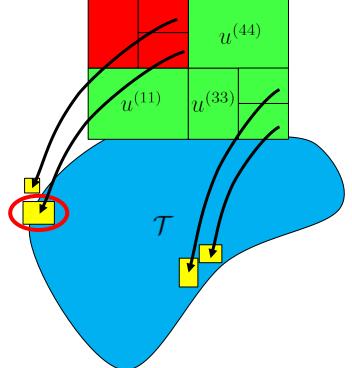


How to organize hyperrectangular state space representation?

Use bisection and binary tree

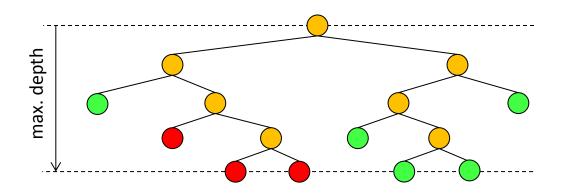


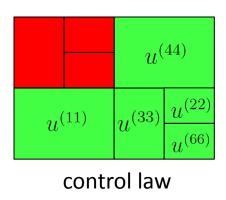
can not be steered towards \mathcal{T} uncertain can be steered towards \mathcal{T}

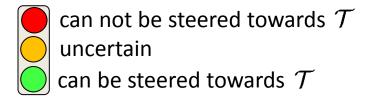


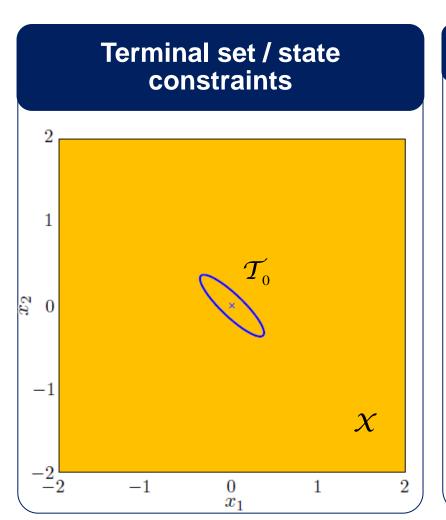
How to organize hyperrectangular state space representation?

Use bisection and binary tree









Example

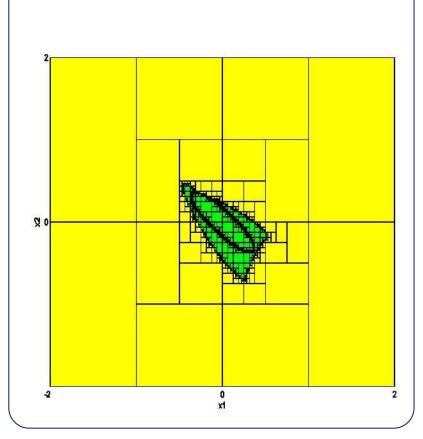
• bilinear system (Chen and Allgöwer, 1998)

$$\begin{cases} f_1(x,u) = x_1 + 0.1x_2 + 0.1 \cdot (0.5 + 0.5x_1) \cdot u \\ f_2(x,u) = x_2 + 0.1x_1 + 0.1 \cdot (0.5 + 0.5x_2) \cdot u \end{cases}$$

$$\mathcal{X} = \left\{ x \in \mathbb{R}^2 \middle| \ \|x\|_{\infty} \le 2 \right\}$$

$$\mathcal{U} = \left\{ u \in \mathbb{R} \ \middle| \ |u| \le 2 \right\}$$

Feasible set



Example

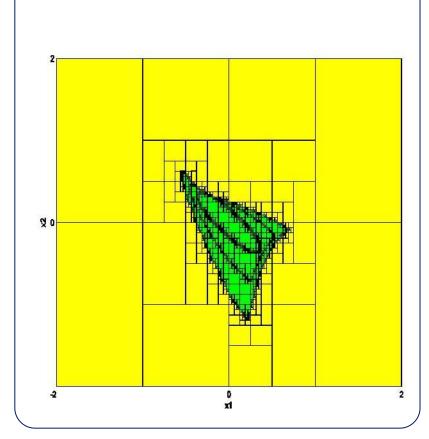
• bilinear system (Chen and Allgöwer, 1998)

$$\begin{cases} f_1(x,u) = x_1 + 0.1x_2 + 0.1 \cdot (0.5 + 0.5x_1) \cdot u \\ f_2(x,u) = x_2 + 0.1x_1 + 0.1 \cdot (0.5 + 0.5x_2) \cdot u \end{cases}$$

$$\mathcal{X} = \left\{ x \in \mathbb{R}^2 \middle| \|x\|_{\infty} \le 2 \right\}$$

$$\mathcal{U} = \left\{ u \in \mathbb{R} \middle| |u| \le 2 \right\}$$

Feasible set



Example

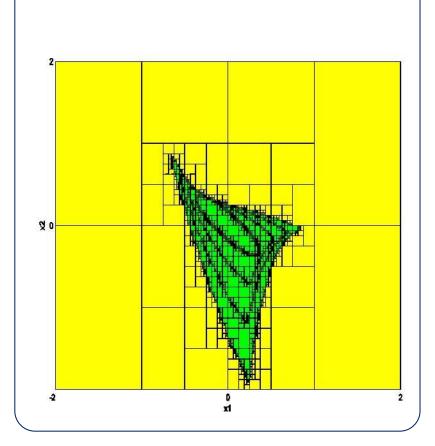
• bilinear system (Chen and Allgöwer, 1998)

$$\begin{cases} f_1(x,u) = x_1 + 0.1x_2 + 0.1 \cdot (0.5 + 0.5x_1) \cdot u \\ f_2(x,u) = x_2 + 0.1x_1 + 0.1 \cdot (0.5 + 0.5x_2) \cdot u \end{cases}$$

$$\mathcal{X} = \left\{ x \in \mathbb{R}^2 \middle| \ \|x\|_{\infty} \le 2 \right\}$$

$$\mathcal{U} = \left\{ u \in \mathbb{R} \ \middle| \ |u| \le 2 \right\}$$

Feasible set



Example

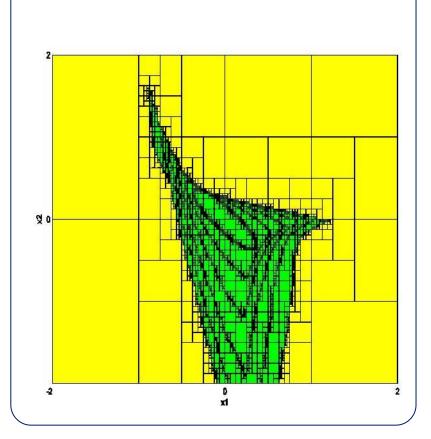
• bilinear system (Chen and Allgöwer, 1998)

$$\begin{cases} f_1(x,u) = x_1 + 0.1x_2 + 0.1 \cdot (0.5 + 0.5x_1) \cdot u \\ f_2(x,u) = x_2 + 0.1x_1 + 0.1 \cdot (0.5 + 0.5x_2) \cdot u \end{cases}$$

$$\mathcal{X} = \left\{ x \in \mathbb{R}^2 \middle| \ \|x\|_{\infty} \le 2 \right\}$$

$$\mathcal{U} = \left\{ u \in \mathbb{R} \ \middle| \ |u| \le 2 \right\}$$

Feasible set



Example

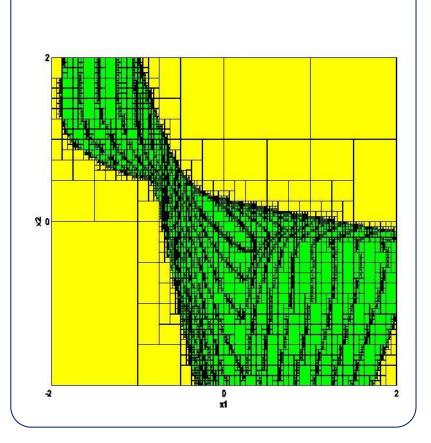
• bilinear system (Chen and Allgöwer, 1998)

$$\begin{cases} f_1(x,u) = x_1 + 0.1x_2 + 0.1 \cdot (0.5 + 0.5x_1) \cdot u \\ f_2(x,u) = x_2 + 0.1x_1 + 0.1 \cdot (0.5 + 0.5x_2) \cdot u \end{cases}$$

$$\mathcal{X} = \left\{ x \in \mathbb{R}^2 \middle| \ \|x\|_{\infty} \le 2 \right\}$$

$$\mathcal{U} = \left\{ u \in \mathbb{R} \ \middle| \ |u| \le 2 \right\}$$

Feasible set



Example

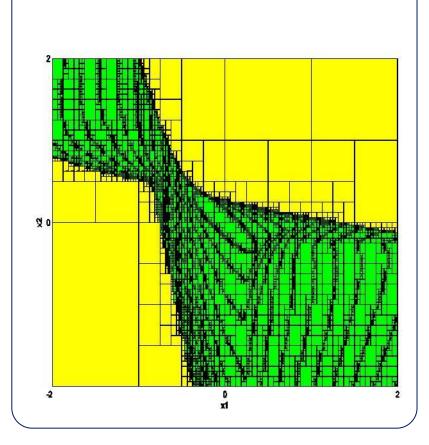
• bilinear system (Chen and Allgöwer, 1998)

$$\begin{cases} f_1(x,u) = x_1 + 0.1x_2 + 0.1 \cdot (0.5 + 0.5x_1) \cdot u \\ f_2(x,u) = x_2 + 0.1x_1 + 0.1 \cdot (0.5 + 0.5x_2) \cdot u \end{cases}$$

$$\mathcal{X} = \left\{ x \in \mathbb{R}^2 \middle| \|x\|_{\infty} \le 2 \right\}$$

$$\mathcal{U} = \left\{ u \in \mathbb{R} \middle| |u| \le 2 \right\}$$

Feasible set



Example

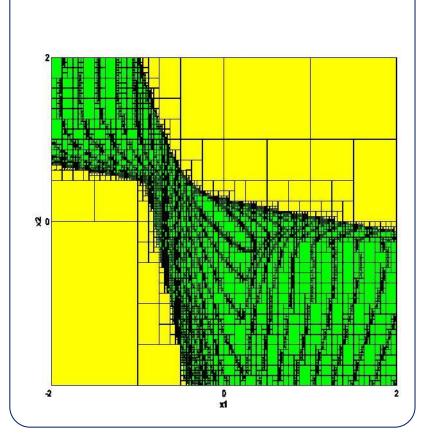
• bilinear system (Chen and Allgöwer, 1998)

$$\begin{cases} f_1(x,u) = x_1 + 0.1x_2 + 0.1 \cdot (0.5 + 0.5x_1) \cdot u \\ f_2(x,u) = x_2 + 0.1x_1 + 0.1 \cdot (0.5 + 0.5x_2) \cdot u \end{cases}$$

$$\mathcal{X} = \left\{ x \in \mathbb{R}^2 \middle| \ \|x\|_{\infty} \le 2 \right\}$$

$$\mathcal{U} = \left\{ u \in \mathbb{R} \ \middle| \ |u| \le 2 \right\}$$

Feasible set



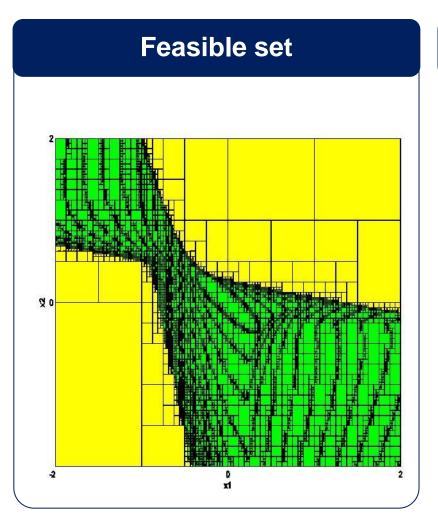
Example

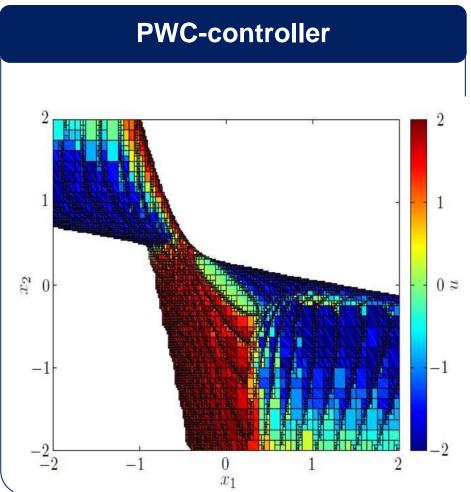
• bilinear system (Chen and Allgöwer, 1998)

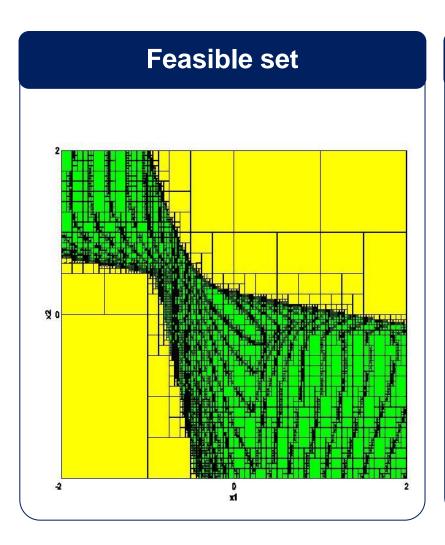
$$\begin{cases} f_1(x,u) = x_1 + 0.1x_2 + 0.1 \cdot (0.5 + 0.5x_1) \cdot u \\ f_2(x,u) = x_2 + 0.1x_1 + 0.1 \cdot (0.5 + 0.5x_2) \cdot u \end{cases}$$

$$\mathcal{X} = \left\{ x \in \mathbb{R}^2 \middle| \ \|x\|_{\infty} \le 2 \right\}$$

$$\mathcal{U} = \left\{ u \in \mathbb{R} \ \middle| \ |u| \le 2 \right\}$$





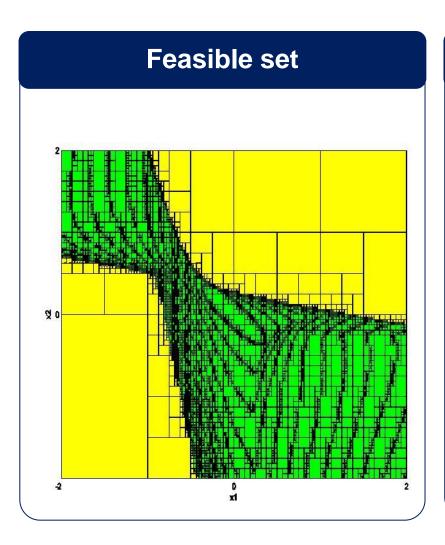


Considerations

Stability is guaranteed

Once the terminal set is attained we switch to the auxiliary controller $k_f(x)$

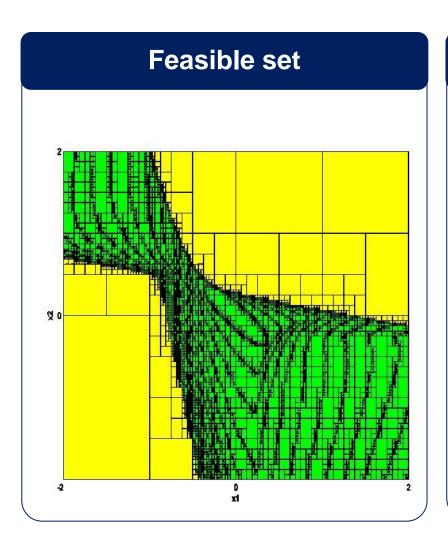
Differently from the original method, the use of hyperrectangles provides non-overlapping regions



Considerations

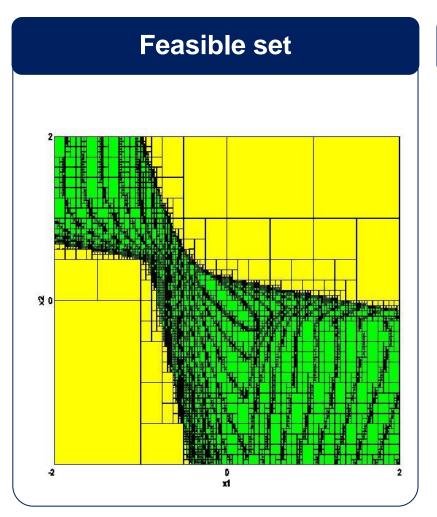
In order to reduce suboptimality

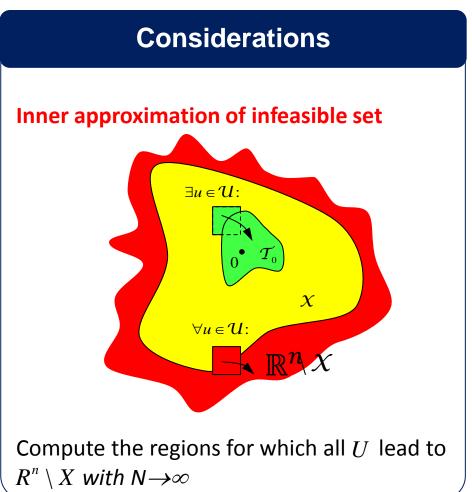
Candidate regions can be further split according to the cost function $x_1'Qx_1 + u_0'Ru_0$ and stop when the gap between keeping the same controller or differentiating it for each subset is smaller than a threshold ε .

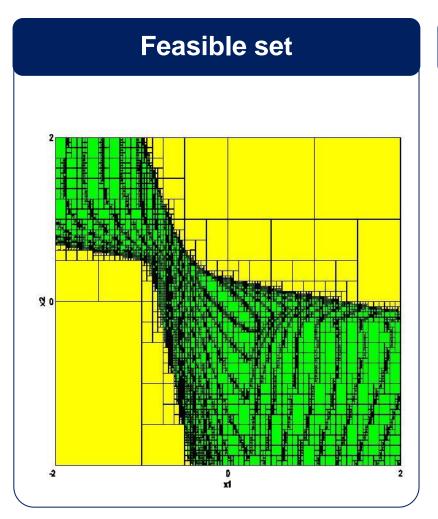


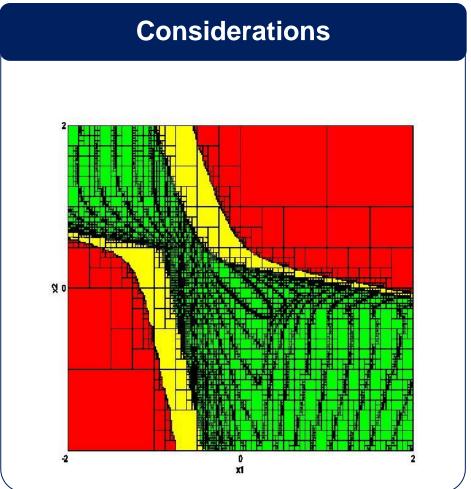
Considerations

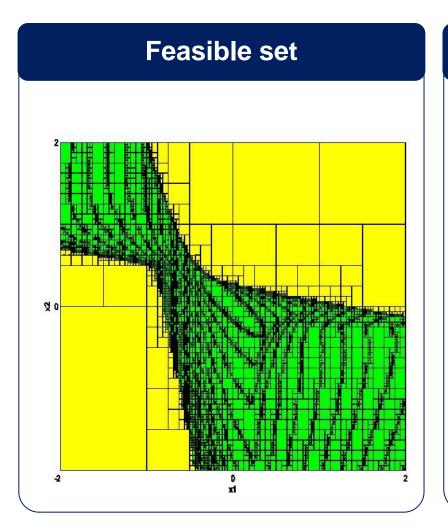
How conservative is the inner approximation of the feasible set?

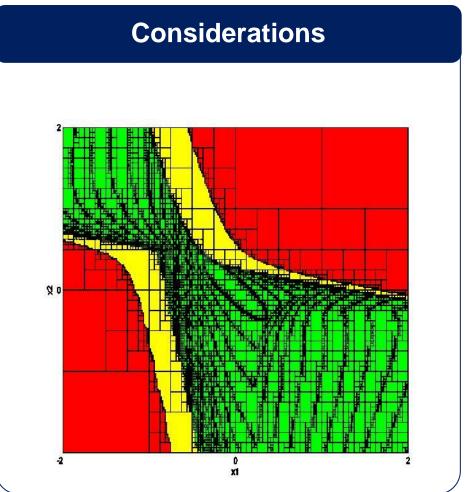




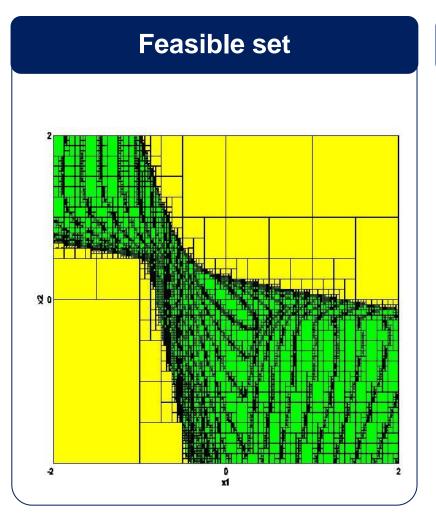


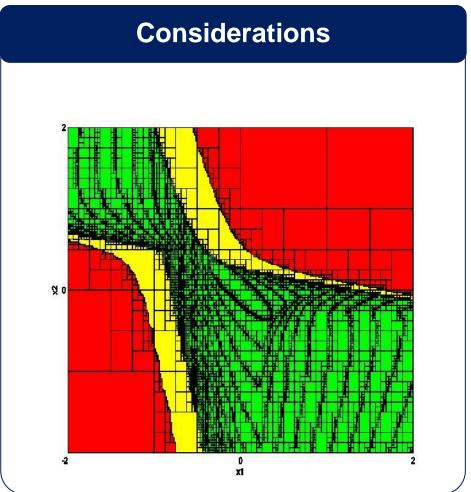




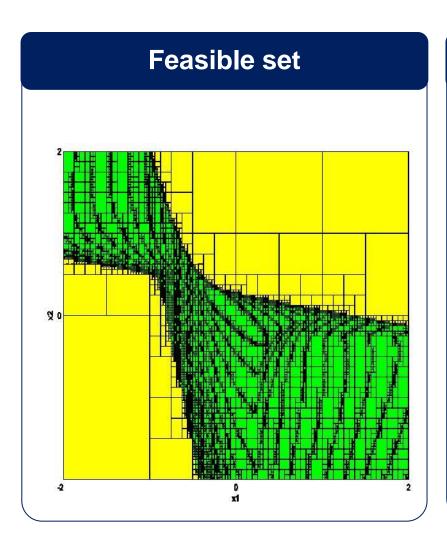


Finite horizon for the green region





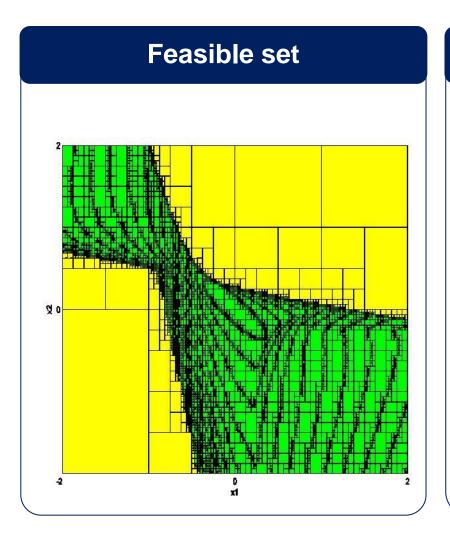
Not feasible also when ${\mathcal T}$ is not attained in N steps



Considerations

What about solving directly the N-step problem?

Stability: difficult to get a suboptimality gap from the optimal solution.



Considerations

Fast online evaluation
Minimal storage requirements

Hash Map Representation:
Memory saving

Search Tree Representation Fast online evaluation time

The control law can be evaluated in 31ns (Hash) or $0.5\mu s$ (Search Tree)