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Problem Set #5 (With Corrections)

1. Consider the functional

J(x) :=

∫

1

0

(

[ẋ(t)]2 + 12 t x(t)
)

dt,

for x ∈ D := {x ∈ C1[0, 1] : x(0) = 1, x(1) = 2}.

(a) Find stationary functions for this problem, which satisfy the specified end-point conditions.

Solution. Since the Lagrangian function is dependent of t, x and ẋ, no first-integral can be con-
sidered for the problem. The Euler’s equation reads

ẍ(t) = 6t.

Integrating this equation twice yields,

x(t) = t3 + c1t + c2,

where c1 and c2 are constants of integration. These two constants can be determined from the
end-point conditions, as c1 = 0 and c2 = 1. The resulting stationary function is

x̄(t) := t3 + 1.

(b) What can be said about the resulting stationary functions: Do they give a local minimum? A local
maximum? A global minimum? A global maximum? Or, neither of these?

Solution. Since the Lagrangian function `(t, y, z) := z2 +12 t y is differentiable and jointly convex
in (y, z), the first-order sufficiency theorem ensures that every stationary function for ` gives a
global minimum for J on D. But since x̄(t) := t3 + 1 is the unique stationary function for `, x̄(t)
is a global minimizer for J on D.

Observe that the possibility of x̄ giving a local or global maximum for J on D is also precluded
by Legendre second-order necessary condition, since `zz = 2 ≥ 0 along x̄(t).

2. Consider the functional

J(x) :=

∫ t2

t1

(

[x(t)]2 + ax(t)ẋ(t) + b[ẋ(t)]2
)

dt,

for x ∈ D := {x ∈ C1[t1, t2] : x(t1) = x1, x(t2) = x2}.
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(a) Find stationary functions for this problem, by distinguishing between the cases where b = 0, b > 0 and
b < 0. Which stationary functions are candidate (local or global) minimizers for J on D? Candidate
(local or global) maximizers for J on D?

Solution. The Lagrangian function for this problem is

`(t, y, z) = y2 + ayz + bz2,

and we have

`y(t, x(t), ẋ(t)) = 2x(t) + aẋ(t)

`z(t, x(t), ẋ(t)) = ax(t) + 2bẋ(t).

That is, the Euler’s equation reads

bẍ(t) = x(t), (1)

and we have the following cases:

case b = 0 Trivially, the unique stationary function is

x̄(t) = 0, t1 ≤ t ≤ t2.

Observe, in particular, that the only stationary function satisfying the end-point requirement
on C1[t1, t2] is with x1 = x2 = 0.

case b > 0 The stationary functions are given by

x̄(t) = c1 exp

(

t√
b

)

+ c2 exp

(

− t√
b

)

, t1 ≤ t ≤ t2,

where c1 and c2 are constants of integration to be determined from the end-point conditions
x(t1) = x1 and x(t2) = x2. Note that b being positive, the Lagrangian `(t, y, z) is jointly
convex in (y, z). Hence, the first-order sufficiency theorem ensures that x̄(t) gives a global
minimum for J on D.

case b < 0 The stationary functions are given by

x̄(t) = c1 sin

(

t√
−b

)

+ c2 cos

(

t√
−b

)

, t1 ≤ t ≤ t2,

where c1 and c2 are constants of integration to be determined from the end-point conditions
x(t1) = x1 and x(t2) = x2. Note that b being negative, the Lagrangian `(t, y, z) is no longer
jointly convex in (y, z), and the first-order sufficiency theorem does not apply. However,
`(t, y, z) being concave in z, Legendre second-order necessary condition precludes the
possibility of x̄ being a local minimizer for J on D. On the other hand, x̄ could be a local
maximizer for J on D.

(b) How does the parameter a affect the solution? Why?

Solution. Observe first that Euler’s equation (1) does not depend on a, nor do the end-point
conditions. That is, the stationary solutions are unaffected by the value of a.

The reason for this is that
∫ t2

t1

ax(t)ẋ(t) dt = a

∫ t2

t1

d

dt
[x(t)2] dt =

a

2

(

x2

2
− x2

1

)

,

which is fixed since both end-points are specified. Therefore, this part of the cost remains identical
for any admissible trajectory.
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3. Consider the problem to

minimize: J(x) =

∫ T

0

exp(−rt) x(t) dt

subject to: x ∈ D :=

{

x ∈ C [0, T ] :

∫ T

0

√

x(t) dt = A

}

,

given A ≥ 0 and r > 0.

(a) Reformulate this constrained problem into a free problem.

[Hint: consider the new phase variable y ∈ C1[0, T ] defined by y(t) :=
∫ t

0

√

x(s) ds, 0 ≤ t ≤ T .]

Solution. Following the suggested reformulation, we have

ẏ(t) =
√

x(t), (2)

for each 0 ≤ t ≤ T . That is, the problem of minimizing J on D is equivalent to:

minimize: J̃(x) =

∫ T

0

exp(−rt) [ẏ(t)]2 dt

subject to: x ∈ D̃ :=
{

y ∈ C1[0, T ] : y(0) = 0, y(T ) = A
}

.

(b) Identify candidate solutions to this problem based on Euler’s equation and Legendre condition.

Solution. The Lagrangian function for the reformulated problem is

˜̀(t, z) = exp(−rt) z2,

and a first integral to the Euler equation is obtained as

exp(−rt)ẏ(t) = c1,

with c1 a real constant. Integrating this equation yields the following stationary function

ȳ(t) :=
c1

r
exp(rt) + c2,

with c2 another constant of integration, and r > 0. Then, from the specified end-point conditions,
we get c1 = Ar exp(−rT ) and c2 = 0, so that

ȳ(t) := A exp(−r(T − t)).

Note that, ˜̀ being differentiable and convex in z, it satisfies the first-order sufficiency conditions,
hence ȳ is a global minimum for the problem to minimize J̃ on D̃. Finally, from (2) and since
A ≥ 0, the (continuous) function x̄ defined by

x̄(t) := A2r2 exp(−2r(T − t)),

is a global minimizer for J on D.
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