
Christoph Lampert — Learning with Structured Inputs and Outputs — Part 1: Introduction

Learning with Structured Inputs and Outputs

Christoph H. Lampert
IST Austria (Institute of Science and Technology Austria), Vienna

INRIA CVML Summer School, Grenoble, July 2012

Slides: http://www.ist.ac.at/~chl/

1 / 7

http://www.ist.ac.at/~chl/


Christoph Lampert — Learning with Structured Inputs and Outputs — Part 1: Introduction

Schedule

9:30-10:30 Introduction to Graphical Models

10:30-11:00 Conditional Random Fields

11:00-11:30 Structured Support Vector Machines

Slides available on my home page:
http://www.ist.ac.at/~chl
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Extended version lecture in book form (180 pages)

Foundations and Trends in
Computer Graphics and Vision

now publisher

http://www.nowpublishers.com/

Available as PDF on my homepage
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”Normal” Machine Learning:

f : X → R.

I inputs X can be any kind of objects

I output y is a real number

Structured Output Learning:

f : X → Y .

I inputs X can be any kind of objects

I outputs y ∈ Y are complex (structured) objects
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What is structured data?

Ad hoc definition: data that consists of several parts, and not only the
parts themselves contain information, but also the way in which the parts
belong together.

Text Molecules / Chemical Structures

Documents/HyperText Images

6 / 7
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What is structured output prediction?

Ad hoc definition: predicting structured outputs from input data
(in contrast to predicting just a single number, like in classification or regression)

I Natural Language Processing:
I Automatic Translation (output: sentences)
I Sentence Parsing (output: parse trees)

I Bioinformatics:
I Secondary Structure Prediction (output: bipartite graphs)
I Enzyme Function Prediction (output: path in a tree)

I Speech Processing:
I Automatic Transcription (output: sentences)
I Text-to-Speech (output: audio signal)

I Robotics:
I Planning (output: sequence of actions)

This tutorial: Applications and Examples from Computer Vision

7 / 7
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How to express f : X → Y?

Scalar functions, X = RD, Y = R
x = (x1, . . . , xd), where x1, . . . , xD are just numbers → do anything

e.g. f(x1, . . . , x4) = (x1 + x2)
2 + e

1
2π

(
√

sin(x3x4)).

Application: predicting stock prices

Boolean functions, X = RD, Y = {0, 1}
Compute real-valued function f̂ : RD → R and threshold it:

f(x) = sign f̂(x)

Application: decide whether to buy a stock or not
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Scalar functions, X = anything, Y = R
We can’t compute directly with x ∈ X .
But we can extract features, φ : X → RD:

e.g. f(x) =

D∑
i=1

wiφi(x) + b

or use a kernel function, k : X × X → R:

e.g. f(x) =

n∑
j=1

αjk(xj , x)

Application: image classification

I x ≡ image

I φ(x) ≡ e.g. HoG features

I k(x, x′) ≡ e.g. χ2-kernel of visual word histogram
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Structured output function, X = anything, Y = anything

1) Define auxiliary function, g : X × Y → R, using joint features φ(x, y):

e.g. g(x, y) =
∑

i
wiφi(x, y) + b,

or using a joint kernel function k( (x, y), (x′, y′) ):

e.g. g(x, y) =
∑

j
αjk( (xj , yj), (x, y) )

2) Obtain f : X → Y by maximimization:

f(x) = argmax
y∈Y

g(x, y)

Construction familiar from one-vs-rest SVMs, Y = {1, . . . ,K}:
I Train classifiers fy : X → R for each class y ∈ {1, . . . ,K}.
I For new sample x ∈ X , predict by f(x) = argmaxy fy(x)
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A Probabilistic View

Computer Vision almost always deals with uncertain information

I Training examples are collected ”randomly” (e.g. from the web)

I Annotation is ”noisy” (there can be mistakes, or ambiguous cases)
I Tasks cannot be solved with 100 percent certainty, because of

I incomplete information (”guess what number I think of”), or
I inherent randomness (”guess a coin toss”)

Uncertainty is captured by (conditional) probability distributions: p(y|x)

I for input x ∈ X , how likely is y ∈ Y the correct output?

We can also phrase this as

I what’s the probability of observing y given x?

I how strong is our belief in y in we know x?
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A Probabilistic View on f : X → Y

Structured output function, X = anything, Y = anything

We need to define an auxiliary function, g : X × Y → R.

e.g. g(x, y) := p(y|x).

Then maximimization

f(x) = argmax
y∈Y

g(x, y) = argmax
y∈Y

p(y|x)

becomes maximum a posteriori (MAP) prediction.

Interpretation:
If you have to decide for a single output, y ∈ Y, use the most probable one.
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Probability Distributions

∀y ∈ Y p(y) ≥ 0 (positivity)∑
y∈Y

p(y) = 1 (normalization)

Example: binary (”Bernoulli”)
variable y ∈ Y = {0, 1}

I 2 values,

I 1 degree of freedom

0 1
y

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

p
(y

)
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Conditional Probability Distributions

∀x ∈ X ∀y ∈ Y p(y|x) ≥ 0 (positivity)

∀x ∈ X
∑
y∈Y

p(y|x) = 1 (normalization w.r.t. y)

For example: binary prediction
X = {coin owners}, Y = {0, 1}

I each x: 2 values, 1 d.o.f. x

p(y|x)

H T
Bart

H T
Lisa

H T
Milhouse
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Conditional Probability Distributions

∀x ∈ X ∀y ∈ Y p(y|x) ≥ 0 (positivity)

∀x ∈ X
∑
y∈Y

p(y|x) = 1 (normalization w.r.t. y)

For example: binary prediction
X = {images}, y ∈ Y = {0, 1}

I each x: 2 values, 1 d.o.f.
→ one (or two) function
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Multi-class prediction, y ∈ Y = {1, . . . , K}

I each x: K values, K−1 d.o.f.
→ K−1 functions

I or 1 vector-valued function with
K−1 outputs

Typically: K functions, plus explicit normalization

Example: predicting the center point of an object

y ∈ Y = {(1, 1), . . . , (width, height)}
• for each x: |Y| = W ·H values,

y = (y1, y2) ∈ Y1 × Y2 with
Y1 = {(1, . . . ,width} and
Y2 = {1, . . . , height}.
• each x: |Y1| · |Y2| = W ·H values,
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Structured objects: predicting M variables jointly

Y = {1,K} × {1,K} · · · × {1,K}
For each x:

I KM values, KM−1 d.o.f.
→ KM functions

Example: Object detection with variable size bounding box

Y ⊂ {1, . . . ,W} × {1, . . . ,H}
× {1, . . . ,W} × {1, . . . ,H}

y = (left, top, right, bottom)

For each x:

I 1
4W (W−1)H(H−1) values
(millions to billions...)
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Example: image denoising

Y = {640× 480 RGB images}

For each x:

I 16777216307200 values in p(y|x),

I ≥ 102,000,000 functions

too much!

We cannot consider all possible distributions, we must impose structure.
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Probabilistic Graphical Models

A (probabilistic) graphical model defines
I a family of probability distributions over a set of random variables,

by means of a graph.

Popular classes of graphical models,

I Undirected graphical models (Markov random fields),

I Directed graphical models (Bayesian networks),

I Factor graphs,

I Others: chain graphs, influence diagrams, etc.

The graph encodes conditional independence assumptions
between the variables:

I for N(i) are the neighbors of node i in the graph

p(yi|yV \{i}) = p(yi|yN (i))

with yV \{i} = (y1, . . . , yi−1, yi+1, yn).
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Example: Pictorial Structures for Articulated Pose Estimation

. . .

Ytop

Yhead

YtorsoYrarm

Yrhnd

Yrleg

Yrfoot Ylfoot

Ylleg

Ylarm

Ylhnd

X

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

F
(1)

top

F
(2)

top,head

I In principle, all parts depend on each other.
I Knowing where the head is puts constraints on where the feet can be.

I But conditional independences as specified by the graph:
I If we know where the left leg is, the left foot’s position does not

depend on the torso position anymore, etc.

p(ylfoot|ytop, . . . , ytorso, . . . , yrfoot, x) = p(ylfoot|ylleg, x)
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Factor Graphs

I Decomposable output y = (y1, . . . , y|V |)

I Graph: G = (V,F , E), E ⊆ V ×F
I variable nodes V ,
I factor nodes F ,
I edges E between variable and factor nodes.
I each factor F ∈ F connects a subset of nodes,
I write F = {v1, . . . , v|F |} and
yF = (yv1 , . . . , yv|F |)

Yi Yj

Yk Yl

Factor graph

I Factorization into potentials ψ at factors:

p(y) =
1

Z

∏
F∈F

ψF (yF )

I Z is a normalization constant, called partition function:

Z =
∑
y∈Y

∏
F∈F

ψF (yF ).
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Conditional Distributions

How to model p(y|x)?

I Potentials become also functions of (part of) x:
ψF (yF ;xF ) instead of just ψF (yF )

p(y|x) =
1

Z(x)

∏
F∈F

ψF (yF ;xF )

I Partition function depends on xF

Z(x) =
∑
y∈Y

∏
F∈F

ψF (yF ;xF ).

Yi Yj

Xi Xj

Factor graph

I Note: x is treated just as an argument, not as a random variable.

Conditional random fields (CRFs)
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Conventions: Potentials and Energy Functions

Assume ψF (yF ) > 0. Then

I instead of potentials, we can also work with energies:

ψF (yF ;xF ) = exp(−EF (yF ;xF )),

or equivalently

EF (yF ;xF ) = − log(ψF (yF ;xF )).

I p(y|x) can be written as

p(y|x) =
1

Z(x)

∏
F∈F

ψF (yF ;xF )

=
1

Z(x)
exp(−

∑
F∈F

EF (yF ;xF )) = 1
Z(x) exp(−E(y;x))

for E(y;x) =
∑

F∈F EF (yF ;xF )
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Conventions: Energy Minimization

argmax
y

p(y|x) = argmax
y∈Y

1

Z(x)
exp(−E(y;x))

= argmax
y∈Y

exp(−E(y;x))

= argmax
y∈Y

−E(y;x)

= argmin
y∈Y

E(y;x).

MAP prediction can be performed by energy minimization.

In practice, one typically models the energy function directly.
→ the probability distribution is uniquely determined by it.
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Example: An Energy Function for Image Segmentation

Foreground/background image segmentation

I X = [0, 255]WH , Y = {0, 1}WH

foreground: yi = 1, background: yi = 0.

I graph: 4-connected grid
I Each output pixel depends on

I local grayvalue (inputs)
I neighboring outputs

Energy function components (”Ising” model):

I Ei(yi = 1, xi) = 1− 1
255xi Ei(yi = 0, xi) = 1

255xi
xi bright → yi rather foreground, xi dark → yi rather background

I Eij(0, 0) = Eij(1, 1) = 0, Eij(0, 1) = Eij(1, 0) = ω for ω > 0
prefer that neighbors have the same label → labeling smooth
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E(y;x) =
∑
i

(
(1− 1

255
xi)Jyi = 1K +

1

255
xiJyi = 0K

)
+
∑
i∼j

wJyi 6= yjK

input image segmentation segmentation from
from thresholding minimal energy
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What to do with Structured Prediction Models?

Case 1) p(y|x) is known

MAP Prediction

Predict f : X → Y by solving

y∗ = argmax
y∈Y

p(y|y)

= argmin
y∈Y

E(y, x)

Probabilistic Inference

Compute marginal probabilities

p(yF |x)

for any factor F , in particular, p(yi|x) for all i ∈ V .
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What to do with Structured Prediction Models?

Case 2) p(y|x) is unknown, but we have training data

Structure Learning

Learn graph structure from training data.

Variable Learning

Learn, whether to use additional (latent) variables, and which ones.
(input and output variables are fixed by the task we try to solve).

Parameter Learning

Assume fixed graph structure, learn potentials/energies.

22 / 52
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Probabilistic Inference

Compute p(yF |x) and Z(x).
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Example: Pictorial Structures

input image argmaxy p(y|x) p(yi|x)

I MAP makes a single (structured) prediction (point estimate)
I best overall pose

I Marginal probabilities p(yi|x) give us
I potential positions
I uncertainty

of the individual body parts.
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Assume y = (yi, yj , yk, yl), Y = Yi × Yj × Yk × Yl, and an energy
function E(y;x) compatible with the following factor graph:

Yi Yj Yk Yl
F G H

Task 1: for any y ∈ Y, compute p(y|x), using

p(y|x) =
1

Z(x)
exp(−E(y;x)).

Problem: We don’t know Z(x), and computing it using

Z(x) =
∑
y∈Y

exp(−E(y;x))

looks expensive (the sum has |Yi| · |Yj | · |Yk| · |Yl| terms).

A lot research has been done on how to efficiently compute Z(x).

25 / 52
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Probabilistic Inference – Belief Propagation / Message Passing

Yi Yj Yk Yl
F G H

For notational simplicity, we drop the dependence on (fixed) x:

Z=
∑
y∈Y

exp(−E(y))

=
∑
yi∈Yi

∑
yj∈Yj

∑
yk∈Yk

∑
yl∈Yl

exp(−E(yi, yj , yk, yl))

=
∑
yi∈Yi

∑
yj∈Yj

∑
yk∈Yk

∑
yl∈Yl

exp(−(EF (yi, yj) + EG(yj , yk) + EH(yk, yl)))
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Yi Yj Yk Yl
F G H
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Probabilistic Inference – Belief Propagation / Message Passing

Yi Yj Yk Yl
F G H

rH→Yk
∈ RYk

Z=
∑
yi

∑
yj

exp(−EF (yi, yj))
∑
yk

exp(−EG(yj , yk))
∑
yl

exp(−EH(yk, yl))︸ ︷︷ ︸
rH→Yk

(yk)

=
∑
yi

∑
yj

exp(−EF (yi, yj))
∑
yk

exp(−EG(yj , yk))rH→Yk(yk)
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Yi Yj Yk
F G H

rH→Yk
∈ RYk

Yl

Z=
∑
yi

∑
yj
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∑
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Probabilistic Inference – Belief Propagation / Message Passing

Yi Yj Yk
F G H

Yl

rG→Yj
∈ RYj

Z=
∑
yi

∑
yj

exp(−EF (yi, yj))
∑
yk

exp(−EG(yj , yk))rH→Yk(yk)︸ ︷︷ ︸
rG→Yj

(yj)

=
∑
yi

∑
yj

exp(−EF (yi, yj))rG→Yj (yj)

=
∑
yi

rF→Yi(yi)
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Example: Inference on Trees

Yi Yj Yk Yl
F G H

I

Ym

Z =
∑
y∈Y

exp(−E(y))

=
∑
yi∈Yi

∑
yj∈Yi

∑
yk∈Yi

∑
yl∈Yi

∑
ym∈Ym

exp(−(EF (yi, yj) + · · ·+ EI(yk, ym)))
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Yi Yj Yk Yl
F G H

I

Ym

Z =
∑
yi∈Yi

∑
yj∈Yj

exp(−EF (yi, yj))
∑
yk∈Yk

exp(−EG(yj , yk)) ·
∑
yl∈Yl

exp(−EH(yk, yl))


︸ ︷︷ ︸

rH→Yk
(yk)

·

 ∑
ym∈Ym

exp(−EI(yk, ym))


︸ ︷︷ ︸

rI→Yk
(yk)
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Example: Inference on Trees

Yi Yj Yk
F G H

I

Ym

rH→Yk(yk)

rI→Yk(yk)

Yl

Z =
∑
yi∈Yi

∑
yj∈Yj

exp(−EF (yi, yj))
∑
yk∈Yk

exp(−EG(yj , yk)) ·

(rH→Yk(yk) · rI→Yk(yk))
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Yi Yj Yk
F G H

I

Ym

rH→Yk(yk)

rI→Yk(yk)

Yl

qYk→G(yk)

Z =
∑
yi∈Yi

∑
yj∈Yj

exp(−EF (yi, yj))
∑
yk∈Yk

exp(−EG(yj , yk)) ·

(rH→Yk(yk) · rI→Yk(yk))︸ ︷︷ ︸
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Factor Graph Sum-Product Algorithm

I “Message”: pair of vectors at each
factor graph edge (i, F ) ∈ E

1. rF→Yi
∈ RYi : factor-to-variable

message
2. qYi→F ∈ RYi : variable-to-factor

message

I Algorithm iteratively update messages

Yi
. . .

. . .
. . .

. . .

F

rF→Yi

qYi→F

I After convergence: Z and p(yF ) can be obtained from the messages.

Belief Propagation
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Example: Pictorial Structures

. . .

Ytop

Yhead

YtorsoYrarm

Yrhnd

Yrleg

Yrfoot Ylfoot

Ylleg

Ylarm

Ylhnd

X

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

F
(1)

top

F
(2)

top,head

I Tree-structured model for articulated pose (Felzenszwalb and
Huttenlocher, 2000), (Fischler and Elschlager, 1973)

I Body-part variables, states: discretized tuple (x, y, s, θ)
I (x, y) position, s scale, and θ rotation
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Example: Pictorial Structures

I Marginal probabilities p(yi|x) give us
I potential positions
I uncertainty

of the body parts.
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Belief Propagation in Loopy Graphs

Can we do message passing also in graphs with loops?

Yi Yj Yk

Yl Ym Yn

Yo Yp Yq

A B

F G

K L

C D E

H I J

Yi Yj Yk

Yl Ym Yn

Yo Yp Yq

A B

F G

K L

C D E

H I J

Problem: There is no well-define leaf–to–root order.

Suggested solution: Loopy Belief Propagation (LBP)

I initialize all messages as constant 1

I pass messages until convergence
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Belief Propagation in Loopy Graphs

Yi Yj Yk

Yl Ym Yn

Yo Yp Yq

A B

F G

K L

C D E

H I J

Yi Yj Yk

Yl Ym Yn

Yo Yp Yq

A B

F G

K L

C D E

H I J

Loopy Belief Propagation is very popular, but has some problems:

I it might not converge (e.g. oscillate)

I even if it does, the computed probabilities are only approximate.

Many improved message-passing schemes exist (see tutorial book).
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Probabilistic Inference – Variational Inference / Mean Field

Task: Compute marginals p(yF |x) for general p(y|x)

Idea: Approximate p(y|x) by simpler q(y) and use marginals from that.

q∗ = argmin
q∈Q

DKL(q(y)‖p(y|x))

E.g. Naive Mean Field: Q all distributions of the form q(y) =
∏
i∈V

qi(yi).

7→
qe qf qg

qjqiqh

qk ql qm
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Probabilistic Inference – Sampling / Markov-Chain Monte Carlo

Task: Compute marginals p(yF |x) for general p(y|x)

Idea: Rephrase as computing the expected value of a quantity:

Ey∼p(y|x,w)[h(x, y)],

for some (well-behaved) function h : X × Y → R.

For probabilistic inference, this step is easy. Set

hF,z(x, y) := JyF = zK,

then

Ey∼p(y|x,w)[hF,z(x, y)] =
∑
y∈Y

p(y|x)JyF = zK

=
∑

yF∈YF
p(yF |x)JyF = zK = p(yF = z|x) .
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Probabilistic Inference – Sampling / Markov-Chain Monte Carlo

Expectations can be computed/approximated by sampling:

I For fixed x, let y(1), y(2), . . . be i.i.d. samples from p(y|x), then

Ey∼p(y|x)[h(x, y)] ≈ 1

S

S∑
s=1

h(x, y(s)).

I The law of large numbers guarantees convergence for S →∞,

I For S independent samples, approximation error is O(1/
√
S),

independent of the dimension of Y.

Problem:

I Producing i.i.d. samples, y(s), from p(y|x) is hard.

Solution:

I We can get away with a sequence of dependent samples
→ Monte-Carlo Markov Chain (MCMC) sampling
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Probabilistic Inference – Sampling / Markov-Chain Monte Carlo

One example how to do MCMC sampling: Gibbs sampler

I Initialize y(0) = (y1, . . . , yd) arbitrarily
I For s = 1, . . . , S:

1. Select a variable yi,

2. Re-sample yi ∼ p(yi|y(s−1)V \{i}, x).

3. Output sample y(s) = (y
(s−1)
1 , . . . , y

(s−1)
i−1 , yi, y

(s−1)
i+1 , . . . , y

(s−1)
d )

p(yi|y(s)V \{i}, x) =
p(yi, y

(t)
V \{i}|x)∑

yi∈Yi p(yi, y
(t)
V \{i}|x)

=
exp(−E(yi, y

(t), x)∑
yi∈Yi exp(−E(yi, y(t), x)
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MAP Prediction

Compute y∗ = argmaxy p(y|x).
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MAP Prediction – Belief Propagation / Message Passing

F

YjYi

YlYk

YmB

D E

C

A

1.

2.

3. 5.

4.

6. 8.

7.

9.

10.
Yi Yj Yk

Yl Ym Yn

Yo Yp Yq

A B

F G

K L

C D E

H I J

One can also derive message passing algorithms for MAP prediction.

I In trees: guaranteed to converge to optimal solution.

I In loopy graphs: convergence not guaranteed, approximate solution.
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MAP Prediction – Graph Cuts

For loopy graph, we can find the global optimum only in special cases:

I Binary output variables: Yi = {0, 1} for i = 1, . . . , d,

I Energy function with only unary and pairwise terms

E(y;x,w) =
∑
i

Ei(yi;x) +
∑
i∼j

Ei,j(yi, yj ;x)

I Restriction 1 (positive unary potentials):

EF (yi;x,wtF ) ≥ 0 (always achievable by reparametrization)

I Restriction 2 (regular/submodular/attractive pairwise potentials)

EF (yi, yj ;x,wtF ) = 0, if yi = yj ,

EF (yi, yj ;x,wtF ) = EF (yj , yi;x,wtF ) ≥ 0, otherwise.

(not always achievable, depends on the task)
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I Construct auxiliary undirected graph

I One node {i}i∈V per variable

I Two extra nodes: source s, sink t

I Edges

Edge Graph cut weight

{i, j} EF (yi = 0, yj = 1;x,wtF )
{i, s} EF (yi = 1;x,wtF )
{i, t} EF (yi = 0;x,wtF )

I Find linear s-t-mincut

i j k

l m n

s

t

{i, s}

{i, t}

I Solution defines optimal binary labeling of the original energy
minimization problem

GraphCuts algorithms

(Approximate) multi-class extensions exist, see tutorial book.
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GraphCuts Example

Image segmentation energy:

E(y;x) =
∑
i

(
(1− 1

255
xi)Jyi = 1K +

1

255
xiJyi = 0K

)
+
∑
i∼j

wJyi 6= yjK

All conditions to apply GraphCuts are fulfilled.
I Ei(yi, x) ≥ 0,
I Eij(yi, yj) = 0 for yi = yj ,
I Eij(yi, yj) = w > 0 for yi 6= yj .

input image thresholding GraphCuts
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MAP Prediction – Linear Programming Relaxation

More general alternative, Yi = {1, . . . ,K}:

E(y;x) =
∑
i

Ei(yi;x) +
∑
ij

Eij(yi, yj ;x)

Linearize the energy using indicator functions:

Ei(yi;x) =

K∑
k=1

Ei(k;x)︸ ︷︷ ︸
=:aik

Jyi = kK =

K∑
k=1

ai;kµi;k

for new variables µi;k ∈ {0, 1} with
∑

k µi;k = 1.

Eij(yi, yj ;x) =

K∑
k=1

K∑
l=1

Ei(k;x)︸ ︷︷ ︸
=:aij;kl

Jyi = k ∧ yj = lK =

K∑
k=1

aij;klµij;kl

for new variables µij;kl ∈ {0, 1} with
∑

l µij;kl = µi;k and
∑

k µij;kl = µj;l.
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MAP Prediction – Linear Programming Relaxation

Energy minimization becomes

y∗ ← µ∗ := argmin
µ

∑
i

ai;kµi;k +
∑
ij

aij;klµij;kl = argmin
µ

Aµ

subject to

µi;k ∈ {0, 1} µij;kl ∈ {0, 1}∑
k

µi;k = 1,
∑
l

µij;kl = µi;k,
∑
k

µij;kl = µj;l

Integer variables, linear objective function, linear constraints:

Integer linear program (ILP)

Unfortunately, ILPs are –in general– NP-hard.
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MAP Prediction – Linear Programming Relaxation

Energy minimization becomes

y∗ ← µ∗ := argmin
µ

∑
i

ai;kµi;k +
∑
ij

aij;klµij;kl = argmin
µ

Aµ

subject to

µi;k ∈ [0, 1]��
�HHH{0, 1} µij;kl ∈ [0, 1]��

�HHH{0, 1}∑
k

µi;k = 1,
∑
l

µij;kl = µi;k,
∑
k

µij;kl = µj;l

��
��XXXXInteger real-values variables, linear objective function, linear constraints:

Linear program (LP) relaxation

LPs can be solved very efficiently, µ∗ yields approximate solution for y∗.
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MAP Prediction – Custom solutions: E.g. branch-and-bound

Note: we just try to solve an optimization problem

y∗ = argmin
y∈Y

E(y;x)

We can use any optimization technique that fits the problem.

For low-dimensional Y, such as bounding boxes: branch-and-bound:
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Example: Man-made structure detection

I Left: input image x,

I Middle (probabilistic inference): visualization of the variable marginals
p(yi =′′ manmade′′|x,w),

I Right (MAP inference): joint MAP labeling
y∗ = argmaxy∈Y p(y|x,w).
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Loss function

How to judge if a prediction is good?

I Define a loss function

∆ : Y × Y → R+,

∆(y′, y) measures the loss incurred by predicting y when y′ is correct.

I The loss function is application dependent
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Example 1: 0/1 loss

Loss is 0 for perfect prediction, 1 otherwise:

∆0/1(y
′, y) = Jy′ 6= yK =

{
0 if y′ = y
1 otherwise

Every mistake is equally bad. Usually not very useful in structured
prediction.
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Example 2: Hamming loss

Count the number of mislabeled variables:

∆H(y′, y) =
1

|V |
∑
i∈V

I(y′i 6= yi)

Used, e.g., in image segmentation.
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Example 3: Squared error

If we can add elements in Yi
(pixel intensities, optical flow vectors, etc.).

Sum of squared errors

∆Q(y′, y) =
1

|V |
∑
i∈V
‖y′i − yi‖2.

Used, e.g., in stereo reconstruction, part-based object detection.
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Example 4: Task specific losses

Object detection

I bounding boxes, or

I arbitrary regions
ground truth

detection

image

Area overlap loss:

∆AO(y′, y) = 1− area(y′ ∩ y)

area(y′ ∪ y)
= 1−

Used, e.g., in PASCAL VOC challenges for object detection, because it
scale-invariants (no bias for or against big objects).
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Summary: Inference and Prediction

Two main tasks for a given probability distribution p(y|x):

Probabilistic Inference

Compute p(yI |x) for a subset I of variables, in particular p(yi|x)

I (Loopy) Belief Propagation, Variation Inference, Sampling, . . .

MAP Prediciton

Identify y∗ ∈ Y that maximizes p(y|x) (minimizes energy)

I (Loopy) Belief Propagation, GraphCuts, LP-relaxation, custom, . . .

The quality of a prediction is measured by a loss function, ∆ : Y ×Y → R.

Loss Function

∆(y′, y) is loss (or cost) for predicting y ∈ Y if y′ ∈ Y is correct.

I Task specific: use 0/1-loss, Hamming loss, area overlap, . . .
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What to do if p(y|x) is unknown, but we have training data.

Assume that a probability distribution d(x, y) exists that describes the
relation between x and y, but we don’t know it.

Approach 1) Probabilistic Parameter Estimation

1) Use training data to obtain an estimate p(y|x) for d(y|x).

2) Use p(y|x) to make predictions.

Approach 2) Loss-minimizing Parameter Estimation

1) Use training data to learn an energy function E(y, x) that results in
”good” (low loss) predictions.

2) Use E(y, x) to make predictions.
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Problem (Probabilistic Learning)

Let d(y|x) be an (unknown) true conditional distribution.
Let D = {(x1, y1), . . . , (xN , yN )} be i.i.d. samples from d(x, y).

I Find a distribution p(y|x) that we can use as a proxy for d(y|x).

or

I Given a parametrized family of distributions, p(y|x,w), find the
parameter w∗ making p(y|x,w) closest to d(y|x).

Open questions:

I What do we mean by closest?

I What’s a good candidate for p(y|x,w)?
I How to actually find w∗?

I conceptually, and
I numerically
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Conditional Random Field Learning

Assume:

I a set of i.i.d. samples D = {(xn, yn)}n=1,...,N , (xn, yn) ∼ d(x, y)
I feature functions (φ1(x, y), . . . , φD(x, y) ) ≡: φ(x, y)
I parametrized family p(y|x,w) = 1

Z(x,w) exp( 〈w, φ(x, y)〉 )

Task:

I adjust w of p(y|x,w) based on D.

Many possible technique to do so:

I Expectation Matching
I Maximum Likelihood
I Best Approximation
I MAP estimation of w

Punchline: they all turn out to be (almost) the same!
4 / 26



Christoph Lampert – Learning with Structured Inputs and Outputs – Part 2. Conditional Random Fields

Maximum Likelihood Parameter Estimation

Idea: maximize conditional likelihood of observing outputs y1, . . . , yN for
inputs x1, . . . , xN

w∗ = argmax
w∈RD

p(y1, . . . , yN |x1, . . . , xN , w)

i.i.d.
= argmax

w∈RD

N∏
n=1

p(yn|xn, w)

− log(·)
= argmin

w∈RD
−

N∑
n=1

log p(yn|xn, w)︸ ︷︷ ︸
negative conditional log-likelihood (of D)
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MAP Estimation of w

Idea: Treat w as random variable; maximize posterior probability p(w|D)

p(w|D)
Bayes
=

p(x1, y1, . . . , xn, yn|w)p(w)

p(D)

i.i.d.
= p(w)

N∏
n=1

p(yn|xn, w)

p(yn|xn)

p(w): prior belief on w (cannot be estimated from data).

w∗ = argmax
w∈RD

p(w|D) = argmin
w∈RD

[
− log p(w|D)

]
= argmin

w∈RD

[
− log p(w)−

N∑
n=1

log p(yn|xn, w) + log p(yn|xn)︸ ︷︷ ︸
indep. of w

]

= argmin
w∈RD

[
− log p(w)−

N∑
n=1

log p(yn|xn, w)
]
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w∗ = argmin
w∈RD

[
− log p(w)−

N∑
n=1

log p(yn|xn, w)
]

Choices for p(w):
I p(w) :≡ const. (uniform; in RD not really a distribution)

w∗ = argmin
w∈RD

[
−

N∑
n=1

log p(yn|xn, w)︸ ︷︷ ︸
negative conditional log-likelihood

+ const.
]

I p(w) := const. · e−
1

2σ2
‖w‖2 (Gaussian)

w∗ = argmin
w∈RD

[
− 1

2σ2
‖w‖2 +

N∑
n=1

log p(yn|xn, w)︸ ︷︷ ︸
regularized negative conditional log-likelihood

+ const.
]
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Probabilistic Models for Structured Prediction - Summary

Negative (Regularized) Conditional Log-Likelihood (of D)

L(w) =
1

2σ2
‖w‖2 −

N∑
n=1

[
〈w, φ(xn, yn)〉 − log

∑
y∈Y

e〈w,φ(xn,y)〉]
(σ2 →∞ makes it unregularized)

Probabilistic parameter estimation or training means solving

w∗ = argmin
w∈RD

L(w).

Same optimization problem as for multi-class logistic regression.
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Negative Conditional Log-Likelihood (Toy Example)

3 2 1 0 1 2 3 4 5
2

1

0

1

2

3

16.0
00

3
2
.0

0
0

6
4
.0

0
0

1
2
8
.0

0
0

25
6.

00
051

2.
00

0 512.000

1
0
2
4
.0

0
0

negative log likelihood σ2 =0.01

3 2 1 0 1 2 3 4 5
2

1

0

1

2

3

2.
00

0

4.000

8
.0

0
0

16
.0

00

3
2
.0

0
0

64
.0

00

12
8.

00
0

1
2
8
.0

0
0

negative log likelihood σ2 =0.10

3 2 1 0 1 2 3 4 5
2

1

0

1

2

3

0.
50

0

1
.0

0
0

2.0
00

4.
00

0

8.
00

0
16

.0
00

32
.0

00

64
.0

00

12
8.

00
0

negative log likelihood σ2 =1.00

3 2 1 0 1 2 3 4 5
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

0.
00

0

0.
00

0
0.

00
00.
00

0

0.
00

0
0.

00
10.
00

2

0.
00

4
0.

00
80.
01

6

0.
03

1
0.

06
2

0.
12

50.
25

0

0.
50

0
1.

00
02.

00
0

4.
00

08.
00

0

16
.0

00

32
.0

00

64
.0

00

negative log likelihood σ2 →∞

9 / 26



Christoph Lampert – Learning with Structured Inputs and Outputs – Part 2. Conditional Random Fields

Steepest Descent Minimization – minimize L(w)

input tolerance ε > 0
1: wcur ← 0
2: repeat
3: v ← ∇wL(wcur)
4: η ← argminη∈R L(wcur − ηv)
5: wcur ← wcur − ηv
6: until ‖v‖ < ε

output wcur

Alternatives:

I L-BFGS (second-order descent without explicit Hessian)

I Conjugate Gradient

We always need (at least) the gradient of L.
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L(w) =
1

2σ2
‖w‖2 −

N∑
n=1

[
〈w, φ(xn, yn)〉+ log

∑
y∈Y

e〈w,φ(xn,y)〉]

∇w L(w) =
1

σ2
w −

N∑
n=1

[
φ(xn, yn)−

∑
y∈Y e

〈w,φ(xn,y)〉φ(xn, y)∑
ȳ∈Y e

〈w,φ(xn,ȳ)〉

]
=

1

σ2
w −

N∑
n=1

[
φ(xn, yn)−

∑
y∈Y

p(y|xn, w)φ(xn, y)
]

=
1

σ2
w −

N∑
n=1

[
φ(xn, yn)− Ey∼p(y|xn,w)φ(xn, y)

]

∆L(w) =
1

σ2
IdD×D +

N∑
n=1

Ey∼p(y|xn,w)

{
φ(xn, y)φ(xn, y)>

}
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L(w) =
1

2σ2
‖w‖2 −

N∑
n=1

[
〈w, φ(xn, yn)〉+ log

∑
y∈Y

e〈w,φ(xn,y)〉]

I continuous (not discrete), C∞-differentiable on all RD.
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∇w L(w) =
1

σ2
w −

N∑
n=1

[
φ(xn, yn)− Ey∼p(y|xn,w)φ(xn, y)

]

I For σ →∞:

Ey∼p(y|xn,w)φ(xn, y) = φ(xn, yn) ⇒ ∇wL(w) = 0,

criticial point of L (local minimum/maximum/saddle point).

Interpretation:

I We want the model distribution to match the empirical one:

Ey∼p(y|x,w)φ(x, y)
!

= φ(x, yobs)

but discriminatively: only for x ∈ {x1, . . . , xn}.
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∆L(w) =
1

σ2
IdD×D +

N∑
n=1

Ey∼p(y|xn,w)

{
φ(xn, y)φ(xn, y)>

}

I positive definite Hessian matrix → L(w) is convex
→ ∇wL(w) = 0 implies global minimum.

14 / 26



Christoph Lampert – Learning with Structured Inputs and Outputs – Part 2. Conditional Random Fields

Milestone I: Probabilistic Training (Conditional Random Fields)

I p(y|x,w) log-linear in w ∈ RD.

I Training: many probabilistic derivations lead to same optimization
problem → minimize negative conditional log-likelihood, L(w)

I L(w) is differentiable and convex,
→ gradient descent will find global optimum with ∇wL(w) = 0

I Same structure as multi-class logistic regression.

For logistic regression: this is where the textbook ends. we’re done.

For conditional random fields: we’re not in safe waters, yet!
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Task: Compute v = ∇wL(wcur), evaluate L(wcur + ηv):

L(w) =
1

2σ2
‖w‖2 −

N∑
n=1

[
〈w, φ(xn, yn)〉+ log

∑
y∈Y

e〈w,φ(xn,y)〉]
∇w L(w) =

1

σ2
w −

N∑
n=1

[
φ(xn, yn)−

∑
y∈Y

p(y|xn, w)φ(xn, y)
]

Problem: Y typically is very (exponentially) large:

I binary image segmentation: |Y| = 2640×480 ≈ 1092475

I ranking N images: |Y| = N !, e.g. N = 1000: |Y| ≈ 102568.

We must use the structure in Y, or we’re lost.
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Solving the Training Optimization Problem Numerically

∇w L(w) =
1

σ2
w −

N∑
n=1

[
φ(xn, yn)− Ey∼p(y|xn,w)φ(xn, y)

]
Computing the Gradient (naive): O(KMND)

L(w) =
1

2σ2
‖w‖2 −

N∑
n=1

[
〈w, φ(xn, yn)〉+ logZ(xn, w)

]
Line Search (naive): O(KMND) per evaluation of L

I N : number of samples
I D: dimension of feature space
I M : number of output nodes

≈ 100s to 1,000,000s

I K: number of possible labels of each output nodes

≈ 2 to 100s

17 / 26



Christoph Lampert – Learning with Structured Inputs and Outputs – Part 2. Conditional Random Fields

Solving the Training Optimization Problem Numerically

∇w L(w) =
1

σ2
w −

N∑
n=1

[
φ(xn, yn)− Ey∼p(y|xn,w)φ(xn, y)

]
Computing the Gradient (naive): O(KMND)

L(w) =
1

2σ2
‖w‖2 −

N∑
n=1

[
〈w, φ(xn, yn)〉+ logZ(xn, w)

]
Line Search (naive): O(KMND) per evaluation of L

I N : number of samples
I D: dimension of feature space
I M : number of output nodes ≈ 100s to 1,000,000s
I K: number of possible labels of each output nodes ≈ 2 to 100s

17 / 26



Christoph Lampert – Learning with Structured Inputs and Outputs – Part 2. Conditional Random Fields

Probabilistic Inference to the Rescue

In a graphical model with factors F , the features decompose:

φ(x, y) =
(
φF (x, yF )

)
F∈F

Ey∼p(y|x,w)φ(x, y) =
(
Ey∼p(y|x,w)φF (x, yF )

)
F∈F

=
(
EyF∼p(yF |x,w)φF (x, yF )

)
F∈F

EyF∼p(yF |x,w)φF (x, yF ) =
∑

yF∈YF︸ ︷︷ ︸
K|F | terms

p(yF |x,w)︸ ︷︷ ︸
factor marginals

φF (x, yF )

Factor marginals µF = p(yF |x,w)
I are much smaller than complete joint distribution p(y|x,w),
I can be computed/approximated, e.g., with (loopy) belief propagation.
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Solving the Training Optimization Problem Numerically

∇w L(w) =
1

σ2
w −

N∑
n=1

[
φ(xn, yn)− Ey∼p(y|xn,w)φ(xn, y)

]
Computing the Gradient: ���

���XXXXXXO(KMnd), O(MK |Fmax |ND):

L(w) =
1

2σ2
‖w‖2 −

N∑
n=1

[
〈w, φ(xn, yn)〉+ log

∑
y∈Y

e〈w,φ(xn,y)〉]
Line Search: ���

���XXXXXXO(KMnd), O(MK |Fmax |ND) per evaluation of L

I N : number of samples

≈ 10s to 1,000,000s

I D: dimension of feature space
I M : number of output nodes
I K: number of possible labels of each output nodes
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What, if the training set D is too large (e.g. millions of examples)?

Stochastic Gradient Descent (SGD)

I Minimize L(w), but without ever computing L(w) or ∇L(w) exactly
I In each gradient descent step:

I Pick random subset D′ ⊂ D, ← often just 1–3 elements!
I Follow approximate gradient

∇̃L(w) =
w

σ2
− |D|
|D′|

∑
(xn,yn)∈D′

[
φ(xn, yn)− Ey∼p(y|xn,w)φ(xn, y)

]

I Avoid line search by using fixed stepsize rule η (new parameter)

I SGD converges to argminw L(w)! (if η chosen right)

I SGD needs more iterations, but each one is much faster

more: see L. Bottou, O. Bousquet: ”The Tradeoffs of Large Scale Learning”, NIPS 2008.
also: http://leon.bottou.org/research/largescale
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Solving the Training Optimization Problem Numerically

∇w L(w) =
1

σ2
w −

N∑
n=1

[
φ(xn, yn)− Ey∼p(y|xn,w)φ(xn, y)

]
Computing the Gradient: ���

���XXXXXXO(KMnd), O(MK2ND) (if BP is possible):

L(w) =
1

2σ2
‖w‖2 −

N∑
n=1

[
〈w, φ(xn, yn)〉+ log

∑
y∈Y

e〈w,φ(xn,y)〉]
Line Search: ���

���XXXXXXO(KMnd), O(MK2ND) per evaluation of L

I N : number of samples
I D: dimension of feature space: ≈ φi,j 1–10s, φi: 100s to 10000s
I M : number of output nodes
I K: number of possible labels of each output nodes

21 / 26



Christoph Lampert – Learning with Structured Inputs and Outputs – Part 2. Conditional Random Fields

Typical feature functions in image segmentation:

I φi(yi, x) ∈ R≈1000: local image features, e.g. bag-of-words
→ 〈wi, φi(yi, x)〉: local classifier (like logistic-regression)

I φi,j(yi, yj) = Jyi = yjK ∈ R1: test for same label
→ 〈wij , φij(yi, yj)〉: penalizer for label changes (if wij > 0)

I combined: argmaxy p(y|x) is smoothed version of local cues

original local classification local + smoothness
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Typical feature functions in pose estimation:

I φi(yi, x) ∈ R≈1000: local image representation, e.g. HoG
→ 〈wi, φi(yi, x)〉: local confidence map

I φi,j(yi, yj) = good fit(yi, yj) ∈ R1: test for geometric fit
→ 〈wij , φij(yi, yj)〉: penalizer for unrealistic poses

I together: argmaxy p(y|x) is sanitized version of local cues

original local classification local + geometry

[V. Ferrari, M. Marin-Jimenez, A. Zisserman: ”Progressive Search Space Reduction for Human Pose Estimation”, CVPR 2008.]
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Solving the Training Optimization Problem Numerically

Idea: split learning of unary potentials into two parts:
I local classifiers,
I their importance.

Two-Stage Training

I pre-train fyi (x) =̂ log p(yi|x)

I use φ̃i(yi, x) := fyi (x) ∈ RK (low-dimensional)

I keep φij(yi, yj) are before

I perform CRF learning with φ̃i and φij

Advantage:
I lower dimensional feature space during inference → faster
I fyi (x) can be stronger classifiers, e.g. non-linear SVMs

Disadvantage:
I if local classifiers are bad, CRF training cannot fix that.
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Solving the Training Optimization Problem Numerically

CRF training methods is based on gradient-descent optimization.
The faster we can do it, the better (more realistic) models we can use:

∇̃w L(w) =
w

σ2
−

N∑
n=1

[
φ(xn, yn)−

∑
y∈Y

p(y|xn, w) φ(xn, y)
]

∈ RD

A lot of research on accelerating CRF training:

problem ”solution” method(s)

|Y| too large exploit structure (loopy) belief propagation

smart sampling contrastive divergence
use approximate L e.g. pseudo-likelihood

N too large mini-batches stochastic gradient descent

D too large trained φunary two-stage training
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Summary – CRF Learning

Given:

I training set {(x1, y1), . . . , (xn, yn)} ⊂ X × Y, (xn, yn)
i.i.d.∼ d(x, y)

I feature function φ : X × RD.

Task: find parameter vector w such that 1
Z exp(〈w, φ(x, y)〉 ) ≈ d(y|x).

CRF solution derived by minimizing negative conditional log-likelihood:

w∗ = argmin
w

1

2σ2
‖w‖2 −

N∑
n=1

[
〈w, φ(xn, yn)〉 − log

∑
y∈Y

e〈w,φ(xn,y)〉]

I convex optimization problem → gradient descent works

I training needs repeated runs of probabilistic inference
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Problem (Loss-Minimizing Parameter Learning)

Let d(x, y) be the (unknown) true data distribution.
Let D = {(x1, y1), . . . , (xN , yN )} be i.i.d. samples from d(x, y).
Let φ : X × Y → RD be a feature function.
Let ∆ : Y × Y → R be a loss function.

I Find a weight vector w∗ that leads to minimal expected loss

E(x,y)∼d(x,y){∆(y, f(x))}

for f(x) = argmaxy∈Y 〈w, φ(x, y)〉.

Pro:
I We directly optimize for the quantity of interest: expected loss.
I No expensive-to-compute partition function Z will show up.

Con:
I We need to know the loss function already at training time.
I We can’t use probabilistic reasoning to find w∗.
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Reminder: learning by regularized risk minimization

For compatibility function g(x, y;w) := 〈w, φ(x, y)〉 find w∗ that minimizes

E(x,y)∼d(x,y) ∆( y, argmaxy g(x, y;w) ).

Two major problems:

I d(x, y) is unknown

I argmaxy g(x, y;w) maps into a discrete space
→ ∆( y, argmaxy g(x, y;w)) is discontinuous, piecewise constant
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Task:

min
w

E(x,y)∼d(x,y) ∆( y, argmaxy g(x, y;w) ).

Problem 1:

I d(x, y) is unknown

Solution:

I Replace E(x,y)∼d(x,y)

(
·
)

with empirical estimate 1
N

∑
(xn,yn)

(
·
)

I To avoid overfitting: add a regularizer, e.g. λ‖w‖2.

New task:

min
w

λ‖w‖2 +
1

N

N∑
n=1

∆( yn, argmaxy g(xn, y;w) ).
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Task:

min
w

λ‖w‖2 +
1

N

N∑
n=1

∆( yn, argmaxy g(xn, y;w) ).

Problem:

I ∆( y, argmaxy g(x, y;w) ) discontinuous w.r.t. w.

Solution:

I Replace ∆(y, y′) with well behaved `(x, y, w)

I Typically: ` upper bound to ∆, continuous and convex w.r.t. w.

New task:

min
w

λ‖w‖2 +
1

N

N∑
n=1

`(xn, yn, w))
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Regularized Risk Minimization

min
w

λ‖w‖2 +
1

N

N∑
n=1

`(xn, yn, w))

Regularization + Loss on training data

Hinge loss: maximum margin training

`(xn, yn, w) := max
y∈Y

[
∆(yn, y) + 〈w, φ(xn, y)〉 − 〈w, φ(xn, yn)〉

]
I ` is maximum over linear functions → continuous, convex.
I ` bounds ∆ from above.

Proof: Let ȳ = argmaxy g(xn, y, w)

∆(yn, ȳ) ≤ ∆(yn, ȳ) + g(xn, ȳ, w)− g(xn, yn, w)

≤ max
y∈Y

[
∆(yn, y) + g(xn, y, w)− g(xn, yn, w)

]
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min
w

λ‖w‖2 +
1

N

N∑
n=1

`(xn, yn, w))

Regularization + Loss on training data

Hinge loss: maximum margin training

`(xn, yn, w) := max
y∈Y

[
∆(yn, y) + 〈w, φ(xn, y)〉 − 〈w, φ(xn, yn)〉

]
Alternative:

Logistic loss: probabilistic training

`(xn, yn, w) := log
∑
y∈Y

exp
(
〈w, φ(xn, y)〉 − 〈w, φ(xn, yn)〉

)
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Structured Output Support Vector Machine

min
w

1

2
‖w‖2 +

C

N

N∑
n=1

[
max
y∈Y

∆(yn, y) + 〈w, φ(xn, y)〉 − 〈w, φ(xn, yn)〉
]

Conditional Random Field

min
w

‖w‖2

2σ2
+

N∑
n=1

[
log
∑
y∈Y

exp
(
〈w, φ(xn, y)〉 − 〈w, φ(xn, yn)〉

)]

CRFs and SSVMs have more in common than usually assumed.
I both do regularized risk minimization
I log

∑
y exp(·) can be interpreted as a soft-max

7 / 27



Christoph Lampert – Learning with Structured Inputs and Outputs — Part 3. Structured SVMs

Solving the Training Optimization Problem Numerically

Structured Output Support Vector Machine:

min
w

1

2
‖w‖2 +

C

N

N∑
n=1

[
max
y∈Y

∆(yn, y) + 〈w, φ(xn, y)〉 − 〈w, φ(xn, yn)〉
)]

Unconstrained optimization, convex, non-differentiable objective.
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Structured Output SVM (equivalent formulation):

min
w,ξ

1

2
‖w‖2 +

C

N

N∑
n=1

ξn

subject to, for n = 1, . . . , N ,

max
y∈Y

[
∆(yn, y) + 〈w, φ(xn, y)〉 − 〈w, φ(xn, yn)〉

]
≤ ξn

N non-linear contraints, convex, differentiable objective.
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Structured Output SVM (also equivalent formulation):

min
w,ξ

1

2
‖w‖2 +

C

N

N∑
n=1

ξn

subject to, for n = 1, . . . , N ,

∆(yn, y) + 〈w, φ(xn, y)〉 − 〈w, φ(xn, yn)〉 ≤ ξn, for all y ∈ Y

N |Y| linear constraints, convex, differentiable objective.
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Example: Multiclass SVM

I Y = {1, 2, . . . ,K}, ∆(y, y′) =

{
1 for y 6= y′

0 otherwise
.

I φ(x, y) =
(
Jy = 1Kφ(x), Jy = 2Kφ(x), . . . , Jy = KKφ(x)

)

Solve: min
w,ξ

1

2
‖w‖2 +

C

N

N∑
n=1

ξn

subject to, for i = 1, . . . , n,

〈w, φ(xn, yn)〉 − 〈w, φ(xn, y)〉 ≥ 1− ξn for all y ∈ Y \ {yn}.

Classification: f(x) = argmaxy∈Y 〈w, φ(x, y)〉.

Crammer-Singer Multiclass SVM

[K. Crammer, Y. Singer: ”On the Algorithmic Implementation of Multiclass Kernel-based Vector Machines”, JMLR, 2001] 11 / 27



Christoph Lampert – Learning with Structured Inputs and Outputs — Part 3. Structured SVMs

Example: Hierarchical SVM

Hierarchical Multiclass Loss:

∆(y, y′) :=
1

2
(distance in tree)

∆(cat, cat) = 0, ∆(cat, dog) = 1,

∆(cat, bus) = 2, etc.

Solve: min
w,ξ

1

2
‖w‖2 +

C

N

N∑
n=1

ξn

subject to, for i = 1, . . . , n,

〈w, φ(xn, yn)〉 − 〈w, φ(xn, y)〉 ≥ ∆(yn, y)− ξn for all y ∈ Y.

[L. Cai, T. Hofmann: ”Hierarchical Document Categorization with Support Vector Machines”, ACM CIKM, 2004]

[A. Binder, K.-R. Müller, M. Kawanabe: ”On taxonomies for multi-class image categorization”, IJCV, 2011]
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Solving the Training Optimization Problem Numerically

We can solve SSVM training like CRF training:

min
w

1

2
‖w‖2 +

C

N

N∑
n=1

[
max
y∈Y

∆(yn, y) + 〈w, φ(xn, y)〉 − 〈w, φ(xn, yn)〉
]

I continuous ,
I unconstrained ,
I convex ,
I non-differentiable /
→ we can’t use gradient descent directly.
→ we’ll have to use subgradients
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Definition

Let f : RD → R be a convex, not necessarily differentiable, function.
A vector v ∈ RD is called a subgradient of f at w0, if

f(w) ≥ f(w0) + 〈v, w − w0〉 for all w.

f(w)

w
w0

f(w0)
f(w0)+⟨v,w-w0⟩

v

For differentiable f , the gradient v = ∇f(w0) is the only subgradient.
f(w)

w
w0

f(w0)
f(w0)+⟨v,w-w0⟩

v
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Subgradient descent works basically like gradient descent:

Subgradient Descent Minimization – minimize F (w)

I require: tolerance ε > 0, stepsizes ηt
I wcur ← 0

I repeat
I v ∈ ∇sub

wF (wcur)
I wcur ← wcur − ηtv

I until F changed less than ε

I return wcur

Converges to global minimum, but rather inefficient if F non-differentiable.

[Shor, ”Minimization methods for non-differentiable functions”, Springer, 1985.]
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Computing a subgradient:

min
w

1

2
‖w‖2 +

C

N

N∑
n=1

`n(w)

with `n(w) = maxy `
n
y (w), and

`ny (w) := ∆(yn, y) + 〈w, φ(xn, y)〉 − 〈w, φ(xn, yn)〉

ℓ(w)

w

y

For each y ∈ Y, `y(w) is a linear function.
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`(w) = maxy `y(w): maximum over all y ∈ Y.
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Subgradient of `n at w0: find maximal (active) y, use v = ∇`ny (w0).
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Subgradient Descent S-SVM Training

input training pairs {(x1, y1), . . . , (xn, yn)} ⊂ X × Y,
input feature map φ(x, y), loss function ∆(y, y′), regularizer C,
input number of iterations T , stepsizes ηt for t = 1, . . . , T

1: w ← ~0
2: for t=1,. . . ,T do
3: for i=1,. . . ,n do
4: ŷ ← argmaxy∈Y ∆(yn, y) + 〈w, φ(xn, y)〉 − 〈w, φ(xn, yn)〉
5: vn ← φ(xn, ŷ)− φ(xn, yn)
6: end for
7: w ← w − ηt(w − C

N

∑
n v

n)
8: end for

output prediction function f(x) = argmaxy∈Y〈w, φ(x, y)〉.

Observation: each update of w needs 1 argmax-prediction per example.
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We can use the same tricks as for CRFs, e.g. stochastic updates:

Stochastic Subgradient Descent S-SVM Training

input training pairs {(x1, y1), . . . , (xn, yn)} ⊂ X × Y,
input feature map φ(x, y), loss function ∆(y, y′), regularizer C,
input number of iterations T , stepsizes ηt for t = 1, . . . , T

1: w ← ~0
2: for t=1,. . . ,T do
3: (xn, yn) ← randomly chosen training example pair
4: ŷ ← argmaxy∈Y ∆(yn, y) + 〈w, φ(xn, y)〉 − 〈w, φ(xn, yn)〉
5: w ← w − ηt(w − C

N [φ(xn, ŷ)− φ(xn, yn)])
6: end for

output prediction function f(x) = argmaxy∈Y〈w, φ(x, y)〉.

Observation: each update of w needs only 1 argmax-prediction
(but we’ll need many iterations until convergence)
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Solving the Training Optimization Problem Numerically

We can solve an S-SVM like a linear SVM:

One of the equivalent formulations was:

min
w∈RD,ξ∈Rn

+

‖w‖2 +
C

N

N∑
n=1

ξn

subject to, for i = 1, . . . n,

〈w, φ(xn, yn)〉−〈w, φ(xn, y)〉 ≥ ∆(yn, y) − ξn, for all y ∈ Y‘.

Introduce feature vectors δφ(xn, yn, y) := φ(xn, yn)− φ(xn, y).
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Solve

min
w∈RD,ξ∈Rn

+

‖w‖2 +
C

N

N∑
n=1

ξn

subject to, for i = 1, . . . n, for all y ∈ Y,

〈w, δφ(xn, yn, y)〉 ≥ ∆(yn, y) − ξn.

This has the same structure as an ordinary SVM!

I quadratic objective ,
I linear constraints ,

Question: Can’t we use a ordinary SVM/QP solver?

Answer: Almost! We could, if there weren’t N |Y| constraints.

I E.g. 100 binary 16× 16 images: 1079 constraints
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Solution: working set training
I It’s enough if we enforce the active constraints.

The others will be fulfilled automatically.
I We don’t know which ones are active for the optimal solution.
I But it’s likely to be only a small number ← can of course be formalized.

Keep a set of potentially active constraints and update it iteratively:

Working Set Training

I Start with working set S = ∅ (no contraints)
I Repeat until convergence:

I Solve S-SVM training problem with constraints from S
I Check, if solution violates any of the full constraint set

I if no: we found the optimal solution, terminate.
I if yes: add most violated constraints to S, iterate.

Good practical performance and theoretic guarantees:
I polynomial time convergence ε-close to the global optimum

[Tsochantaridis et al. ”Large Margin Methods for Structured and Interdependent Output Variables”, JMLR, 2005.]
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Working Set S-SVM Training

input training pairs {(x1, y1), . . . , (xn, yn)} ⊂ X × Y,
input feature map φ(x, y), loss function ∆(y, y′), regularizer C

1: S ← ∅
2: repeat
3: (w, ξ)← solution to QP only with constraints from S
4: for i=1,. . . ,n do
5: ŷ ← argmaxy∈Y ∆(yn, y) + 〈w, φ(xn, y)〉
6: if ŷ 6= yn then
7: S ← S ∪ {(xn, ŷ)}
8: end if
9: end for

10: until S doesn’t change anymore.

output prediction function f(x) = argmaxy∈Y〈w, φ(x, y)〉.

Observation: each update of w needs 1 argmax-prediction per example.
(but we solve globally for next w, not by local steps)
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We can solve an S-SVM like a non-linear SVM: compute Lagrangian dual

I min becomes max,
I original (primal) variables w, ξ disappear,
I new (dual) variables αiy: one per constraint of the original problem.

Dual S-SVM problem

max
α∈Rn|Y|

+

∑
n=1,...,n
y∈Y

αny∆(yn, y)− 1

2

∑
y,ȳ∈Y

n,n̄=1,...,N

αnyαn̄ȳ

〈
δφ(xn, yn, y), δφ(xn̄, yn̄, ȳ)

〉

subject to, for n = 1, . . . , N ,

∑
y∈Y

αny ≤
C

N
.

N linear contraints, convex, differentiable objective, N |Y| variables.
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We can kernelize:

I Define joint kernel function k : (X × Y)× (X × Y)→ R

k( (x, y) , (x̄, ȳ) ) = 〈φ(x, y), φ(x̄, ȳ)〉.

I k measure similarity between two (input,output)-pairs.

I We can express the optimization in terms of k:

〈δφ(xn, yn, y) , δφ(xn̄, yn̄, ȳ)〉
=
〈
φ(xn, yn)− φ(xn, y) , φ(xn̄, yn̄)− φ(xn̄, ȳ)

〉
= 〈φ(xn, yn), φ(xn̄, yn̄) 〉 − 〈φ(xn, yn), φ(xn̄, ȳ) 〉
− 〈φ(xn, y), φ(xn̄, yn̄)〉+ 〈φ(xn, y), φ(xn̄, ȳ)〉

= k( (xn, yn), (xn̄, yn̄) )− k( (xn, yn), φ(xn̄, ȳ) )

− k( (xn, y), (xn̄, yn̄) ) + k( (xn, y), φ(xn̄, ȳ) )

=: Kīıyȳ
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Kernelized S-SVM problem:

max
α∈Rn|Y|

+

∑
i=1,...,n
y∈Y

αiy∆(yn, y)− 1

2

∑
y,ȳ∈Y

i,̄ı=1,...,n

αiyαı̄ȳKīıyȳ

subject to, for i = 1, . . . , n,∑
y∈Y

αiy ≤
C

N
.

I too many variables: train with working set of αiy.

Kernelized prediction function:

f(x) = argmax
y∈Y

∑
iy′

αiy′k( (xi, yi), (x, y) )
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Summary – S-SVM Learning

Given:

I training set {(x1, y1), . . . , (xn, yn)} ⊂ X × Y
I loss function ∆ : Y × Y → R.

Task: learn parameter w for f(x) := argmaxy〈w, φ(x, y)〉 that minimizes
expected loss on future data: f(xn) ≈ yn.

S-SVM solution derived by maximum margin framework:

I enforce correct output to be better than others by a margin :

〈w, φ(xn, yn)〉 ≥ ∆(yn, y) + 〈w, φ(xn, y)〉 for all y ∈ Y.

I convex optimization problem, but non-differentiable

I many equivalent formulations → different training algorithms

I training needs repeated argmax prediction, no probabilistic inference
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Structured Learning is full of Open Research Questions

I How to train faster?
I CRFs need many runs of probablistic inference,
I SSVMs need many runs of argmax-predictions.

I How to reduce the necessary amount of training data?
I semi-supervised learning? transfer learning?

I How can we better understand different loss function?
I when to use probabilistic training, when maximum margin?
I CRFs are “consistent”, SSVMs are not. Is this relevant?

I Can we understand structured learning with approximate inference?
I often computing ∇L(w) or argmaxy〈w, φ(x, y)〉 exactly is infeasible.
I can we guarantee good results even with approximate inference?

I More and new applications!
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