Expansion of organic Rankine cycle working fluid in a cylinder of a low-speed two-stroke ship engine

Ulrik Larsen

Chalmers University of Technology

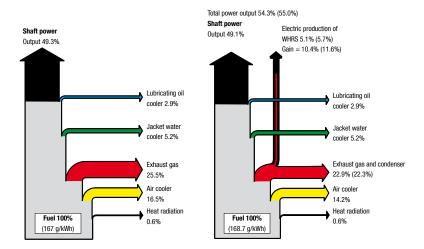
MOSES, Sion, October 2017

Introduction

Background and motivation

Emissions and fuel economy (CO₂)

Important ship emission factors: CO_2 , NO_x , SO_x and PM.


(freedigitalphotos.net)

Emissions and fuel economy

Stricter regulations \rightarrow increased fuel prices 50+ % of operational costs

(freedigitalphotos.net)

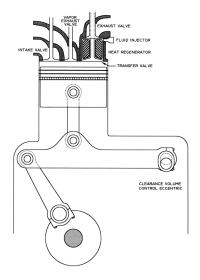
(MAN Diesel - Waste Heat Recovery Systems)

Steam based WHR is well known

Photo by Francesco Baldi.

Background and motivation

Innovation! The new Still engine!


NEW BRITISH ENGINE - SURPASSES DIESEL

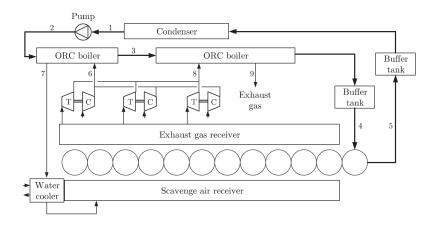
Still's Invention Recovers More Than 50 Per Cent. of Lost Fuel Energy.

INCREASES ENGINE POWER

(The New York Times 1919)

Innovations

(Prater, SAE 2000-01-3070)


Cost-effectiveness

For a WHR to be successful:

- 1. Minimize loss and degradation of the residual exhaust energy en route to the conversion apparatus
- Provide for efficient expansion of vapor formed using the rejected heat
- 3. Limit the number and complexity of components to be added to the engine

(Prater, SAE 2000-01-3070)

Innovations

Introduction

Objectives

Objectives

Perform a design point steady-state analysis of the concept

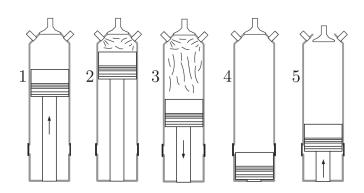
- to determine the potential power that can be produced
- identify the optimised process conditions (fluid, pressures, timings)

Methodology

Case

Methodology

Table 1 Diesel engine specifications.


Type	12K98ME-C6				
Cylinders (-)	12				
Bore (m)	0.98				
Stroke (m)	2.66				
Engine speed MCR (rpm)	104				
Specified MCR (MW)	68.52				
Turbochargers (-)	3				
Turbochargers type (-)	High efficiency				
Mean effective pressure (bar)	18.2				

Methodology

The expansion process

Methodology

Process

Methodology

The diesel cylinders engine model

Methodology

A marine low-speed two-stroke engine

A zero-dimensional type model:

- thermodynamic properties, Gyftopoulus and Baretta;
- heat losses, Woschni;
- Redlich-Kwong corrections to the ideal gas law;
- combustion heat release, Wiebe (Miyamoto version);
- friction model, Chen and Flynn, and Winterbone;
- a two-zone combustion model;
- combustion products, Rakapoulus, and,
- NOx, the extended Zeldovich mechanisms + Kilpinen corrections.

Methodology The fluid expander model

Methodology

The fluid expander model

- energy balance;
- friction losses (as for the diesel cylinders);
- heat losses (as for the diesel cylinders);
- valve opening and flow models;
- Coolprop fluid models.

Methodology

Boilers and pump

Methodology

The fluid expander model

- energy balances;
- UA log mean temperature model;
- Coolprop fluid models.

Methodology

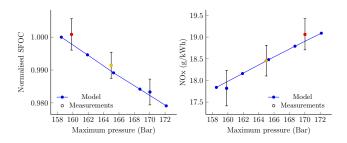
Optimisation

Methodology Optimisation

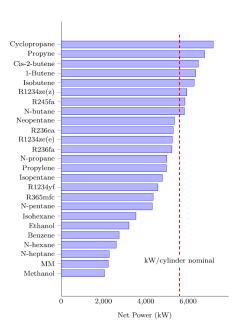
- Particle swarm;
- ▶ Pattern search.

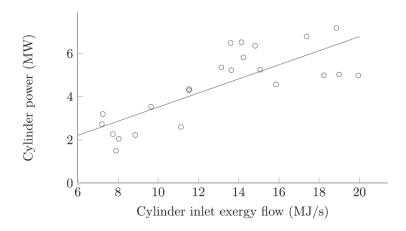
Table 3 Optimisation variables.

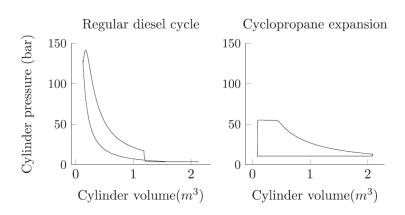
	Limits			
ORC evaporation pressure (bar)	5-p _c			
Superheating approach (° C)	1-150			
Temperature difference T_7 – T_2 ($^{\circ}$ C)	5-100			
Exhaust valve closing time (CAD)	90-179			
Condensing temperature (° C)	40-120			
End of injection time (CAD)	185-359			
Exhaust valve opening time (CAD)	361-500			
Inlet valve radius (m)	0.005 - 0.18			
Geometrical expansion ratio (-)	2-50			

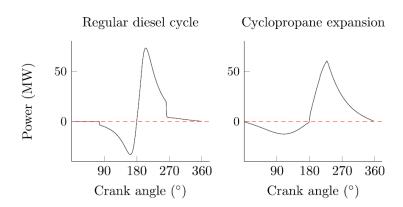

Methodology

Models validity

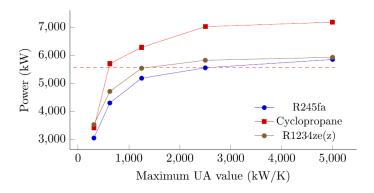

Methodology Validity

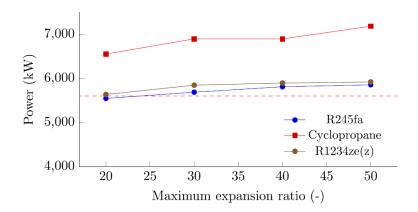

Table 4 Comparison with dynamic model.

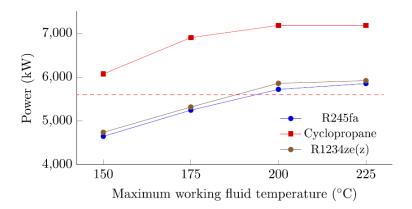

Fluid	Mass flow (kg/s)	Power, relative (%)		
Cyclopropane	70	-2.2		
Isobutene	67	-1.1		
R245fa	125	-8.4		
R1234ze(z)	132	-4.8		
Cis-2-butene	57	-7.0		

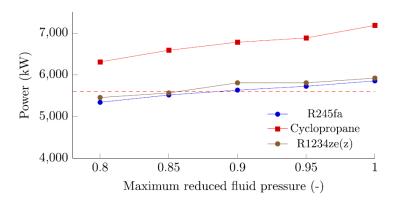


Fluids and power potential


Optimised parameters


Table 5 Optimised parameters.


Fluid	γ (-)	T ₄ (° C)	Δ_i (-)	EVO (°)	T ₁ (° C)	α(-)	r(m)	ΔT (° C)	\dot{m}_1 (kg/s)	$\overline{U}A_1$ (kW/K)	UA ₂ (kW/K
Cyclopropane	0.998	200	177-231	361	40	44.3	0.13	6	70	3474	385
Propyne	1.000	229	177-230	384	50	39.5	0.14	8	57	2947	574
Cis-2-butene	0.946	242	177-230	361	40	49.0	0.16	24	57	2506	1586
1-Butene	0.999	207	177-232	362	40	49.8	0.18	9	71	2658	533
Isobutene	0.998	220	177-232	361	40	49.4	0.15	9	67	3314	634
R1234ze(z)	0.997	205	175-232	361	40	43.1	0.10	6	133	3793	570
R245fa	0.999	224	175-230	361	40	47.2	0.09	7	125	4021	817
N-butane	0.998	230	180-232	363	40	50.0	0.11	11	61	4146	926
Neopentane	0.999	204	176-230	361	40	49.1	0.16	5	75	3321	1034
R236ea	0.897	210	177-236	366	40	49.9	0.18	6	148	2654	460
R1234ze(e)	1.000	214	177-238	361	40	50.0	0.18	5	131	1996	462
R236fa	1.000	224	177-236	361	40	49.3	0.18	6	143	2715	639
N-propane	0.997	172	182-243	362	40	49.0	0.16	5	80	1452	255
Propylene	1.000	192	184-244	375	40	43.9	0.18	6	76	1409	303
Isopentane	0.905	200	177-221	361	40	50.0	0.16	32	66	813	2476
R1234yf	1.000	180	177-245	361	40	37.1	0.18	5	163	1380	278
R365mfc	0.611	194	176-243	361	40	49.9	0.17	5	129	3865	923
N-pentane	0.550	193	177-250	362	40	50.0	0.16	9	70	3903	927
Isohexane	0.574	201	175-234	361	40	47.4	0.12	57	55	410	3381
Ethanol	0.260	244	179-235	362	59	49.8	0.16	99	20	82	1801
Benzene	0.235	197	180-249	361	57	49.9	0.16	100	40	69	3332
N-hexane	0.295	213	177-288	361	42	36.3	0.18	23	59	3754	4178
N-heptane	0.356	209	179-242	362	40	49.7	0.16	99	40	117	1882
MM	0.519	215	176-238	361	48	49.9	0.17	72	62	221	2875
Methanol	0.081	247	184-333	361	40	4.2	0.16	70	22	406	438


Results

Sensitivity to parameters

Discussion

Future work

- part-load performance;
- dynamic problems;
- power the entire engine by vapor expansion (external combustion);
- expansion under the pistons;
- experimental work.

The

End