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Abstract

This paper presents a new set of exact analytical expressions for the small signal analysis of the non-quasi-static

operation of the MOS transistor. This model is derived from a standard charge-based description, with the help of the

EKV compact model [Enz C, Krummenacher F, Vittoz E. Analog Integ Circuits Signal Process 1995;8:83±114.] for-

malism. For the ®rst time, it gives simple expressions for all AC parameters which are valid in all operating modes, from

weak to strong inversion and conduction to saturation.

The model is derived from physics and only relies on the very few basic assumptions needed for a charge-based

compact model. The results are written in the form of a normalized transadmittance matrix which is expressed in terms

of normalized variables (currents and frequency), so that they are independent of the process parameters. From this

exact approach, simpler ®rst- and second-order approximations, dedicated to circuit simulation tools, have been ob-

tained. Finally, the theoretical results have been compared with measurements showing a very good agreement with

measurements. Ó 2000 Elsevier Science Ltd. All rights reserved.

1. Introduction

It is well known that, for frequencies higher than a

given device-dependant limit, the current gain of a MOS

transistor is quickly degrading. This phenomenon is due

to the fact that the modulation of the channel charge

distribution to fast varying external potentials can no

longer be considered instantaneous. Hence, neglecting

these non-quasi-static (NQS) e�ects can result in un-

predictable behavior of high-frequency circuits.

The EKV model [2], which will be used here as a

framework, was initially developed [1] for low voltage

applications, for which the transitions between the dif-

ferent modes of operation of the MOS transistor must

be especially well described. Nowadays, it has evolved

towards a physical charge-based description [2,3].

Despite various e�orts devoted to high frequency and

transient modeling of the MOS transistor, using both

numerical and analytical approaches [4±14], only in-

complete sets of ®rst-order NQS expressions were pro-

posed for the kind of model discussed here [1,16].

The purpose of this paper is therefore to present, for

the ®rst time, an exact analytical solution of the NQS

behavior of a long channel MOS transistors, based on a

charge-based compact model. As, even for long-channel

devices, no general NQS treatment within such a model

has been presented so far, short-channel e�ects will not

be discussed in detail. In particular, the carrier mobility

will be assumed constant (see Ref. [10] for a detailed

account of mobility reduction e�ects). However, it will

be shown that, by taking into account a global DC

mobility reduction, a good agreement can be achieved

even for devices operated at a high overdrive gate volt-

age.

2. Small signal equations

In this section, the local small signal equations of the

channel model, which is brie¯y described in Appendix A,
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are developed. These results require no assumption

on the frequency of the applied signals, so that they are

still valid for the NQS operation.

2.1. Small signal approximation of the local equations

Under NQS operation, with generation±recombina-

tion mechanisms neglected, the current continuity

equation [15] in the channel region can be expressed in

terms of normalized time s, normalized coordinate n,

normalized current i n; s� � and normalized channel in-

version charge density q0I n; s� �:
oi n; s� �

on
� oq0I n; s� �

os
: �1�

The normalized variables are related to the time t, po-

sition x along the channel, local current I x; t� � and

charge density Q0I x; t� � by

s � x0t with x0 � lUT

L2
; �2�

n � x=L; �3�

i n; s� � � I x; t� �=IS with IS � 2nlC0OXU 2
TW =L; �4�

q0I n; s� � � Q0I x; t� �=Q0SP with Q0SP � 2nC0OXUT; �5�
where W and L are the transistor width and e�ective

length, l is the carrier mobility, UT � kT=q is the ther-

modynamic voltage, n is the slope factor, and C0OX is the

gate oxide capacitance. The introduction of this nor-

malization leads to considerably simpler algebraical re-

sults. (Note that a slightly di�erent de®nition of IS was

adopted in Ref. [16].)

Substituting Eq. (A.4) to Eq. (1) leads to a second-

order non-linear di�erential equation in terms of nor-

malized charges only:

o2

on2
q0I�n; s�
�

ÿ q0I�n; s�2
�
� oq0I�n; s�

os
: �6�

At this point, the small signal approximation is intro-

duced in the form:

q0I n; s� � � q00I n� � � dq0I n; s� �; �7�

i n; s� � � i0 � di n; s� � with

i0 � o
on

q00I�n�
�

ÿ q00I�n�2
�
;

�8�

where q00I n� � represents the static charge density at the

operating point and dq0I n; s� � is the charge perturbation.

Similarly, i0 is the DC current, derived from Eq. (A.4),

whereas di n; s� � is the local current ¯uctuation. Intro-

ducing these de®nitions into Eq. (6), and linearizing the

result with respect to dq0I n; s� �, leads to

o2

on2
dq0I n; s� � 1

ÿ� ÿ 2q00I n� ��� � o
os

dq0I n; s� �: �9�

And by using Eq. (8)

di n; s� � � o
on

dq0I n; s� � 1
ÿ� ÿ 2q00I n� ���: �10�

2.2. Gate and bulk currents

The normalized depletion charge density in the sub-

strate dq0B n; s� � can be expressed as (see Appendix B,

Eq. (B.6))

dq0B n; s� � � ÿ nÿ 1

n
dq0I n; s� �
�

� 1

2n
dvG s� �

�
; �11�

where dvG s� � � dVG s� �=UT is the normalized gate po-

tential variation.

Assuming that the charge trapped in the oxide is

constant with time, and by using the charge neutrality

equation (B.1), the substrate dIB t� � and gate dIG t� � cur-

rents, which are assumed positive when entering the

device, are simply given by

dIB t� � � W
Z 1

0

oQ0B n; t� �
ot

dn; �12�

dIG t� � � W
Z 1

0

oQ0G n; t� �
ot

dn

� ÿW
Z 1

0

o Q0I n; t� � � Q0B n; t� �ÿ �
ot

dn: �13�

Then, by substituting Eq. (11) into these expressions,

one gets, after normalization:

diB s� � � ÿ nÿ 1

n

Z 1

0

odq0I n; s� �
os

dn

� �
ÿ nÿ 1

2n2

� odvG

os
s� �; �14�

diG s� � � ÿ 1

n

Z 1

0

odq0I n; s� �
os

dn

� �
� nÿ 1

2n2

� odvG

os
s� �: �15�

The term in parentheses can be evaluated by integrating

Eq. (1) from the source (n � 0 ) to the drain (n � 1 ), so

that the ®nal result can be put in the form:

diB s� � � ÿ nÿ 1

n
diD s� �� ÿ diS s� �� ÿ nÿ 1

2n2

� odvG

os
s� �; �16�

diG s� � � ÿ 1

n
diD s� �� ÿ diS s� �� � nÿ 1

2n2

odvG

os
s� �: �17�
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It should be noted that the substrate and gate small

signal currents only depend on the drain and source

currents, on one side, and on the small signal gate po-

tential variation, on the other side.

3. Harmonic analysis

In this section, the special, but most useful, case of

small sinusoidal perturbations is treated. From this

formulation, global transconductance equations seen

from the four MOS terminals are also developed. It will

therefore be assumed hereafter that the normalized po-

tentials dv
G�D;S� vary with time as

dv
G�D;S� s� � � dv

G�D;S�e
jXs: �18�

In this expression, dv
G�D;S� are complex values represent-

ing, respectively, the gate, drain and source small signal

amplitude, X � x=x0 is the normalized angular fre-

quency and j is the imaginary number
�������ÿ1
p

. Similarly,

the inversion charge expression becomes

dq0I n; s� � � dq0I n;X� �e jXs: �19�

Substituting Eq. (19) into Eq. (9) and using the expres-

sion (A.6) for q00 n� � leads to

o2

on2
dq0I n;X� �

�������������������������������������������
1� 4 if 1ÿ n� � � nir� �

ph i
� jXdq0I n;X� �: �20�

After some calculations, and provided that the DC

current is not null (if 6� ir ), the general solution of the

latter equation can be written as a linear combination of

Bessel functions of order the 2
3

and ÿ2
3

:

dq0I n;X� � � C1J2=3 F n;X� �� � � C2Jÿ2=3 F n;X� �� �; �21�

where C1 and C2 depend on the boundary conditions,

and the auxiliary function F n;X� � was introduced:

F n;X� � � eÿj�p=4� ����Xp 1� 4 if 1ÿ n� � � irn� �� �3=4

3�if ÿ ir� : �22�

Appendix C describes how to calculate C1 and C2 from

the value of the applied potentials, whereas the special

case corresponding to if � ir is treated separately in

Appendix D.

Finally, substituting Eq. (21) into Eq. (10) leads to

the expression of the NQS small signal channel current

as a function of the normalized coordinate n:

di n;X� � � e j�3p�=4
����
X
p

1� � 4 if 1�� ÿ n� � irn��1=4

� C1Jÿ1=3 F n;X� �� �ÿ ÿ C2J1=3 F n;X� �� ��: �23�

And then, by using Eqs. (16) and (17), the currents

through the four terminals follow:

diS X� � � di 0;X� �;
diD X� � � di 1;X� �;

diG X� � � di 0;X� � ÿ di 1;X� �
n

� jX
nÿ 1

2n2
dvG;

diB X� � � nÿ 1

n
di 0;X� �� ÿ di 1;X� �� ÿ jX

nÿ 1

2n2
dvG:

�24a±d�

By convention, all currents entering the device are con-

sidered positive, except at the source.

4. Normalized transadmittances

The normalized transadmittances yab are de®ned as

the ratio of the small signal normalized current dia
¯owing through terminal a, and of the normalized

voltage dvb at node b:

yab � Yab
UT

IS

� dia
dvb

����
dvk 6�b�0

; �25�

where Yab is the usual, unnormalized, transadmittance.

Some general properties linking the di�erent transad-

mittances may be found in Appendix E.

For an implementation in a simulating tool, the

general transadmittance expressions, in terms of Bessel

functions with complex arguments, are not e�cient as

their evaluation is time consuming. Hence, simpler ®rst-

and second-order developments, in power series of X,

can be derived using a polynomial expansion of the

Bessel functions. The general form of the second order

normalized transadmittances becomes

yab X� � � N ab
0 � N ab

1 jX� � � N ab
2 jX� �2

1� D1 jX� � � D2 jX� �2 : �26�

Introducing the intermediate variables vf and vr:

vf r� � �
��������������
1
4
� if r� �

q
; �27�

and after some rearrangement, the coe�cients of Eq. (26)

can be expressed in terms of vf and vr only, as given

in Table 1.

Going a step further, yab can be limited to its ®rst

order development, reducing to

Yab � gab � jxCab; �28�

where gab and Cab represent the transconductance and

transcapacitance between nodes a and b. They can be

either positive or negative, depending on the adopted

current convention.

The results of these calculations, again expressed as

functions of vf and vr only, are listed in Table 2. Obvi-

ously, such expressions for Yab can only be used for
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``low'' frequencies where distributed e�ects are almost

negligible.

Only six independent real parameters (four transca-

pacitances and two transconductances) are needed to

fully describe the low frequency, small signal, behavior

of the intrinsic MOS transistor. Note also that the in-

trinsic transcapacitances are non-reciprocal but satisfy

the charge conservation condition.

5. Comparison with measurements

5.1. MOS operated in saturation mode

In order to validate the model, experimental data

taken from the literature have been used. These high

frequency measurements were performed on PMOS

transistors with 10 and 30 lm channel length and have

been published by Klaassen et al. [11, Fig. 10]. Although

parameters as the threshold voltage VT0 may slightly

depend on the compact model used for their extraction

(Philips MOS Model 9 in Ref. [11] and EKV in this

paper), the original values have been kept: VT0 � 1:11 V;

hole mobility lp� 15.5 ´ 10ÿ3 m2/V s; C0OX � 2:3
E)3 F mÿ2. For this experiment, the gate and drain

voltages were ®xed at 4 V, leading to normalized for-

ward and reverse currents of 2200 and 0, respectively.

The mobility reduction due to the vertical ®eld was ex-

tracted from the DC transconductance.

The normalized yDG data are plotted in Fig. 1a

(magnitude) and b (phase). The set of curves (a), in both

®gures, depicts the normalized transconductances for

the three channel lengths, in saturation mode. The cor-

responding theoretical characteristics, calculated in

terms of Bessel functions, are also shown (note that, in

Fig. 1a, nyDG is plotted instead of yDG). A very good

agreement between theory and experiment can be ob-

served, both for the magnitude and phase characteris-

tics, even for submicrometer devices. It can be noted

that the phase shift appears well before the decrease in

the magnitude of yDG. This supports the accuracy of the

model, as phase shift is di�cult to predict precisely, es-

pecially over a large range of variation, as in the present

case. Above a normalized frequency of about 2000, the

magnitude and phase starts to increase. This e�ect can

be attributed to some extrinsic capacitance, which are

neglected in the model.

Curves labeled (b)±(e) show the evolution of the

magnitude and phase characteristics of the model in

saturation mode, from weak to strong inversion. As can

Table 1

Second-order normalized transadmittance coe�cients used in Eq. (26)a

Variable Expression

NDG
0 � NSG

0 �vf ÿ vr�=n

NDG
1 ; �ÿNSG

1 � ÿ 1
6n �2vr�f�-1��2vf�r� � vr�f�� �vf � vr�2

.� �
NDG

2 ; �ÿNSG
2 � ÿ 1

180n �5v2
f�r� � 8vfvr � 2v2

r�f���2vr�f� ÿ 1� �vf � vr�4
.� �

NDS
0

1
2
ÿ vf

NSD
0 vr ÿ 1

2

NDS
1 � NSD

1 0

NDS
2 � NSD

2 0

D1
2
15
�v2

f � 3vfvr � v2
r � �vf � vr�3
.� �

D2
1

180
�v2

f � 4vfvr � v2
r � �vf � vr�4
.� �

a Variables in parentheses correspond to indices in parentheses in the expressions.

Table 2

First-order AC parameters, with COX � C0OXWLa

Variable Expression

gDSUT=IS�ÿgSDUT=IS� 1
2
ÿ vf�r�

gDG � gSG ÿ gDS � gSD� �=n

CDG=COX�ÿCSG=COX� ÿ 1
15
�4v3

f�r� � 6v3
r�f� � 28v2

f�r�vr�f� ÿ 10v2
f�r� ÿ 15vfvr � 22vf�r�v

2
r�f� ÿ 5v2

r�f��=�vf � vr�3
� �

CDS=COX�ÿCSD=COX� 2n
15
�2vf�r� ÿ 1� v2

f � v2
r � 3vfvr

ÿ �
= vf � vr� �3

a The other transcapacitances can be obtained by using Eqs. (E.2) and (E.3). Variables in parentheses correspond to indices in pa-

rentheses in the expressions.
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be observed, the NQS e�ects are shifted towards higher

frequencies when the inversion factor is increased. This

shift is proportional to
���
if

p
in strong inversion mode and

gets constant in weak inversion. The ®rst-and second-

order approximations of the transconductances are also

shown. As expected, the accuracy of the second-order

expressions is far better than the ®rst-order one and

appears to be su�cient for most practical applications.

The agreement is fairly good for phase lags lower than

110°. On the contrary, the accuracy of the ®rst-order

expansion already degrades rapidly for phase shifts ex-

ceeding 30°.

5.2. MOS operated in conduction mode

This section discusses the evolution of the YDG trans-

conductance, in the conduction mode, for VDS � 0, cor-

responding to the use of the transistor as a MOS

capacitor. Measurements have been realized on NMOS

devices of size W � L � 100� 300 lm, integrated in a

0.35 lm process. The corresponding EKV parameters

were: VT0 � 0:509; C � 0:564; U � 0:881; E0 � 98 E)6;

KP � 211 E)6 [2]. The use of such long and large structures

allowed to neglect extrinsic e�ects such as overlap ca-

pacitance. The measurements were performed under dif-

ferent gate bias conditions with an HP4285 LCR-meter.

Fig. 1c and d shows the module and phase of the

normalized transconductance yDG under various levels

of inversion, both for theoretical and experimental data,

and without any parameter ®tting. The agreement be-

tween the theory and measurements is very good. Again,

for very high frequencies (X > 3000), extrinsic elements,

mostly due to the measurement setup itself, gradually

degrades accuracy.

Fig. 1. Plots a and b: Comparison between the exact (±±), the ®rst-order (- - -) and the second-order (� � �) expressions of nyDG mag-

nitude (plot a) and phase (plot b) versus the normalized frequency in saturation, from weak to strong inversion (curve a: if � 103; b:

if � 102; c: if � 10; d: if � 1; e: if � 10ÿ1). Solid circles and open circles correspond to reported data for MOS transistors of 30 and

10 lm channel length, respectively. Plots c and d: Comparison between theoretical (±±) and measured data of the magnitude (plot c)

and phase (plot d) of yDG (normalized) at VDS � 0 for di�erent levels of inversion (s: if � 1470; h: if � 500; n: if � 50). Dashed lines

represent the second-order approximation.
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At low frequencies, relative to NQS e�ects, the yDG

frequency dependence is very close to a capacitor, the

amplitude varying with a 20 dB per decade slope. In

the same way, the phase shift tends towards 90°. As the

frequency increases, the discrepancy with the capaci-

tance behavior rapidly grows. The yDG magnitude starts

to vary with a 10 dB per decade slope, which is con-

®rmed by the stabilization of the phase shift around 45°,

indicating that the channel mostly operates like an RC

transmission line. It can be noted that even the bump in

the phase curves, before saturation at 45°, is correctly

predicted by the model. Unfortunately, these plots also

show that even the second-order approximation is not

able to model a distributed elements behavior with a

su�cient accuracy, at least for phase shifts lower than

60°.

6. Conclusion

For the ®rst time, an exact analytical by small signal

NQS model of the MOS transistor, which is valid in all

modes of operation and from DC to high frequencies,

was presented. This is derived from a general charge-

based approach and uses the framework of the EKV

model. It has been demonstrated that only four inde-

pendent transadmittances are needed to fully charac-

terize the small signal operation of the device. All

quantities in the model are expressed in terms of nor-

malized variables, which are independent of the process

parameters.

Comparison with published and measured data

showed a very good agreement with the model in all the

regions of operation, without introducing any ®tting

parameter.

Finally, ®rst-and second-order approximation of the

analytical solutions, aimed at simulation tools, were

presented and their limit of application discussed.
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Appendix A. Basic local equations and DC model

According to the EKV model, all voltages are refer-

enced to the bulk, as a consequence of the intrinsic de-

vice symmetry. Among the concepts required by this

formulation, the pinch o� voltage VP plays a major role.

This voltage expresses the e�ect of the gate voltage VG

on the channel and is given by

VP � VG ÿ VT0

n
with n � 1� c

2
�����������������
VP �W0

p ; �A:1�

where VT0 is the threshold voltage, n the slope factor, and

c the body e�ect coe�cient. W0 is usually approximated

by 2/F� several UT, where /F is the well Fermi potential

[1].

Assuming a constant gate potential, the inversion

charge density Q0I can be expressed in terms of the sur-

face potential, in di�erential form [17]:

dQ0I � nC0OXdWS; �A:2�
where WS is the surface potential, and Q0I is the channel

charge density per unit area. Then, the channel current

(including di�usion and drift currents) is simply given by

I x; t� � � W l
o
ox

 
ÿ Q0I x; t� �2

2nC0OX

� UTQ0I x; t� �
!
: �A:3�

Eq. (A.3) can be expressed in terms of normalized

current i n; t� �, charge q0I n; t� � and coordinate n (see

Eqs. (3)±(5)), leading to

i n; t� � � o
on

q0I n; t� �
�

ÿ q0I n; t� �2
�
: �A:4�

Integrating from the source (n � 0 ) to the drain (n � 1 ),

the normalized channel current can be split into forward

if and reverse ir contributions, which are related to the

normalized source and drain inversion charges q0S and q0D
[1,18]:

i � if ÿ ir; with if�r� � q02S�D� ÿ q0S�D�: �A:5�

Note that saturation corresponds to the case where

if � ir; otherwise, the MOS is assumed in conduction

mode. Strong, weak and moderate inversions corre-

spond, respectively, to if much greater, much lower or

close to 1.

Integrating Eq. (A.3) and using Eq. (A.5), while

noting that the DC current i n; t� � is constant along the

channel, leads to the expression of the inversion charge

density as a function of the coordinate n, which will be

required for the NQS derivation:

q0I n� � � 1
2
ÿ

������������������������������������
1
4
� if�1ÿ n� � irn

q
: �A:6�

Introducing the normalized drain and source voltages

mD�S� � VD�S�=UT and expressing the drain and source

transconductances [1] in normalized units gives

oi
ovD�S�

����
VG ;VS�D�

� ÿ� � �q0D�S�: �A:7�

Then, substituting Eq. (A.7) into Eq. (A.5) and sup-

posing that the channel charges at the drain (source) are
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not functions of the source (drain) potential (this as-

sumption does not hold when velocity saturation e�ects

occurs in short channels):

o
ovS�D�

q0
S�D�2

�
ÿ q0S�D�

�����
vG

� q0S�D�: �A:8�

By integration, and reminding that in strong inversion

q0S D� � � �vS D� � ÿ vP�=2 [1]:

ln
�
ÿ q0S�D�

�
ÿ 2q0S�D� � vP ÿ vS�D�: �A:9�

Finally, combining Eqs. (A.9) and (A.5) allows us to

calculate the DC normalized currents. (Note that this

approach does not require an additional variable, iP,

which cannot be calculated, as in Ref. [16]). For more

information, a complete methodology for EKV param-

eter extraction as well as analytical expressions imple-

mented in CAD tools are given in Refs. [2,19].

Appendix B. Bulk depletion charge

In this appendix, the expression of the bulk depletion

charge Q0B will be derived. It will be assumed that Q0B
responds immediately to surface potential variations.

The global charge neutrality equation of the MOS

transistor can be written as

Q0G t� � � Q0OX �
Z 1

0

Q0I n; t� �dn�
Z 1

0

Q0B n; t� �dn � 0;

�B:1�
where Q0OX is the total ®xed charges in the oxide (sup-

posed to be constant with time and voltages). Q0I n; t� �
and Q0B n; t� � are related to the gate and surface potentials

by [15]

Q0I n; t� � � ÿC0OX VG t� �
�

ÿ VFB ÿWS n; t� �

ÿc
����������������
WS n; t� �

p �
;

�B:2�

Q0B n; t� � � ÿC0OXc
����������������
WS n; t� �

p
; �B:3�

where VFB is the ¯at band voltage. Di�erentiating Eqs.

(B.2) and (B.3) around WS n; t� � � 2/F n; t� � � VP t� � [17]

and allowing for gate voltage variation results in

dQ0I n; t� � � C0OX ndWS n; t� �� ÿ dVG t� ��; �B:4�

dQ0B n; t� � � ÿC0OX n� ÿ 1�dWS n; t� �: �B:5�

Finally, after substitution,

dQ0B n; t� � � ÿ nÿ 1

n
dQ0I n; t� �
�

� C0OX

2n
dVG t� �

�
: �B:6�

Appendix C. Boundary conditions

To obtain a complete solution to the problem, C1 and

C2 coe�cients in Eq. (23) have to be determined using

appropriate boundary conditions. Supposing that the

inversion charge densities at both channel ends are at

equilibrium with the applied potentials, i.e. that the

densities respond instantaneously to the applied external

bias, Eq. (A.9) remains valid at any time at these two

points. Di�erentiating the latter equation with respect to

the external voltages leads then to the following condi-

tions:

dq0S�D� �
1

2

dvG

n

�
ÿ dvS�D�

�
1������������������

1� 4if�r�
p ÿ 1

!
: �C:1�

Thus, the coe�cients C1 and C2 can be determined by

evaluating Eq. (21) at the source and drain and com-

paring with (C.1):

C1 � dq0SJÿ2=3 F 1;X� �� � ÿ dq0DJÿ2=3 F 0;X� �� �
Jÿ2=3 F 1;X� �� �J2=3 F 0;X� �� � ÿ Jÿ2=3 F 0;X� �� �J2=3 F 1;X� �� � ;

C2 � dq0DJ2=3 F 0;X� �� � ÿ dq0SJ2=3 F 1;X� �� �
Jÿ2=3 F 1;X� �� �J2=3 F 0;X� �� � ÿ Jÿ2=3 F 0;X� �� �J2=3 F 1;X� �� � :

�C:2a; b�

Appendix D. Special ``resistive'' case, VD�VS

When if � ir and i � 0, the equations developed in

the body of the paper are not directly applicable. It can

be shown that, in this case, the general solution is a

linear combination of exponential functions:

dq0I n;X� � � C1ekn � C2eÿkn with

k � ej�p=4� ����Xp
1� 4if� �1=4

;
�D:1�

di n;X� � �
��������������
1� 4if

p
C1kekn
ÿ ÿ C2keÿkn

�
: �D:2�

C1 and C2 coe�cients are given by

C1 � dq0D ÿ dq0Seÿk

ek ÿ eÿk
and C2 � ÿdq0D � dq0Sek

ek ÿ eÿk
: �D:3�

A comparison (not shown here) between exact and ap-

proximated expressions for the transadmittances carried

out for if � ir showed that the ®rst and second order

expressions reported in Tables 1 and 2 are still valid for

this particular case.

Appendix E. General transadmittances properties

In our analysis, as the bulk is the voltage reference, a

variation dv of the bulk potential will have the same

J.M. Sallese, A.-S. Porret / Solid-State Electronics 44 (2000) 887±894 893



e�ect as a simultaneous variation ÿdv on the gate,

source and drain nodes. In terms of transadmittances,

this can be written as

yaB X� � � ÿyaG X� � ÿ yaS X� � ÿ yaD X� �; �E:1�
where a holds for drain, source, gate or bulk terminal.

From Eq. (C.1), the e�ect of a gate potential variation

dvG is identical to a simultaneous change of the drain

and source potential by ÿdvG=n. This symmetry gives, in

terms of transconductances:

ySS X� � � ÿnySG X� � ÿ ySD X� �;
yDD X� � � ÿnyDG X� � ÿ yDS X� �: �E:2a; b�

Then, by combining Eqs. (24c,d) with Eqs. (E.1) and

(E.2), the other relations can easily be obtained:

yGD X� � � ySD X� � � yDS X� �
n

� yDG X� �;

yGS X� � � ÿ ySD X� � � yDS X� �
n

ÿ ySG X� �;
yBD�S� X� � � n� ÿ 1�yGD�S� X� �;

yBG X� � � nÿ 1

n
ySG X� �� ÿ yDG X� �� ÿ jX

nÿ 1

2n2
;

yBB X� � � ÿyBG X� � ÿ yBS X� � ÿ yBD X� �;
yGG X� � � ySG X� � ÿ yDG X� � ÿ yBG X� �;

yD�S�B X� � � n� ÿ 1�yD�S�G X� �;
yGB X� � � yBG X� �:

�E:3a±h�
Thus, according to the above analysis and knowing the

slope factor n, only four independent normalized tran-

sadmittances, namely ySG X� �, yDG X� �, yDS X� � and

ySD X� �, are needed to describe completely the 16 terms

of the normalized matrix impedance.
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