

The EKV Model Parameter Extraction Based on its IC-CAP USERC Implementation

Wladyslaw Grabinski, Matthias Bucher, François Krummenacher

- □ The EKV v2.6 Model
- Userc Implementation in IC-CAP
- Parameter Extraction Methodology
 - ✓DC sequence
 - ✓CV modeling example
- □ Summary

EKV v2.6 MOSFET Model

 \Box EKV v2.6 in summary:

✓a physics based MOST model in the public domain.

- ✓ dedicated to analog circuit simulation for submicron CMOS.
- ✓ has < 20 intrinsic model parameters.</p>
- ✓ used in industrial and academic design groups.

□ EKV v2.6 available in major commercial circuit simulators:

Antrim-AMS, Aplac, Eldo-Accusim, PSpice, Saber, SmartSpice, Smash, Spectre, Star-HSpice

✓on-going implementations:

ADS (at LEG-EPFL), MacSpice, Spice3, T-Spice MINIMOS (TU Vienna), TRANZ-TRAN (TU Budapest)

□ New: EKV model web site: <http://legwww.epfl.ch/ekv>

Intrinsic MOST and Extrinsic Parasitic Elements

Structure of the MOST

Corresponding small-signal EKV model

EKV v2.6 Modeled Effects

- Physics-based modeling of weak, moderate and strong inversion.
- □ Effects of substrate doping level, substrate effect.
- □ Vertical field dependent mobility.
- □ Common short-channel effects:
 - ✓velocity saturation
 - ✓ channel length modulation (CLM)
 - ✓ two-dimensional bulk charge-sharing for short-and narrow-channel effects
 - ✓ reverse short-channel effect (RSCE)
 - ✓ substrate current effects on drain conductance
- □ Short-distance matching for statistical circuit simulation.

□ Coherent model for static, dynamic and noise aspects.

✓ physical model basis leads to accurate description of transconductance-to-current ratio at all current levels

✓ allows to derive all other model quantities in a coherent way

© WG 05'99

The EKV Model Parameter Extraction Based on its IC-CAP USERC Implementation

EKV v2.6 Parameter Set

D 18 Intrinsic Model Parameters

Purpose	NAME	DESCRIPTION	UNITS	EXAMPLE
Process parameters	COX	gate oxide capacitance per unit area	F/m^2	3.45E-3
	XJ	junction depth	m	0.15E-6
	DW	channel width correction	m	-0.05E-6
	DL	channel length correction	m	-0.1E-6
	VTO	long-channel threshold voltage	V	0.55
	GAMMA	body effect parameter	\sqrt{V}	0.7
Doping & Mobility	PHI	bulk Fermi potential (*2)	V	0.8
related parameters	KP	transconductance parameter	A/V^2	160E-6
	ΕO	vertical characteristic field for mobility reduction	V/m	80E6
	UCRIT	longitudinal critical field	V/m	4.0E6
Short- & narrow-channel effect parameters	LAMBDA	depletion length coefficient (channel length modulation)	-	0.3
	WETA	narrow-channel effect coefficient	-	0.1
	LETA	short-channel effect coefficient	-	0.3
	Q0	reverse short-channel effect peak charge density	$A \cdot s/m^2$	500E-6
	LK	reverse short-channel effect characteristic length	т	0.34E-6
Substrate current related parameters	IBA	first impact ionization coefficient	1 / m	260E6
	IBB	second impact ionization coefficient	V/m	350E6
	IBN	saturation voltage factor for impact ionization	-	1.0

5

Completed with 3 matching parameters

NAME	DESCRIPTION	UNITS	Example
AVTO	area related threshold voltage mismatch parameter	Vm	- DEV=15E-9
AKP	area related gain mismatch parameter	т	- DEV=25E-9
AGAMMA	area related body effect mismatch parameter	$\sqrt{V_m}$	- DEV=10E-9

□ 4 temperature parameters

NAME	DESCRIPTION	UNITS	Example
TCV	threshold voltage temperature coefficient	V/K	1.0E-3
BEX	mobility temperature exponent	-	-1.5
UCEX	longitudinal critical field temperature exponent	-	0.8
IBBT	temperature coefficient for IBB	1/K	9.0E-4

□ 2 noise parameters

NAME	DESCRIPTION	UNITS	Example
KF	flicker noise coefficient	-	0
AF	flicker noise exponent	-	1

© WG 05'99

The EKV Model Parameter Extraction Based on its IC-CAP USERC Implementation

7

EKV v2.6 Model and Userc Function

□ Userc implementation of the EKV v2.6 model

- ✓ simulator independent
- ✓ direct link to IC-CAP; very fast execution time
- ✓open environment for model evaluation and verification

□ EKV v2.6 userc function

✓Inputs:

terminal voltages (V_d, V_s, V_b, V_g)

✓Outputs:

all currents (I_d , I_s , I_b , I_g), conductances, capacitances (C_{gg} , C_{gd} , C_{gb}), charges.

EKV v2.6 Model and Userc Function (cont.)

Adding EKV v2.6 model to the function list

add_double_c_func2("EKV_dc_model", ekv26_dc_mod, 4, -1, 0, 1, FUNC_MAN, 0); add_input_name("VD"); add_input_name("VG"); add_input_name("VS"); add_input_name("VB"); add_parameter_name("Output");

Defining EKV v2.6 function

static int ekv26_dc_mod (USERC_DECLS1) USERC_DECLS2

□ IC-CAP user interface:

© WG 05'99

The EKV Model Parameter Extraction Based on its IC-CAP USERC Implementation

9

EKV v2.6 DC Parameter Extraction Methodology

Sequential task: parameter extraction methodology established for EKV v2.6

✓ performed from an array of transistors in the W/L plane.

EKV v2.6 Specific Current Extraction

 Specific current I_S corresponds to intersection of strong & weak inversion asymptotes [5]; not affected by: CLM, high field mobility reduction, S/D extrinsic resistances

© WG 05'99

The EKV Model Parameter Extraction Based on its IC-CAP USERC Implementation

11

Pinch-off Voltage Characteristic

 \Box Pinch-off voltage measurement at constant current (I_S/2)

✓ Gate voltage V_G is swept and $V_P=V_S$ is measured at the source for a transistor biased in moderate inversion and saturation [1,7]

Short- and Narrow-Channel Effects on Vp-Vg

- Effects of short- and narrow-channels are analysed using the charge-sharing approach.
- □ Corresponding parameters: LETA and WETA.

- □ Good behaviour for mobility reduction for both channel types.
- □ Substrate effect is correctly accounted for.
- □ No back-bias dependence required.

Source/Drain Resistances

□ Series resistance accounted explicitly in drain current

- ✓No extra nodes needed
- ✓ Increased computation efficiency
- ✓ S. Cserveny, IEEE Trans. Electron Devices, ED-37, no.11, 1990, pp.2413-2414.

© WG 05'99 The EKV Model Parameter Extraction Based on its IC-CAP USERC Implementation

Velocity Saturation

Influence of UCRIT on the output characteristics

- A high lateral electric field in the channel causes the carrier velocity to saturate and limits the drain current.
- □ Parameter UCRIT accounts for this effect.

15

Channel-Length Modulation (CLM)

Influence of $\ensuremath{\texttt{LAMBDA}}$ on the output characteristics

- The relative channel length reduction depends on the pinch-off point in the MOSFET channel near drain end.
- Depletion length coefficient (LAMBDA) models CLM effect.

The substrate current is treated as a component of the total extrinsic current:

$$\checkmark I_D = I_{DS} + I_{DB}$$

 Substrate current affects the total extrinsic conductances, in particular drain conductance (g_{DS}).

- Defect enhanced diffusion during fabrication leads to RSCE.
- RSCE is modeled as a change in the threshold voltage depending on L_{eff}
- □ Two model parameters Q0 and LK.

- Excellent match from weak through moderate to strong inversion regions.
- Measurement and simulation comparisons show that g_{ms}/i_D ratio is technology independent.

CV Modeling Example

CV characteristics (C_{gg} , C_{gs} , C_{gb}) of large MOSFET as function of channel to bulk bias ($V_S = V_D$)

- □ Consistent model for all charges and capacitances (G,D,S,B).
- Capacitances are valid in all operating regions, continuous, and symmetrical at V_{DS}=0

© WG 05'99	The EKV Model Parameter Extraction Based on its IC-CAP USERC Implementation	21
	O	

- The EKV v2.6 model and related parameter extraction methodology have been developed at Electronics Lab of EPFL.
- Complete DC and CV EKV v2.6 model has been implemented as the IC-CAP userc function and offers:
 - ✓very fast execution time
 - ✓ perfect model development/verification environment
 - ✓ well suited for mixed mode (direct and optimization based) extraction as well as for statistical modeling tasks
- Presented examples showed the EKV v2.6 model applications down to deep submicron technologies.

- Parameter extraction service and design support are available through Smart Silicon Systems, Lausanne
- The EKV v2.6 parameter extraction kit for IC-CAP is under development

✓ modular structure:

- ☆ measurement unit with mdm data base generator
- □ Additional activities:
 - ✓RF modeling including S-parameter characterization
 - ✓ 1/f noise characterization
- Contact: modeling@smartsilicon.ch

The EKV Model Parameter Extraction Based on its IC-CAP USERC Implementation

23

References

- M. Bucher, C. Lallement, C. Enz, "An Efficient Parameter Extraction Methodology for the EKV MOST Model", Proc. 1996 IEEE Int. Conf. on Microelectronic Test Structures, Vol. 9, pp. 145-150, March 1996
- [2] C. Enz, E. Vittoz, "CMOS Low-Power Analog Circuit Design", Tutorial Int. Symp. Circ. Syst., Atlanta, May, 1996.
- [3] C. C. Enz, F. Krummenacher and E. A. Vittoz, "An Analytical MOS Transistor Model Valid in All Regions of Operation and Dedicated to Low-Voltage and Low-Current Applications," Analog Integrated Circuits and Signal Processing, 8, pp. 83-114, July 1995
- [4] M. Bucher, C. Lallement, C. Enz, F. Théodoloz, F. Krummenacher, "The EPFL-EKV MOSFET Model Equations for Simulation, Model Version 2.6", Technical Report, Electronics Laboratories, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland, June, 1997.
- [5] M. Bucher, C. Lallement, C. Enz, F. Théodoloz, F. Krummenacher, "Scalable GM/I Based MOSFET Model", Proc. Int. Semicond. Device Research Symp., pp. 615-618, Charlottesville, VA, December 10-13, 1997.
- [6] C. Lallement, C. Enz and M. Bucher, "Simple solutions for modelling the non-uniform substrate doping", in Proc. IEEE Int. Symp. Circuits Syst., vol. 4, Atlanta, pp. 436-439, May 1996
- [7] C. Lallement, M. Bucher, C. C. Enz, "Modelling and Characterization of the Non-Uniform Substrate Doping," Solid State Electron., Vol. 41, No. 12, pp. 1857-1861, 1997.
- [8] M. Bucher, C. Lallement, C. C. Enz and F. Krummenacher, "Accurate MOS Modelling for Analog Circuit Simulation Using the EKV Model," Proc. IEEE Int. Symp. Circuits Syst., pp. 703-706, May 1996.
- [9] C. C. Enz, "MOS Transistor Modeling Dedicated to Low-Current and Low-Voltage Analog Circuit Design and Simulation," in Low-power HF Microelectronics: A Unified Approach, Ed. by G. Machado, IEE Book Publishing, Ch. 7, 1996, pp. 247-299, ISBN 0 85296 874 4.
- [10]G. A. S. Machado, C. C. Enz, M. Bucher, "Estimating Key Parameters in the EKV MOST Model for Analogue Design and Simulation", Proc. IEEE Int. Symp. Circuits Syst., pp. 1588-1591, Seattle, Washington 1995.

[©] WG 05'99