

MOSFET Modeling for Ultra Low-Power RF Design

T. Taris, H. Kraïmia, JB. Begueret, Y. Deval

Bordeaux, France

12/15-16, 2011 - Lauzanne, Switzerland

Context

Data processing

Large Power Consumption

⇒ Computation
⇒ Memory writing/reading...

- Sensor/Actuator
 - ⇒ Environment Interface

- Power Unit
 - \Rightarrow Supply
 - \Rightarrow Energy Management/Storage

- Power Unit
 - \Rightarrow Supply
 - \Rightarrow Energy Management/Storage

OUTLINE

Context

- From analog to RF Metric
- Low Noise Amplifier Implementation
- Conclusions & Perspectives

Low Power Analog Amplifiers

Voltage Amplifier

Figure Of Merit for Low Power amplifier

$$FOM_{LPamplifie} = \frac{GBW}{I_D}$$

Low Power Analog Amplifiers

1-1

Figure Of Merit for Low Power amplifier

$$FOM_{LPamplifie} = \frac{GBW}{I_D} \propto \frac{g_m}{C.I_D} \implies \left(\frac{g_m}{I_D}\right)$$

Low Power Analog Metric

□ Figure Of Merit for Low Power Analog

FOM_{LPanalog} is maximum in WI region

Low Power RF Circuits

RF Building Blocks

Low Power RF Circuits

Low Power RF LNA

Topologies / Architectures

Low Noise Amplifier

□ Most important characteristics

A large voltage gain G_v at f_{RF}

A low noise figure NF at f_{RF}

➢ Figure Of Merit for Low Power LNA

$$FOM_{LPLNA} = \frac{G_V \cdot f_{RF}}{(F-1) \cdot P_{cons}}$$

System Level

Transistor Level

15

Low Power RF LNA

Low Noise Amplifier

Topologies / Architectures

Most important characteristics

A large voltage gain **G**_v at **f**_{RF}

A low noise figure **NF** at **f**_{RF}

Common Source

Common Gate

UNIVERSITÉ DE BORDEAUX Cascode

➢ Figure Of Merit for Low Power LNA

$$FOM_{LPLNA} = \frac{G_V \cdot f_{RF}}{(F-1) \cdot P_{cons}}$$

System Level

Transistor Level

Low Power RF LNA

FOM_{LPLNA} is maximum in MI region

OUTLINE

Context

- From analog to RF Metric
- Low Noise Amplifier Implementation
- Conclusions & Perspectives

Forward Body Biased Cascode LNA

2.4 GHz LNA - CMOS 0.13µm

440µW@0.5V

Forward Body Biased Cascode LNA

2.4 GHz LNA - CMOS 0.13µm

Gain & NF vs Power Consumption

→ Limited value on Si

Peaking Load

Forward Body Biased Cascode LNA

2.4 GHz LNA - CMOS 0.13µm

→ Limited value on Si

Peaking Load

Forward Body Biased Cascode LNA

2.4 GHz LNA - CMOS 0.13µm

nano-tera.ch

Forward Body Biased Cascode LNA

2.4 GHz LNA - CMOS 0.13µm

Select the best suited topology

 \succ To compensate for the low g_m in MI region...

...active load configurations are preferred!

12/15-16, 2011 – Lauzanne, Switzerland

Select the best suited topology

Comparison of the Gain BandWidth (GBW) product...

Current reuse LNA

2.4 GHz LNA - CMOS 0.13µm

\rightarrow Transistors are in MI region to maximise FOM_{LPLNA}

Current reuse LNA

2.4 GHz LNA - CMOS 0.13µm

Current reuse LNA

2.4 GHz LNA - CMOS 0.13µm

 $100\mu W @ 0.5 V$

nano-tera.ch 12/15-16, 2011 – Lauzanne, Switzerland

Current reuse LNA

2.4 GHz LNA - CMOS 0.13µm

100µW@0.5V

Current reuse LNA

2.4 GHz LNA - CMOS 0.13µm

100µW@0.5V

Comparison with the state of art

[12] H. Lee, "A 3 GHz subthreshold CMOS low noise amplifier," *IEEE RFIC Symposium*, San Francisco, CA, USA, June 2006, pp.545-548
 [13] V. Aaron, « A subthreshold low-noise amplifier optimized for ultra-low -power applications in the ISM band", *IEEE MTT*, Vol. 56, N°2, pp. 286-292, feb. 2008

[14] J. Li S. Hassan "A 0.7 V 850µW CMOS LNA for UHF RFID reader", MOTL, Vol. 52, N°12, pp. 2780-2782, dec. 2010
 [15] C.J. Jeong, W. Qu, Y. Sun, D.Y. Soon, S.K. Han, S.G. Lee "A 1.5 V, 140 µA CMOS Ultra Low Power Common Gate LNA", IEEE RFIC, Baltimore, USA, June 2011, pp. 203-206

Comparison with the state of art

[10] A. Shameli"A novel Ultra Low Power Low Noise Amplifier using Differential Inductor Feedback", *IEEE ESSCIRC*, Montreux, Switzerland, Sep. 2006, pp.352-355
 [11] B. G. Perumana, "A fully monolithic 260-μW, 1-GHz subthreshold low noise amplifier," *IEEE MiWCL*, Vol. 15, N°. 6, pp. 428-430, June 2005.
 [12] H. Lee, "A 3 GHz subthreshold CMOS low noise amplifier," *IEEE RFIC Symposium*, San Francisco, CA, USA, June 2006, pp.545-548

13] V. Aaron, « A subthreshold low-noise amplifier optimized for ultra-low -power applications in the ISM band". IEEE MTT, Vol. 56, N°2, pp. 286-292, feb. 2008

[14] J. Li, S. Hassan "A 0.7 V 850µW CMOS LNA for UHF RFID reader", MOTL, Vol. 52, N°12, pp. 2780-2782, dec. 2010
 [15] C.J. Jeong, W. Qu, Y. Sun, D.Y. Soon, S.K. Han, S.G. Lee "A 1.5 V, 140 µA CMOS Ultra Low Power Common Gate LNA", IEEE RFIC, Baltimore, USA, June 2011, pp. 203-206

Comparison with the state of art

[10] A. Shameli"A novel Ultra Low Power Low Noise Amplifier using Differential Inductor Feedback", *IEEE ESSCIRC*, Montreux, Switzerland, Sep. 2006, pp.352-355
 [11] B. G. Perumana, "A fully monolithic 260-μW, 1-GHz subthreshold low noise amplifier," *IEEE MiWCL*, Vol. 15, N°. 6, pp. 428-430, June 2005.
 [12] H. Lee, "A 3 GHz subthreshold CMOS low noise amplifier," *IEEE RFIC Symposium*, San Francisco, CA, USA, June 2006, pp.545-548

13] V. Aaron, « A subthreshold low-noise amplifier optimized for ultra-low -power applications in the ISM band", IEEE MTT, Vol. 56, N°2, pp. 286-292, feb. 2008

[14] J. Li, S. Hassan "A 0.7 V 850µW CMOS LNA for UHF RFID reader", MOTL, Vol. 52, N°12, pp. 2780-2782, dec. 2010
 [15] C.J. Jeong, W. Qu, Y. Sun, D.Y. Soon, S.K. Han, S.G. Lee "A 1.5 V, 140 μA CMOS Ultra Low Power Common Gate LNA", IEEE RFIC, Baltimore, USA, June 2011, pp. 203-206

OUTLINE

Context

- From analog to RF Metric
- Low Noise Amplifier Implementation

Conclusions & Perspectives

Conclusions & Perspectives

Conclusions & Perspectives

Conclusions & Perspectives

RF CMOS biasing in future nodes

□ FOM_{RFblock@transistor} versus technology scaling ?

