BSIM-CMG A Turnkey Compact Model for Common Multi Gate Devices

Principle Investigators: Prof. Chenming Hu and Prof. Ali Niknejad

Current Team: Sriramkumar V., Yogesh Chauhan, Muhammed Karim

Previous Graduates: Darsen Lu, Chung-Hsun Lin, Mohan Dunga

UC Berkeley

Dec. 16, 2011

Nano-Tera Workshop, EPFL, Lausanne

Why next generation transistors?

- Gate cannot control the leakage paths <u>far from the</u> <u>gate</u>
- Thinning the oxide down was <u>not</u> enough
- Dopant fluctuations => Increased variability

New MOSFET Structures

New MOSFET Structures - Demonstration

Advantages for SoC Design

Another MOSFET architecture

DRAM Cell Transistor – 4F² lavout

Versatile Multi-Gate Compact Model: BSIM-MG

Horizontal Nanowire FET

Challenges in developing a new model

- New Physics
 - Fully depleted channel
 - Quantum confinement etc.
 - When to include them?
- Support Multiple Device architectures
- Inertia with BSIM4
 - Large user base
 - Familiarity with the parameters -> a language in itself
- Speed
- Convergence Model behavior in extreme cases
- Balance Physics and Flexibility
- Balance Speed and Accuracy

BSIM-CMG

- Introduction
- Core Model
 - Surface Potential Equation
 - Drain Current
 - Capacitance Model
- Real Device Effects
- Model Validation & QA
- Conclusion

BSIM-CMG Core Models

- Three core models
 - Intrinsic Double Gate Core (Y. Taur et al, IEEE EDL, 2004)
 - Perturbation based DG Core for high-doping
 - Cylindrical Gate Core
 - Bulk and SOI Substrate

Surface Potential Core – Double Gate

- Body doping complicates the solution of the Poisson's equation.
- Perturbation approach is used to solve this problem.

M. Dunga et al., IEEE TED, Vol. 53, No. 9, 2006

M. Dunga et al., VLSI 2007

Mohan Dunga, PhD Dissertation, UC Berkeley

Surface Potential Core – Cylindrical Gate

Start with a long channel transistor

$$\frac{1}{r} \cdot \frac{d}{dr} \left(r \frac{d\psi}{dr} \right) = \frac{qN_a}{\epsilon_{si}} + \frac{qN_a}{\epsilon_{si}} \exp\left(\frac{\psi - V_{ch} - 2\phi_b}{V_t} \right)$$

1-D Poisson's Equation

Assumptions

- Gradual Channel Approximation
- No influence of holes (SOI like structure)
- Fully Depleted Body

Gauss Law + Correction for Polysilicon Gate-Depletion

Implicit equation in Q_i (channel charge)

$$V_{gs} - V_{\text{fb}} - \Delta V_{th} - V_{ch} = c_{poly} \cdot \left(\frac{Q_i + Q_{dep}}{C_{ox}}\right)^2 + \frac{Q_i}{C_{ox}} + V_t \cdot \ln \frac{Q_i}{V_t C_{ox}} + V_t \cdot \ln \left(1 + H \cdot \frac{Q_i}{C_{ox} V_t}\right)^2 + \frac{Q_i}{C_{ox} V_t} + \frac{Q_i}{V_t C_{ox}} + \frac$$

Surface Potential Equation

S. Venugopalan et. al., SSE, Vol 67, Issue 1, Jan 2012

Core Drain Current Model

Drain Current (Pao-Sah, No charge sheet approximation)

$$Id = \mu \cdot \frac{W_{eff}}{L_{eff}} \cdot \left[\frac{Q_{is}^2 - Q_{id}^2}{2C_{ox}} + V_t \cdot \left(2 - \frac{2Q_0}{2Q_0 + Q_{is} + Q_{id}}\right)(Q_{is} - Q_{id})\right]$$

 $Q_0 = 2Q_B + 5V_t C_{si}$

Core Capacitance Model

Model inherently exhibits symmetry

•
$$C_{ij} = C_{ji} @ V_{ds} = 0 V$$

- Model overlies TCAD results
 - No tuning parameters used
- Accurate short channel behavior RF Design
 - Needs additional tuning parameter flexibility

BSIM-MG

- Introduction Core Model Surface Potential Equation Drain Current Capacitance Model Real Device Effects
 - Model Validation & QA
 - Conclusion

Short Channel (2D) Effects

$$\frac{1}{r} \cdot \frac{\partial}{\partial r} \left(\frac{\partial \psi}{\partial r} \right) + \frac{\partial^2}{\partial y^2} \psi = \frac{q N_a}{\epsilon_{si}}$$

Along the channel – 2D Quasi-2D analysis

$$\frac{d^2 \psi_c}{dy^2} + \frac{V_{gs} - V_{fb} - \psi_c}{\lambda^2} = \frac{qN_a}{\varepsilon_{si}}$$
Characteristic
Length
$$\lambda = \sqrt{\frac{R^2}{4} + \frac{\epsilon_{si}}{2\epsilon_{ox}}R \cdot EOT}$$

- Similar expression for Double Gate and FinFET/Trigate
- Analytical expressions model
 - Threshold Voltage roll off
 - Drain induced barrier lowering (DIBL)

Length

Auth and Plummer, IEEE EDL, 2007

Symbols: TCAD Results; Lines: Model

Quantum Mechanical Effects

- Predictive model for confinement induced V_{th} shift due to band splitting present in the model
- Can choose to use an effective t_{ox} that accounts for charge centroid behavior with bias
- Effective Width model that accounts for reduction in width for a triple / quadruple / surround gate structure

Width reduction due to structural confinement of inversion charge. (Dotted lines represent the effective width perimeter)

Asymmetric Device Model

V.P.Hu et al VLSID 2006

- S/D under-lapped FinFETs used as PU and AX transistors in SRAMS show
 - Improved RSNM at same WSNM
 - Decreased Time-to-Write (but increased cell read access time)
- Asymmetric Halo could be used to create I/O FinFETs for special applications

Asymmetry Model : Parameters Identified

- Identified five existing parameters and created their reverse mode equivalents
- Doping Gradient in Channel
 - On-current degradation parameter
 - Source-side barrier different DIBL parameter
 - Output conductance parameter
- Top/Bottom Electrode Asymmetry
 - Quasi-saturation amplification / suppression $\rm R_{s/d}$ Parameters

Source/Drain Junctions in FinFETs

- FinFETs on Bulk require an implant positioned just below the fin to prevent punch-through (and a retrograde profile).
 - Creates S/D junctions to have two metallurgical junctions of the form p⁺-n₁-n_{well} or n⁺-p₁-p_{sub}.

UC Berkeley - 20

 Simulations indicate that the depletion region beneath the junction could traverse the second junction too.

S/D Junction Cap in FinFETs - Model

Enhanced BSIM4 style junction charge model with just 2 additional parameters – C_{i02} and m₂

where,

$$V_{bc} = \phi_{b1} \left(1 - \left(\frac{C_{j01}}{C_{j02}} \right)^{\frac{1}{m_{1}}} \right)$$

$$\phi_{b2} = \frac{C_{j02} \phi_{b1} m_{2}}{C_{j01} m_{1} \left(1 - \frac{V_{bc}}{\phi_{b1}} \right)^{-1 - m_{1}}}$$

 $V_{\rm bc}$: the voltage at when the depletion edge reaches the $n_1\text{-}n_{well}$ boundary

TROB IN IN

UC Berkeley - 21

Unified Framework for FinFET Parasitic Resistances and Capacitances

- In sub-45nm tech.
 - Parasitic Resistance significant portion of RON
 - Total Parasitic Caps ~ Intrinsic Gate Capacitance
- Geometrically scalable parasitic resistance and capacitance model present in BSIM-CMG

FinFET R_{ds} **Modeling**

FinFET C_{fr} Modeling – TCAD Verification

Real Device Effects

BSIM-CMG

- Introduction
- Core Model
 - Surface Potential Equation
 - Drain Current
 - Capacitance Model
- Real Device Effects
- Model Validation & QA
- Conclusion

SOI FinFET Fitting

- SOI FinFETs are fabricated at TI
- TFIN=22nm, HFIN=60nm, T_{ox}=2nm

Bulk FinFET Fitting

Vertical GAAFET Overlay

Global Extraction Procedure

NMOS L_{eff} from 30nm to 10um

PMOS L_{eff} from 35nm to 10um

Short Channel Output Characteristics

Symmetry / Continuity Tests

 Model passes both DC and AC Symmetry Tests

Drain Current

Capacitances (C_{gg} and C_{sd})

C.C.McAndrew, IEEE TED, Vol. 53, No. 9, 2006

Speed Tests

Circuit	# MOSFETs	Model	Runtime per iteration per transistor (normalized)
1-Transistor Id-Vds	1	BSIM4 BSIM-CMG	1.00 1.22
17-Stage Ring	34	BSIM4 BSIM-CMG	1.00 1.31
Coupled Rings	2020	BSIM4 BSIM-CMG	1.00 1.24

- Speed of BSIM-CMG v105 and BSIM v4.5 compared
 - Both model compiled with the in-built Verilog-A compiler of HSpice
 - Note: Each model uses its own default parameter. Parameters are not extracted for a real technology.

Averaged over multiple runs on the same machine

BSIM-CMG

- Introduction
 Core Model

 Surface Potential Equation
 - Drain Current
 - Capacitance Model
- Real Device Effects
- Model Validation & QA
- Conclusion

Roadmap of BSIM-CMG

- BSIM-CMG100.0 was released in October 2006
- BSIM-CMG105.03 is under balloting stage at the Compact Model Council for standardization
 - Verilog-A and a well documented manual
 - Available in major commercial simulators
- BSIM-CMG105.04 was released Dec 2011

Summary

- BSIM-CMG is a Turnkey , Production Ready model
 - Final Phase of Standardization at the CMC
- Physical, Scalable Core Models for multiple device architectures
 - Supports both SOI and Bulk Substrates
- Many Real Device Effects captured
- Validated on Hardware Data from different technologies
- Available in major EDA tools

Acknowledgement

SRC, Industry Supporters, EDA Vendors

