

Analog modeling requirements for HV CMOS technology

Ehrenfried Seebacher 2011-12-15

a leap ahead in analog

Presentation Overview

- Design perspective on High Performance Analog
- HV CMOS Analog modeling requirements
- HV Transistor compact modeling
- Aging modeling
- 1/f noise modeling
- Process Variability

Design Perspective on Analog Modeling

Analog Application	Critical feature	Critical Modeling Parameter
Pre-Amplifier for ADC Reference circuit	Signal to noise ratio, effective number of Bits	Transistor and resistor noise
ADC/DAC	Linearity, Distortion	Resistor Mismatch
Operational Amplifier Current Mirror Multi-channel devices	Voltage matching Current matching Gain matching	Analog parameter (gds, gm, Vt etc.) mismatch
Voltage Reference (e.g. Bandgap) Current Reference	Voltage stability Current stability	Bipolar parasitics (gain, linearity etc.)

Design Perspective on Analog Modeling

Analog Application	Critical feature	Critical Modeling Parameter
Capacitor switching design Transmission gates IC/RC Oscillator High impedance signal source	parasitic voltage divider Charge Injection frequency stability capacitive coupling	Parasitic capacitance
Current source Operational Amplifier	Output resistance Gain	Small signal parameters (gds, gm etc.)
Operational Amplifier Voltage Reference	Offset & Gain shift Output voltage shift	2nd order parameters (linearity and temperature)

HV TRANSISTOR MODELING

FOMs for HV Transistors

- RON (On Resistor) (high vgs, low vds, and temp.)
- IDSAT (Saturation Current)?
- VT long & short
- Cgg & Cgd Miller Cap ?
- Analog parameter for long channel length (gds, gm)
- RF Parameter FT, FMAX ?
- 1/f noise.

State of the Art HV Compact Models and new Developments

EKV HV Transistor

-Under development within the EU Project COMON

"A Physics-Based Analytical Compact Model for the Drift Region of the HV-MOSFET" Antonios Bazigos, François Krummenacher, Jean-Michel Sallese, Matthias Bucher, Ehrenfried Seebacher, Werner Posch, Kund Molnár, and Mingchun Tang

HISIM_HV

-CMC Standard model version 1.1.2 ;1.2.1; 2.0

PSP HV – Transistor Model

-In development based on PSP surface potential model

MM20

–asymmetrical, surface-potential-based LDMOS model, developed by NXP Research

BSIMx Sub-circuit Model

austriamicrosystems

a leap ahead in analog

HV CMOS Transistor Types

Increased junction breakdown voltage (BV) of the drain diffusion is achieved by using a deep drain well

Small on-resistance and high BV are contrary effects. The optimization of the tradeoff between both quantities is of major interest.

The gate length is extended beyond the body-drain well junction, which increases the junction BV. The gate acts as a field plate to bends the electric field. RESURFeffect

Quasisaturation Effect.

Sub-circuit Modeling

Symmetrical HV transistor sub-circuit

: Unsymmetrical HV transistor sub-circuit

HiSIM_HV

	·
Complete Surface potential-based:	The following effects are also included:
HiSIM_HV solves the Poisson equation along the MOSFET	•Depletion effect of the gate polycrystalline
channel iteratively,	silicon (poly-Si).
including the resistance effect in the drift region.	•Quantum mechanical
	•CLM
	•Narrow channel
high flexibility	•STI Materia
20 model flags	•Leakage currents
scales with the gate width,	(gate, substrate and gate-induced drain leakage
the gate length,	(GIDL) currents).
the number of gate fingers	•Source/bulk and drain/bulk diode models.
and the drift region length.	Noiso modols (1/f thormal noiso induced anti-
In addition, HiSIM_HV is capable of modeling	
symmetric and asymmetric HV devices.	Non quaci static (NOC) model
	of Al

Model Benchmark Output Characteristic

austriamicrosystems

- Subcircuit: bad fitting quality, especially in accumulation.
- HiSIM_HV: good fitting quality in all regions.

Short Device: Transfer Characteristics at low and high Vds

tems AG. Material may not be reproduced without written approval noncommercial educational purposes. ©2011 · austriamicrosystems AG. and may only be used for austriamicrosystems All rights reserved Ъ

Short Device: Output Characteristics

Material may not be reproduced without written approval noncommercial educational purposes austriamicrosystems AG. only be used for ©201 isystems and m All rights reserved austriam Ъ

Table of Model Capabilities (1/3)

Physical Effects	BSIM3/JFET Subcircuit	HiSIM_HV	EPFL-HV
Technology Related Device Effects:			
Symmetric / Asymmetric Device			asymmetric only
Quasi-Saturation		\checkmark	$\mathbf{\nabla}$
RON		\checkmark	$\mathbf{\nabla}$
Mobility		\checkmark	\checkmark
Carrier Velocity Saturation		\checkmark	\checkmark
Channel Length Modulation		\checkmark	$\mathbf{\nabla}$
Impact Ionization current	extrinsic model	\checkmark	$\mathbf{\nabla}$
Poly-Silicon-Gate Depletion Effects		\checkmark	×
Geometry Scaling:			
Short Channel Effects		\checkmark	$\mathbf{\nabla}$
Reverse Short Channel Effects		V	
Narrow Channel Effects		\checkmark	\checkmark
Drain Induced Barrier Lowering			

a leap ahead in analog

Table of Model Capabilities (2/3)

Physical Effects	BSIM3/JFET Subcircuit	HiSIM_HV	EPFL-HV
Asymetric MOS Capacitances:			
Intrinsic Capacitance	\checkmark		\checkmark
Overlap Capacitance	\checkmark		V
Fringing Capacitance	\checkmark		X
Bulk Diodes:			
Diode Current	\checkmark	\checkmark	\checkmark
Diode Capacitance	\checkmark	\checkmark	\checkmark
Temperature Modelling:			
Threshold Voltage	\checkmark	\checkmark	\checkmark
Mobility	\checkmark	\checkmark	V
Quasi-Saturation	\checkmark		\checkmark
RON			
Bulk Current	\checkmark		
Self-Heating	×		V

a leap ahead in analog

Table of Model Capabilities (3/3)

Physical Effects	BSIM3/JFET Subcircuit	HiSIM_HV	EPFL-HV
Noise:			
SPICE Noise model	\checkmark	×	X
Flicker Noise Model	\checkmark	\checkmark	X
Short Channel Thermal Noise Model	X		X
Induced Noise in Gate	×	\checkmark	X
Induced Noise in Substrate	X	\checkmark	X
RF Modeling:			
Gate resistance model	×		V
Substrate resistance model	X		V
Multi-finger transistors	X		V
Non-Quasi-Static (NQS):			
NQS	\checkmark	\checkmark	X

Modeling of parasitic diodes and bipolar in HV transistors **PARASITIC MODELING**

Benchmarking HiSIM_HV 1.2.1 for 120V Transistors

HV NMOS output and transfer characteristic of a typical wafer. W/L=40/0.5, VGS= 2.9, 4.8, 6.7, 8.6, 10.5, 12.4, 14.3, 16.2, 18.1, 20 V, VBS=0 V. & VBS= 0, -1, -2, -3, -4 V, VDS=0.1 V.

+ = measured, full lines= BSIM3v3 model; dashed lines = HiSIM_HV 1.2.1

Isolated HVMOS: High-Side Switch Modeling

HiSIM_HV 1.2.1: Vsub modulates the effective depth of the drift region: Rdrift(V_{sub,s})

HV Transistor Parasitic Modeling

All rights reserved. ©2011 · austriamicrosystems AG. of austriamicrosystems and may only be used for noncommerc

Analog design requirement

1/F NOISE MODELING

1/f Noise Modeling for HV Transistors

Mobility fluctuations as well as charge carrier fluctuations

HiSIM_HV:

NFALP which is applied for the mobility fluctuation phenomenon NFTRP which is applied for the ratio of **trapped density** to attenuation coefficient.

CIT, a capacitance parameter applied for interface-trapped carriers. Normally it is fixed to zero.

1.) The BSIM3v3 approach has a different formulation for operating regions vg > vth + 0.1V and vg < vth + 0.1V;

Therefore a discontinuous flicker noise model may occur HiSIM_HV which uses one common formulation for strong and weak inversion operating regions.

- 2.) The DC modeling approach is of course different therefore the thermal noise description will also differ.
- 3.) Another approach to check is the input referred noise. For accurate gm modeling also the input referred noise is simulated with higher accuracy. If the gm does not differ much from both HV model approaches then the noise models it can be compared

Sid & Svg Benchmark

Sid Output referred Noise & Svg input referred Noise

Vds=3V versus inversion coefficient IC for a short channel and a long channel device (lower curves) measurements: black crosses, HiSIM_HV: red lines, BSIM3v3: dark lines

tems AG. Material may not be reproduced without written approval noncommercial educational purposes. ©2011 · austriamicrosystems AG. austriamicrosystems and may only be used for All rights reserved

24

HV transistor performance constraints between RON and lifetime **AGING MODELING**

Transistor Aging Effects and Reliability Constraints

Hot Carrier induced stress (HCS) for analog operation:

- -Transistors are stressed at VDSmax and VGS=Vt+Voverdrive.
- -Vt, IDSAT, IDIin and GMmax are used as degradation parameters.
- -The maximum allowed shift e.g. 10% for analog applications within extrapolated target lifetime (10 years with Duty Factor of 100).

Biased temperature high gate stress (BTS-VGS):

- –PMOS transistors are stressed at high temperature (e.g. T=125 $^{\circ}\,$ C) and maximum Gate voltage.
- -The shift in threshold voltage (BMi) is used as degradation parameter for this effect.
- -The maximum allowed shift e.g. 10% for analog applications within extrapolated target lifetime (10 years with Duty Factor of 100).

Aging Simulation

austriamicrosystems

a leap ahead in analog

Aging Modeling

HC:

The *de facto* modeling method to analyze CHC is based on substrate current Isub,

NBTI: Generation of interface traps at Si/SiO2 interface Vt degradation → partial recovery

HC and NBTI Modeling with Reaction Diffusion and hole trapping/detrapping mechanism :

```
\rightarrow \Delta VT, \Delta U0, \Delta RON = f(N_{it})
\rightarrow = f(isub, ids)
```


austriamicrosystems

a leap ahead in analog

R–D mechanism. (a) NBTI: 1-D hydrogen species diffusion

Compact Modeling and Simulation of Circuit Reliability for 65-nm CMOS. Technology: Wenping Wang IEEE TRANSACTIONS ON DEVICE AND MATERIALS RELIABILITY, VOL. 7, NO. 4, DECEMBER 2007

Material may

commercial educational pur

of austria

Allrin

HC Stress 150s @ 4.7V

IDsat shift %

Operating point definition:

VD=VDmax, VG=VGmax

IDIin shift % Operating point definition: VD=0.1V, VG=VGmax

austriamicrosystems

M

Nanoelectronic devices, circuits and systems

MOdeling and DEsign of Reliable, process variation-aware

a leap ahead in analog

ERN

reproduced without written approv

WC Reliability Model

- Investigation:
 - WC models v. reliability effects
- Consideration of output characterisitc shows:
 - Saturation region •
 - ID variation covered also for stressed device
 - Linear region •
 - Change in the resistive behavior
 - abs value of ID below WC emphasis _

 \rightarrow Additional reliability modeling necessary

WC Reliability Model

- Result:
 - Perfect curve fit due to the included PV method
 - Triode region shows also perfect fit after introduction of series resistance •
 - Length dependency taken into account by voltage divider behavior ٠
 - \rightarrow This method is reliable
- \rightarrow provides fast simulation opportunity (W) spl Introduced Sub-circuit New Aging WC Model Set RD Including PV and HC $R_{(t=x)} = R_{(t=0)} + R_{D(t=x)}$ Qø 0.5 1 1.5 2 2.5 3 3. 5 . Vds (V)

Nanoelectronic devices, circuits and systems

a leap ahead in analog

High Performance Analog Variability of analog parameter gm/ID; gds; 1/f noise Mismatch of active and passive devices **PROCESS VARIABILITY**

1/f Noise Process Variability

1/f noise variability
Variability increase with smaller ID
Variability increase with smaller L
→ Lorentzian Noise

\rightarrow Covered with WC models

100000

tems AG. Material may not be reproduced without written approval noncommercial educational purposes. ©2011 · austriamicrosystems AG. iamicrosystems All rights reserved austr

GDS MAP Implementation (1430 Data) v. WC Model

NMOS VGS=0.8V

NMOS VTH + 250mV

PMOS VGS=0.9V

PMOS VTH + 250mV

austriamicrosystems austriamicrosystems

a leap ahead in analog

H18 GDS BSIM3v3 W/L= 10/2.0 (alpha3 version)

tems AG. Material may not be reproduced without written appr noncommercial educational purposes. ©2011 · austriamicrosystems AG austriamicrosystems and may only be used for All rights reserved. Ъ

GDS with PSP and HiSIM2

PSP Standard Gds Modeling W/L=10/2

HiSIM2 W/L=10/1.2

Analog modeling requirements for HV CMOS technology:

Analog design relies on Careful modeling of HV transistor Additionally PV for Small signal parameter, parasitic modeling, 1/f noise Need for aging modelling

austriamicrosystems

a leap ahead in analog