

COMON European project.

MUGFET modeling in cooperation with:

• University of Strasbourg (France)

Prof. Christophe Lallement, Dr. Fabien Pregaldini, Nicolas Chevillon (PhD student)

University of Tarragona (Spain)
Prof. Benjamin Iniguez

Why using more than one gate in field effect transistors ?

- Better control of 'electrostatics' in the channel.
- Less '2D' induced drain effects, i.e. less short channel effects.
- If undoped silicon, improved mobility with 'no' random dopant fluctuations.
- No substrate voltage dependent depletion , i.e. ideal subthrehold slope (60 mV/dec)

Different architectures:

The FinFET

The double gate MOSFET
Independent gates offer two options:
Symmetric operation
Asymetric operation

Silicon channel

Two principles of operation for MUGFETs:

- Inversion mode operation:
 - Almost undoped silicon
 - Junctions are created for source and drain
 - The current flows mainly at Si/SiO₂ interfaces
- Depletion-Accumulation operation:
 - Highly doped silicon
 - No source and drain junctions (junction less devices)
 - The current flows in the volume, and not at the interfaces.

Compact modeling of multigate MOSFETs: the undoped DG MOSFET

The symmetric junction based DG MOSFET model.

- Charge based model (not V_T based)
- Charge conservation ensured
- Q-V and I-V analytical relations
- Explicit Q-V dependences
- Short channel effects and QM corrections included
- Complete CV quasi static model

Compact modeling of multigate MOSFETs: the undoped DG MOSFET

Core of the generic charge based model:

Normalization: charge: $q = \frac{Q}{4C_{ox}U_T}$ W_{Si} voltage: $v = \frac{V}{U_T}$, current: $i = \frac{I_D}{I_{SP}}$ with U_T the thermodynamic voltage and I_{SP} the specific current

Normalized charge-potentials relationship:

 $v_g - v_{to} - v_{ch} = 4 \cdot q_g + \ln(q_g) + \ln(1 + \alpha \cdot q_g)$ with $\alpha = \frac{C_{ox}}{\varepsilon_{Si}/W_{Si}}$

$$\implies q_g = f(v_g - v_{to} - v_{ch})$$

Normalized drain current:

$$i = -q_m^2 + 2 \cdot q_m + \frac{2}{\alpha} \cdot \ln\left(1 - \frac{\alpha}{2} \cdot q_m\right) \Big|_{q_{mS}}^{q_{mD}} \text{ with } q_m = -2 \cdot q_g$$

Compact modeling of multigate MOSFETs: quantum confinement effects

Principle of the quantum mechanical corrections

Quantum shift of the fundamental energy level: 2 contributions

Compact modeling of multigate MOSFETs: quantum confinement effects

These quantum corrections are included analytically:

New charge-potentials relationship:

$$v_{gN}^{QM} - v_{to} - v_{ch} = 4 \cdot q_g + \ln q_g + \ln(1 + \alpha \cdot q_g) + \left[A^{QM} \cdot q_m^{2/3}\right]$$

Normalized drain current expression:
$$i = -q_m^2 + 2 \cdot q_m + \frac{2}{\alpha} \cdot \ln\left(1 - \frac{\alpha}{2} \cdot q_m\right) + \left[\frac{2}{5} \cdot A^{QM} \cdot q_m^{5/3}\right]_{qms}^{qmD}$$

No empirical parameter is needed

'only ' and additionnal term in the drain current expression

Compact modeling of multigate MOSFETs: Doped DG MOSFETs

The doped DG MOSFET and the equivalent-thickness concept

Energy diagram of an P type doped Si channel

Including the doping N_a in the Poisson's equation,

$$\frac{d^2\psi}{dx^2} = \frac{q}{\varepsilon_{Si}} \cdot \left(n_i \cdot e^{\frac{\psi-V}{U_T}} + N_a \right)$$

.... but then, no analytical solution can
be found ...

Compact modeling of multigate MOSFETs: Doped DG MOSFETs

...but if we define an equivalent thickness, which is doping dependent, we can still used the undoped core model

$$\frac{1}{\frac{T_{\rm eq}}{2}} = \frac{1}{\int\limits_{-T_{\rm Si}/2}^{0} e^{\frac{X}{T_{\rm Si} \cdot \varepsilon_{\rm Si} \cdot U_T} \cdot x^2} dx} + \frac{X}{\varepsilon_{\rm Si} \cdot U_T}$$

with
$$X = \frac{q \cdot N_a \cdot T_{Si}}{2}$$

(PA

6 10-2

5 10⁻²

4 10⁻²

3 10-2

2 10-2

1 10-2

0

2

Equivalent thickness

Compact modeling of multigate MOSFETs: Arbitrary undoped multigate MOSFET geometries

<u>Principle of</u> multigate MOSFETs 'planarization'

Compact modeling of multigate MOSFETs: Arbitrary undoped multigate MOSFET geometries

Generalization of geometrical parameters: Model vs Measuremement on a long channel TG FET (Intel data)

Looks like a JFET in which junctions have been replaced by oxide layers and gate electrodes

Compact modeling of multigate MOSFETs: The junction less DG MOSFET

The 'junction' DG MOSFET solution is no longer valid . A new approach/model is needed.

If the device operates in depletion, we obtain:

$$V_{G} - V - \Delta \phi - U_{T} \cdot \ln\left(\frac{N_{D}}{n_{i}}\right)^{dep} \approx -\frac{Q_{SC}^{2}}{8 \cdot q \cdot N_{D} \cdot \varepsilon_{S}} - \frac{Q_{SC}}{2 \cdot C_{ox}} + U_{T} \cdot \ln\left(1 - \left(\frac{Q_{SC}}{q \cdot N_{D} \cdot T_{sc}}\right)^{2}\right)$$

If the device operates in accumulation, we obtain:

$$V_G - V - \Delta \phi - U_T \cdot \ln \left(\frac{N_D}{n_i}\right)^{acc} \approx \frac{-Q_{SC}}{2 \cdot C_{ox}} + U_T \cdot \ln \left(1 + \frac{Q_{SC}^2}{8 \cdot q \cdot N_D \cdot \varepsilon_{Si} \cdot U_T}\right)$$

The current can then be calculated for both regimes

... but it may also happen that *part of the channel is in 'depletion', and part is in 'accumulation'*: **the hybrid channel case.**

Compact modeling of multigate MOSFETs: The junction less DG MOSFET

1.5 10⁻¹ **10**⁻¹ $N_{\rm p}$ (cm⁻³): 10¹⁷, 10¹⁹, 2 10¹⁹ Mobile charge density/abs. val. C/m²) Mobile charge density (abs. val. C/m^2) $T_{si} = 20 \text{ nm}$ Depletion Accumulation **10**⁻² <u>1 10⁻¹</u> **10**⁻³ ... looks like In this region, 104 'junction based' 0.543V the mobile DG models . charge ~ $V_G^{0.5}$ **10**⁻⁵ 5 10⁻² 0.525V **10**⁻⁶ Cannot be **10**⁻⁷ predicted by 0 0.4V 'junction based' **10**⁻⁸ -2 -1 2 -3 0 1 DG models . V_{G} - $\Delta \Phi$ (V)

Compact modeling of multigate MOSFETs: The junction less DG MOSFET

Current -voltage characteristics of highly doped DG JL FET versus TCAD simulations.

Continuity is ensured in all regions of operation.

Compact modeling of multigate MOSFETs: The VESFET

Current research on 'VESFET' technology.

Fabrication and Modeling asymmetric operation in junction less devices with independent gates.

