BSIM-IMG: Surface Potential based UTBSOI MOSFET Model

Principle Investigators: Prof. Chenming Hu and Prof. Ali Niknejad

Students:, Muhammed A. Karim, Darsen Lu, Yogesh Chauhan, <u>Sriramkumar V.</u>, Angada Sachid

UC Berkeley

Dec. 15, 2011

The Nano-Tera Workshop on the Next Generation MOSFET Compact Models, EPFL, Switzerland.

SPICE Transistor Modeling for Circuit Simulation

- Simulation Time
 - ~ 10µs per DC data point
 - No complex numerical method allowed
- Accuracy requirements
 - ~ 1% RMS Error after fitting

- Excellent Convergence
- Example: BSIM4
 - 25,000 lines of C code
 - 200+ parameters
 - Open-source software implemented in all EDA tools

BSIM Family of Compact Device Models

Versatile Multi-Gate Compact Model: BSIM-MG

Thin-body SOI Devices

UTBSOI Y. Choi et al. EDL 2000 (UC Berkeley)

ETSOI

K. Cheng et al. IEDM 2009 (IBM)

UT2B

F. Andrieu et al. VLSI 2010 (CEA-LETI)

O Liu

Q. Liu et al. VLSI 2011 (ST)

Wafer Uniformity (SOITEC):

F. Andrieu et al., VLSI 2010

Executive Summary/ Outline : BSIM-IMG

- Production Ready Compact Model for FDSOI
- Physical Core Model
- Palette of Real Device Effects
 - Validated to Hardware Silicon Data
- Synchronized with EDA Vendors Tools

Outline

Introduction

- Core Model
 - Surface Potential Equation
 - Drain Current
 - Capacitance Model
- Real Device Effects
- Model Validation & QA
- Future Research
- Conclusion

Independent-gate Device Structure: BSIM-IMG

Multi-V_{th} technology

Computationally Efficient Core

Computational Time (µs)

Efficient Non-iterative Surface Potential calculation

Investigated NR, Shooting Secant etc.

 Surface potential needs to solved at least twice -Source and Drain side

• Obtain ψ_s / Q_{is} and ψ_d / Q_{id}

D. Lu et al., SSE 2011

Surface Potential Derivation

 Quasi-Fermi level at the source is taken as a reference for the potential (ψ).

$$\psi = -\frac{E_c - E_f(source)}{q}$$

Start from the Poisson's equation

$$\varepsilon_{si} \frac{d^2 \psi(x, y)}{dx^2} = q N_c \exp\left(\frac{q(\psi(x, y) - V_{ch}(y))}{kT}\right)$$

• The continuity of displacement field at the front and back interfaces gives the following relation of the surface electric fields $(E_{s1} = -\frac{d\psi}{dx}\Big|_{x=-Tsi/2}$ and $E_{s2} = -\frac{d\psi}{dx}\Big|_{x=Tsi/2}$) and surface potentials:

$$C_{ox1(2)}(V_{fg(bg)} - \Delta \Phi_{1(2)} - \psi_{s1(2)}) = \varepsilon_{si} E_{s1(2)}$$

Surface Potential Derivation (Contd.)

 Multiplying both sides of Poisson's Eq. by dw/dx and integrating yields

$$E_{s1}^{2} - E_{s2}^{2} = \frac{2qN_{c}V_{th}}{\varepsilon_{si}} \left\{ \exp\left(\frac{\psi_{s1} - V_{ch}}{V_{th}}\right) - \exp\left(\frac{\psi_{s2} - V_{ch}}{V_{th}}\right) \right\}$$

Replacing E_{s1} with ψ_{s1}

$$\left(\frac{C_{ox1}(V_{fg} - \Delta\Phi_1 - \psi_{s1})}{\varepsilon_{si}}\right)^2 - E_{s2}^2 = \frac{2N_ckT}{\varepsilon_{si}}\exp\left(\frac{q(\psi_{s1} - V_{ch})}{kT}\right)$$

E_{s2} approximation

$$E_{s2} = \frac{(V_{fg} - \Delta \Phi_1) - (V_{bg} - \Delta \Phi_2)}{\frac{\varepsilon_{si}}{\varepsilon_{ox}}(T_{ox1} + T_{ox2}) + T_{si}}$$

 Using perturbation to improve accuracy at strong inversion

$$E_{s2}' = \frac{\psi_{s1}^{(1)} - (V_{bg} - \Delta \Phi_2)}{\frac{e_{si}}{e_{ox}} T_{ox2} + T_{si}}$$

Relating ψ_{s2} with ψ_{s1}

Surface Potential: Verification with TCAD

Volume Inversion

- Preserves Important Property like Volume Inversion
 In sub-threshold (Low field), the charge density Q is
 - In sub-threshold (Low field), the charge density Q_i is proportional to the body thickness T_{si}

Drain Current Model

Drain Current

No Charge-sheet Approximation

 Q_{inv} : inversion carrier density E_{s2} : back-side electric field ψ_{s1} : front-side surface potential

Very high accuracy

Capacitance Model

- Model inherently exhibits symmetry
 - $C_{ij} = C_{ji} @ V_{ds} = 0 V$

Model overlies TCAD results

No tuning parameters used

Symbols: TCAD Results; Lines: Model

UC Berkeley - 16

 $T_{oxf} = 1.2nm, T_{oxb} = 20nm,$

Outline

- Introduction
- Core Model
 - Surface Potential Equation
 - Drain Current
 - Capacitance Model

Real Device Effects

- Model Validation & QA
- Future Research
- Conclusion

Short Channel Effects

Doping Dependence

Threshold voltage shift as function of doping is captured

Length Dependent y Model

QM Effect: Inv. Charge Centroid Model

Self Heating Model

Thermal Node: R_{th}/C_{th} methodology

 Relies on Accurate physical modeling of Temperature Effects in the model

$$R_{th} = \frac{RTH0}{WTH0 + W_{eff}}$$
$$C_{th} = CTH0 \cdot (WTH0 + W_{eff})$$

Real Device Effects

Outline

- Introduction
- Core Model
 - Surface Potential Equation
 - Drain Current
 - Capacitance Model
- Real Device Effects
- Model Validation & QA
- Future Research
- Conclusion

Validation to Hardware Data

Device from CEA-LETI

 T_{box}=145nm EOT=1.6nm T_{si}= 8nm W=0.5um x 50 L = 50nm N_a=1e15 Φ_{g2} = 5.0 Φ_{g1} = 4.55 (fitted)
 V_{bg} = floating, 10V, 15V, 20V, 25V

Validation Contd.

Extraction Results : I_d-V_{fg} and G_m-V_{fg} with varying V_{bg}

Extraction Results : $I_d - V_{ds}$ and $G_{ds} - V_{ds}$ with varying V_{bq}

Global Parameter Extraction for ETSOI

Calibration of the model

- Through internship at IBM T.J. Watson
 - Work by Darsen Lu
- Global Extraction performed for NMOS & PMOS at L=24nm 66nm
- Excellent agreement for I-V across all gate lengths
- C-V extracted and fine-tuned to match ring oscillator delay v.s. V_{dd}

Gummel Symmetry Test

Drain Current Symmetry V_{fg}=0.2 0.02 $d^{3}I_{x} / dV_{x}^{3} (A / V_{x}^{3})$ +Vfg 0.00 FG V_{fg}=0.4 -0.02 S D V_{fa}=0.6 BG -0.04 V_{fg}=0.8 -Vx Vx V____=0 -0.06 Vbg -0.05 0.00 0.05 0 10 0.10 **Analog /RF Ready** Vx(V)

AC (charge) Symmetry

Convergence Tests

Excellent Convergence Properties
Ex: 17-stage ring oscillator

Various Back-Gate Potential Conditions

Speed Tests

Circuit	# MOSFETs	Model	Runtime per iteration per transistor (µs)
1-Transistor Id-Vds	1	BSIM4 IMG	40.7 29.1
17-Stage Ring	34	BSIM4 IMG	31.3 18.8
Coupled Rings	2020	BSIM4 IMG	41.0 22.6

Speed of BSIM-IMG v101 and BSIM v4.5 compared

- Both model compiled with the in-built Verilog-A compiler of HSpice
- Note: Each model uses its own default parameter.
 Parameters are not extracted for a real technology.
- GIDL, I_g, Self-heating turned off.

Averaged over 5 runs on a Linux box with a single-core AMD Opteron Processor (2.39GHz)

Outline

- Introduction
- Core Model
 - Surface Potential Equation
 - Drain Current
 - Capacitance Model
- Real Device Effects
- Model Validation & QA
- Future Research
- Conclusion

Application Example: FinFET SRAM with Backgate Dynamic Feedback

Darsen Lu - 34

BSIM-IMG Simulation of FinFET SRAM

- FinFET-based SRAM cells are simulated using BSIM-CMG and BSIM-IMG.
- Back-gate dynamic feedback enhances the read margin from 150mV to 212mV.
- Back-channel inversion required to simulate write margin.

PD Number of Fingers

On-going research

- With a high back-gate bias, the double-gate SOI can enter depletion mode
 - Much higher leakage
 - But higher speed !

Symbols: TCAD

Lines: **New BSIM-IMG** with a novel iterative technique to compute the surface potential

Lg=10um Tox=1nm, Tsi=8nm, Tbox=20nm FG: midgap WF; BG: P+ WF

Where Are We!

Introduction

- Core Model
 - Surface Potential Equation
 - Drain Current
 - Capacitance Model
- Real Device Effects
- Model Validation & QA
- Future Research
- Conclusion

Technology Transfer

- Release of BSIM-IMG 101 (April 2011)
 - Available in EDA tools: SimuCAD, ProPlus, Accelicon
 - Implementation In Progress @ Cadence, Synopsys
 - Package Ready for Technology Evaluation and Design under NDA
 - Verilog-A code and Well-documented Technical Manual
 - Provide some support and Commitment to improve the model

Summary

- BSIM-IMG is a Turnkey , Production Ready model
 - Is submitted to the CMC for standardization
- Physical, Scalable Core Model for FDSOI devices
- Plethora of Real Device Effects modeled
- Advanced Device Effects Quantum, Back-gate bias
- Validated on Hardware Data from two FDSOI/ UTBSOI technologies
- Available in major EDA tools

Publications & Useful References

- 2005 M. V. Dunga, C.-H. Lin, A. M. Niknejad and C. Hu, "BSIM-MG: A Compact Model for Multi-Gate Transistors," a chapter in FinFET and Other Multi-Gate Transistors edited by J. P. Colinge.
- 2007 D. D. Lu, M. V. Dunga, C-H. Lin, A. M. Niknejad and C. Hu, " A Multi-Gate MOSFET Compact Model Featuring Independent-Gate Operation", IEDM, December 2007
- 2010 D. D. Lu, C-H. Lin, A. M. Niknejad and C. Hu, "Multi-Gate MOSFET Compact Model BSIM-MG", a chapter in Compact Modeling Principles, Techniques and Applications, Springer 2010
- 2011 D. D. Lu, M. V. Dunga, C-H. Lin, A. M. Niknejad and C. Hu, " A Computationally Efficient Compact Model for fully-depleted SOI MOSFETs with independently-controlled front- and back-gates", Solid State Electronics, vol. 62, no. 1, pp. 31--39, Aug 2011

Acknowledgement

Funding

- SRC Task 2055
- Grant from SOITEC
- Data

- LETI-SOITEC
- IBM
- Feedback
 - EDA Vendors and Users

