Compact Modeling of Ultra Deep Submicron CMOS Devices

Wladyslaw Grabinski*, Matthias Bucher, Jean-Michel Sallese, François Krummenacher

Swiss Federal Institute of Technology (EPFL), Electronics Laboratory, CH-1015 Lausanne, Switzerland *Motorola, Modeling and Characterization Lab, CH-1218 Le Grand Saconnex, Switzerland

- Trends of the MOSFET Devices Scaling
- Challenges of the Compact Modeling
- The EPFL EKV v2.6 Model
 - Model Formulation
 - Recent Developments
 - □ Analog and RF Application of the EKV v2.6 Model

Trends of the MOSFET Devices Scaling

- Predictable Moor's Law
 - Technology Limitations
 - Physical Limitations

State-of-art CMOS Technology

	CL015LV	CL015H	CL015LP
Core Voltage	1.2 V	1.5 V	1.5 V
Gate Dielectric - Core- IO, Analog Option	Dual 20 Å 70/50 Å	Dual 27 Å 70 Å	Dual 27 Å 70 Å
Physical Gate	0.12 m	0.14 m	0.13 m
Contacted Metal Pitch		M1: 0.39- m M2-6: 0.48- m M7: 0.90- m	
IOFF Spec. (worst case)	< 1 nA/ m	< 1 nA/ m	< 0.005 nA/ m
Well Formation		Super-steep retrograde	
Isolation		Shallow trench isolation	
Salicide		CoSi ₂	
Metal		AlCu or Cu, up to 7 layers	
Intermetal Dielectric		Low-K	
Via Fill		Tungsten or copper, with CMP	
Lithography		Deep UV, with phase shifting mask	

■ TSMC Delivers Foundry's First 0.15 um Technology

©WG

Compact Modeling of Ultra Deep Submicron CMOS Devices

OCT.Y2K

Development of the Compact Models

Number of DC model parameters vs. the year of the introduction of the model

□ Significant growth of the parameter number that includes geometry (W/L) scaling □ Most recent versions of the BSIM, EKV, MM and PCIM models are included

Compact Modeling Approaches

■ Regional Approach:

□ Easy to implement short-channel effects (but empirically),

□ Simple implementation into simulation tools = fast execution

□ Models are in **public domain**

- Discontinuous and ignores quantum effects
- □ Introduce Binning to improve scaliability
- □ Large number of parameters

■ Surface Potential Based Approach:

□ Most accurate,

- □ Needs iterative solution (no analytical solution),
- □ Complex implementation and slow execution time

■ Hybrid Approach:

- □ Combines advantages of both presented approaches
- □ Good fitting demonstrated for 0.1um CMOS devices

©WG

Compact Modeling of Ultra Deep Submicron CMOS Devices

OCT.Y2K

Public-domain model evolution: EKV

■ Introduction of EKV model versions:

1994:	v2.0, first fully continuous model (12 parameters):
	continuous: weak/strong inversion, conduction/saturation
	symmetric forward/reverse operation: bulk reference
	drain current, capacitances, thermal noise, 1/f noise, NQS model mobility, velocity saturation, CLM, short-, narrow-channel effects
1995:	v2.3 (16 parameters):
	improved short-channel effects and RSCE, added substrate current
1996:	new QS charge-conservative model
1997:	v2.6, applicable to deep sub- μm (0.18 μm) (18 parameters):
	coherent charge-based modeling of: static, QS, NQS and noise
	includes matching (statistical circuit simulation)
1999:	v2.6, new analytical NQS and polydepletion models
2000:	v3.0, has been announced

EKV v2.6 MOSFET Model

©١	VG
----	----

Compact Modeling of Ultra Deep Submicron CMOS Devices

OCT.Y2K

Charge-based Static Model

- Bulk-reference, symmetric model structure.
- Drain current expression including drift and diffusion:

$$I_D = \beta \int_{V_S}^{V_D} \left(\frac{-Q'_I}{C'_{ox}}\right) \cdot dV_{ch} = \beta \cdot \int_{V_S}^{\infty} \left(\frac{-Q'_I}{C'_{ox}}\right) \cdot dV_{ch} - \beta \cdot \int_{V_D}^{\infty} \left(\frac{-Q'_I}{C'_{ox}}\right) \cdot dV_{ch} = I_F - I_R \tag{1}$$

where:
$$\beta = \mu \cdot C_{ox} \cdot \frac{W_{eff}}{L_{eff}}$$

Drain Current Normalization and Pinch-off Voltage

• Current normalization using the **Specific current** I_S :

$$I_{D} = I_{F} - I_{R} = I_{S} \cdot (i_{f} - i_{r}) = 2n\beta U_{T}^{2} \cdot (i_{f} - i_{r})$$
(2)

■ Pinch-off voltage V_p accounts for...

 \Box threshold voltage V_{TO} and substrate effect $\gamma = (\sqrt{2q\epsilon_s N_{sub}})/C'_{ox}$

$$P = V_G - V_{TO} - \gamma \cdot \left[\sqrt{V_G - V_{TO} + \left(\sqrt{\Psi_0} + \frac{\gamma}{2}\right)^2} - \left(\sqrt{\Psi_0} + \frac{\gamma}{2}\right)\right]$$
(3)

■ Slope factor *n*:

$$n = \left[\frac{\partial V_P}{\partial V_G}\right]^{-1} = 1 + \frac{\gamma}{2\sqrt{\Psi_0 + V_P}} \tag{4}$$

©WG

Compact Modeling of Ultra Deep Submicron CMOS Devices

OCT.Y2K

Pinch-off Voltage Characteristic

■ Pinch-off voltage measurement at constant current (I_S/2)

□ Gate voltage V_G is swept and $V_P = V_S$ is measured at the source for a transistor biased in moderate inversion and saturation

EKV v2.6 Model Structure

■ Coherent model for static, dynamic and noise aspects.

physical model basis leads to accurate description of transconductance-to-current ratio at all current levels

© WG

Compact Modeling of Ultra Deep Submicron CMOS Devices

OCT.Y2K

Transconductance to Current Ratio

- Normalized transconductance-to-current ratio $g_{ms} \cdot U_T / I_D$
 - vs. normalized current $_D/I_S$ from weak thru moderate to strong inversion.
- Measurement and simulation comparisons show that g_{ms}/I_D ratio is technology independent.

Mobility Model

Influence of KP and E0, respectively, on the transfer characteristic (low $V_{\text{DS}})$

■ Field- and position-dependent mobility:

$$\mu(x) = \frac{\mu_0'}{1 + \frac{E_{eff}(x)}{E 0}} \qquad \text{where:} \quad E_{eff}(x) = \frac{Q'_B(x) + \eta \cdot Q'_{inv}(x)}{\varepsilon_0 \varepsilon_{si}} \tag{5}$$

■ One parameter: E0 vertical critical field in the oxide

□ No back-bias dependence needed due to inclusion of bulk charge

© WG

Compact Modeling of Ultra Deep Submicron CMOS Devices

OCT.Y2K

Reverse Short Channel Effect (RSCE)

0.25um CMOS example

- Defect enhanced diffusion during fabrication leads to RSCE
- RSCE is modeled as a change in the threshold voltage depending on L_{eff}
- Two model parameters Q0 and LK

Velocity Saturation

A high lateral electric field in the channel causes the carrier velocity to saturate and limits the drain current.

■ Parameter UCRIT accounts for this effect.

CE+03

10⁻⁶

[E+Ø]

VE

Influence of LAMBDA on the output characteristics

- The relative channel length reduction depends on the pinch-off point in the MOSFET channel near drain end.
- Depletion length coefficient (LAMBDA) models CLM effect.

Impact Ionization Current

Influence of IBA and IBB, respectively, on the substrate current

The substrate current is treated as a component of the total extrinsic current:

$$I_D = I_{DS} + I_{DB}$$

Substrate current affects the total extrinsic conductances, in particular drain conductance (g_{DS}) .

©WG	Compact Modeling of Ultra Deep Submicron CMOS Devices	OCT.Y2K

(Trans-)Capacitances Model

Transcapacitances: derivation with respect to the terminal voltage:

$$C_{MN} = \pm \frac{\partial}{\partial V_N} (Q_M) \qquad M, N = G, D, S, B \tag{6}$$

- □ Accurate capacitances through all inversion levels.
- □ Symmetric C_{GS} and C_{GD} at $V_D = V_S = 0$.

Polydepletion modeling

Strengths of new polydepletion model:

consistent effect from weak to strong inversion, conduction/saturation

- \Box one single extra parameter: N_{POLY}
- \Box polydepletion only affects threshold voltage V_{TO} , pinch-off voltage V_P and slope factor n

©WG

Compact Modeling of Ultra Deep Submicron CMOS Devices

OCT.Y2K

Polydepletion modeling

comparison with 2D simulation with and without polydepletion

- □ no fitting parameters: same parameters used as for CV
- □ coherent with all other aspects of charge based model (IV, CV, thermal noise)

Vertical field dependent mobility modeling

- Deep sub- μm CMOS uses higher $N_{sub} \rightarrow lower \mu_{\perp}$
- Mobility μ_{\perp} depends on $Q_{B'}$, $Q_{i'}$ (bias), N_{sub} , T
- The scattering-limited mobility depends on,
 - \Box Coulomb-scattering (low field) [significant in ~ 0.15µm CMOS even at room T]
 - □ phonon-scattering (intermediate field)
 - □ surface-roughness scattering (high field)
- Problem:
 - difficult to address all dependencies together with few parameters
 - □ mobility effects are position-dependent!
- Idea: use the charges model for modeling mobility

□ model should have built-in temperature behaviour

©WG

Compact Modeling of Ultra Deep Submicron CMOS Devices

OCT.Y2K

Vertical field dependent mobility modeling

$$\frac{1}{\mu_{\perp}} = \frac{1}{\mu_C} + \frac{1}{\mu_{PH}} + \frac{1}{\mu_{SR}}$$

$$\mu_{C} \propto N_{sub} \cdot \left[1 + \zeta \cdot Q'_{i}\right]^{2}$$
$$\mu_{PH} \propto E_{eff}^{-0.2}$$
$$\mu_{SR} \propto E_{eff}^{-2}$$
$$E_{eff} = \left|Q'_{B} + \eta \cdot Q'_{i}\right| / \varepsilon_{si}$$

■ Strengths of new mobility model:

- directly linked to charges model
- □ position- (and bias-) dependence accounted for by integration along channel
- □ few parameters (5, none required for bias-dependence)

Velocity saturation modeling

- Velocity saturation is the main cause of I_D reduction in short-channel MOS transistors
- NMOS and PMOS transistors have different $\mu(E_{\parallel})$ relationships

□ NMOS is much more strongly affected by velocity saturation than PMOS

$$\mu = \frac{\mu_{\perp}}{\sqrt{1 + (E_{\parallel} / E_c)^2}} \text{ (NMOS); } \mu = \frac{\mu_{\perp}}{1 + E_{\parallel} / E_c} \text{ (PMOS)}$$

- Velocity saturation modeling has many implications:
 - □ bias-dependence
 - □ scaling
 - asymptotic behaviour:

series connection of multiple devices asymptotic behaviour at $V_{DS} \rightarrow 0$

©WG

Compact Modeling of Ultra Deep Submicron CMOS Devices

OCT.Y2K

Velocity saturation modeling

■ Strengths of new velocity saturation model:

- □ charge-based, from strong to weak inversion
- correct multiple series devices behaviour
- □ improved scaling
- \Box correct asymptotic behaviour at $V_{DS} \rightarrow 0$

Non-quasistatic (NQS) AC modeling

- New physics-based NQS model
- Exact analytical solutions for complex transadmittances
 - □ 1st and 2nd-order approximations
 - □ «0-order» approximation: coincides with QS model!
- No additional parameters
- Normalization of different quantities:
 - □ normalized Currents, Potentials, Charges
 - □ normalized Coordinates, Time, Frequency

Compact Modeling of Ultra Deep Submicron CMOS Devices

OCT.Y2K

Non-quasistatic (NQS) AC modeling

Strengths of new NQS model:

- □ valid from strong through moderate to weak inversion
- □ simple analytical expressions for (complex) transadmittances
- □ entirely consistent with polydepletion, mobility model, etc.
- □ easy to implement in circuit simulators (access to complex admittances matrix)

■ 18 Intrinsic Model Parameters

Purpose	NAME	DESCRIPTION	UNITS	EXAMPLE
Process	COX	gate oxide capacitance per unit area	F/m^2	3.45E-3
	XJ	junction depth	m	0.15E-6
parameters	DW	channel width correction	m	-0.05E-6
	DL	channel length correction	m	-0.1E-6
	VTO	long-channel threshold voltage	V	0.55
	GAMMA	body effect parameter	\sqrt{V}	0.7
Doping & Mobility related parameters	PHI	bulk Fermi potential (*2)	V	0.8
	KP	transconductance parameter	A/V^2	160E-6
	EO	vertical characteristic field for mobility reduction	V/m	80E6
	UCRIT	longitudinal critical field	V/m	4.0E6
Short- & narrow-channel effect parameters	LAMBDA	depletion length coefficient (channel length modulation)	-	0.3
	WETA	narrow-channel effect coefficient	-	0.1
	LETA	short-channel effect coefficient	-	0.3
	Q0	reverse short-channel effect peak charge density	$A \cdot s/m^2$	500E-6
	LK	reverse short-channel effect characteristic length	m	0.34E-6
	IBA	first impact ionization coefficient	1 / m	260E6
Substrate current related parameters	IBB	second impact ionization coefficient	V/m	350E6
<u> </u>	IBN	saturation voltage factor for impact ionization	-	1.0

©WG

Compact Modeling of Ultra Deep Submicron CMOS Devices

OCT.Y2K

EKV v2.6 Parameter Set (cont.)

Completed with 3 matching parameters

NAME	DESCRIPTION	UNITS	Example
AVTO	area related threshold voltage mismatch parameter	Vm	- DEV=15E-9
AKP	area related gain mismatch parameter	m	- DEV=25E-9
AGAMMA	area related body effect mismatch parameter	$\sqrt{V}m$	- DEV=10E-9

■ 4 temperature parameters

NAME	DESCRIPTION	UNITS	Example
TCV	threshold voltage temperature coefficient	V/K	1.0E-3
BEX	mobility temperature exponent	-	-1.5
UCEX	longitudinal critical field temperature exponent	-	0.8
IBBT	temperature coefficient for IBB	1/K	9.0E-4

■ 2 noise parameters

NAME	DESCRIPTION	UNITS	Example
KF	flicker noise coefficient	-	0
AF	flicker noise exponent	-	1

EKV v2.6 Parameter Extraction Methodology

Sequential task: parameter extraction methodology established for EKV v2.6

□ performed using an array of transistors in the W/L plane.

©WG

Compact Modeling of Ultra Deep Submicron CMOS Devices

OCT.Y2K

EKV v2.6 - 0.18um CMOS

■ Transfer characteristics IdVg and gmgVg (low drain voltage Vd)

EKV v2.6 - 0.18um CMOS

■ Output characteristics IdVd and gdsVd.

©WG

Compact Modeling of Ultra Deep Submicron CMOS Devices

OCT.Y2K

D/A Converter Circuit

RF Characterization: De-embedding

Open, Open-Short deembedding and simulation data up to 110GHz

□ nMOSFET Device: 30 x 20um/0.35um

 \Box Bias condition: V_g=1.0V, V_d=1.0V

©WG

Compact Modeling of Ultra Deep Submicron CMOS Devices

OCT.Y2K

 \Box b) supply voltage V_{supply}=2.7V

Harmonic Oscillator

■ Simulation results: MM9 vs. EKV v2.6

```
©WG
```

Compact Modeling of Ultra Deep Submicron CMOS Devices

OCT.Y2K

Summary

- EPFL EKV v2.6 MOST model is a charge-based compact model
 - □ Continuous, physics-based model valid for all bias conditions.
 - □ Includes charge-based static and dynamic models, and noise.
 - □ Uses a low number of parameters
- EPFL-EKV model enables the simulation of ultra deep submicron CMOS integrated systems, from DC to RF
 - D Experimental validation down to 0.18um CMOS
 - □ Circuit applications have been presented
- The model and related parameter extraction methodology have been developed at Electronics Labs of EPFL

□ Web resource: <http://legwww.epfl.ch/ekv>

Parameter extraction services and design support are available through Smart Silicon Systems, Lausanne

Contact: modeling@smartsilicon.ch