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The EPFL-EKV Model History 

A Long History – The Early Days 
 Finds its roots in the first models presenting weak inversion published in the 70’s 
 First charge-based approach taken by Jespers and Memelink (1977) 
 Bulk-referenced symmetrical model proposed by Châtelain, but only for strong 

inversion (1979) 
 First model continuous from weak to strong inversion by Oguey and Cserveny 

(1982), simplified later on by Vittoz for analog design purpose 
 Linearization of inversion charge versus surface potential originally proposed by 

the pioneering work of Maher and Mead (1987) 
 First EKV paper describing EKV2 by Enz, Krummenacher and Vittoz (1995) 
 First EKV charge-based formulation by Bucher (1997) 
 Similar approach by Cunha (1997) 
 Inversion charge linearization rediscovered by Gummel and Singhal (2001) 
 Rigorous derivation of inversion charge linearization of the EKV by Sallese (2003) 
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The EPFL-EKV Model History 

A Long History – The Compact Modeling Stage 
 Non-uniform doping was proposed by Lallement (1996) 
 EKV compact model 2.6 released in 1997 by M. Bucher 
 Implementation in most commercially available circuit simulator by M. Bucher 
 Extension of EKV to RF CMOS by Enz (1999) 
 Charge-based NQS model added by Sallese and Porret (2000) 
 Quantum and polydepletion effects by Lallement (2003) 
 Accurate thermal noise model developed by Roy and Enz (2005) 
 Selection of EKV3 (Bazigos and Bucher) among 4 other CM by the CMC (2005) 
 Accurate flicker noise model added by Enz (2006) 
 Publication of the book “Charge-Based MOS Transistor Modeling - The EKV Model 

for Low-Power and RF IC Design,” by Enz and Vittoz (2006) 
 Extension of EKV to ballistic/quasi-ballistic transport by Mangla (2011) 
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The EPFL-EKV Model History 

The Link between Process and Designers 

 EKV is not only a compact model but also a low-power analog-RF design 
methodology based on the inversion coefficient 

 EKV establishes the link between process and designer 
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The EPFL-EKV Model History 

Why Having Chosen a Charge-based Model? 

 Surface-potential models require extremely high accuracy on the surface 
potential solution, which is not required when solving for inversion charge instead 
of surface potential 

 Take advantage of the direct link existing between inversion charge and 
transconductances which remain the most fundamental design parameters 

 All most important device characteristics can be expressed in terms of source and 
drain inversion charges 

 Ensure charge conservation and hence avoid any voltage drift when simulating 
charge-based circuits such as SC 
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What’s Next? – UCB-EPFL Collaboration 

The UCB-BSIM and EPFL-EKV groups have agreed 
to collaborate on the long-term development and 
support of BSIM6 as an open-source MOSFET 
SPICE model for worldwide use.  
This is an exciting opportunity to leverage the long 
history and large user base of the BSIM model with 
the long experience and active role of EKV in 
furthering charge-based compact model. 
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BSIM6 – Extraction on 40nm Process with beta2 
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Weak Inversion in Nano-scale MOSFETs 

Weak Inversion in Nano-scale MOSFETs 

 Weak inversion spans over more than 5 decades of current whereas strong 
inversion hardly represents 2 decades 
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Weak Inversion in Nano-scale MOSFETs 

Weak Inversion in Nano-scale MOSFETs 

 The device performance in strong inversion is strongly limited by short-channel 
effects such as velocity saturation 
 Current becomes linear with gate voltage 
 Transconductance ultimately limited by saturated velocity 
 Current and transconductance become independent of gate length 
 Transit frequency only scales as 1 𝐿⁄  instead of 1 𝐿2⁄  

 In weak inversion the longitudinal field remains smaller than the critical field and 
hence the transistor should be less impacted by velocity saturation 
 Current remains exponential with gate voltage 
 Transconductance remains proportional to current 
 Current and transconductance continue to scale as 1 𝐿⁄  
 Transit frequency scales as 1 𝐿2⁄  taking full advantage of down-scaling 
 Current strongly affected by DIBL 
 Resulting in degraded output resistance and intrinsic gain 
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Weak Inversion in Nano-scale MOSFETs 

Current Efficiency – The Long-channel Gm / ID 

 The current efficiency is maximum in weak inversion (WI for IC<0.1) 

 It decreases like 1/ 𝐼𝐼 in strong inversion (SI for 10<IC) 
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Weak Inversion in Nano-scale MOSFETs 

Effect of Velocity Saturation (VS) on the Current in SI 

 Assuming a piecewise linear velocity-field function, the current in SI and saturation, 
neglecting the effect of mobility reduction due to the vertical field, is given by 
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Weak Inversion in Nano-scale MOSFETs 

Effect of VS on the Transconductance in SI 

 The effect of VS on the source transconductance is given by 
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 For λc >> 1, gms reduces to 1/ λc or in denormalized form 

 Gms becomes independent of the length and of the current 

 The Gm / ID becomes 

 Gm / ID decreases inversely proportional to id instead of √id 



Weak Inversion in Nano-scale MOSFETs 

Effect of VS on the Current in WI 

 Velocity saturation also affects the current in weak inversion (WI) in saturation 
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1 2
ms s

ms d
spec c

G qg i
G λ

= =
+



 The Gms/ID ratio is not affected by velocity saturation and remains equal to unity 
as for the long channel case 

1 2
sD

d
spec c

qIi
I λ

=
+





Weak Inversion in Nano-scale MOSFETs 
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Weak Inversion in Nano-scale MOSFETs 

Gm / ID Measured on 40nm Bulk CMOS Process – Long 
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Weak Inversion in Nano-scale MOSFETs 

Gm / ID Measured on 40nm Bulk CMOS Process – Short 
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Weak Inversion in Nano-scale MOSFETs 

Transit Frequency Scaling 

 Scaling of ωt is affected by short-channel effects such as velocity saturation 
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 V  D   = 1.5 V 
 G  m   =  G  m-max 
 N  f   = 40 
 W  f   = 5 µm 
 W   = 200 µm 

 Scales only as 1/Lf instead of 1/Lf
2 when velocity saturation is present 

 H. S. Momose et al., IEDM 1996. 



Weak Inversion in Nano-scale MOSFETs 

FoM of a 45 nm CMOS Process 
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Weak Inversion in Nano-scale MOSFETs 

Frequency Limitations – 65 nm Process 

 Transit frequency estimation for a n-channel transistor with standard VT 
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Weak Inversion in Nano-scale MOSFETs 

Figure-of-Merit for Low Power RF Design 

 Moderate inversion is a good trade-off for having at the same time high current 
efficiency and maximum gain at RF for a given current 
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EKV Extension to Quasi-balistic Transport 

Carrier Transport Mechanisms in MOSFETs 
 L >> λ (carrier mean-free-path) 
 Diffusive transport (drift and diffusion) 
 Collision dominated 
 Well described by conventional mobility 

theory 
 L ~ λ 
 Quasi-Ballistic transport where carriers 

encounter limited amount of scattering 
from source and drain 

 Mobility theory no longer describes 
transport 

 L < λ 
 Ballistic transport 
 Collision free 
 Controlled by carrier injection from 

source into the channel 
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EKV Extension to Quasi-balistic Transport 

Scalable Models from Ballistic to Drift-Diffusion 

 The classical approach to Ballistic modeling is quite simple 

 However, it is not seamlessly scalable 

 It cannot be directly scaled up to result in the conventional drift-diffusion model 

 Designers would need to use different models for short and long channel devices 
at the same technology node 

 It is apparent then that we need a compact model that either 
 Extends the ballistic model to include the drift-diffusion model, or 
 Extends the drift-diffusion model to include the ballistic case. 
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EKV Extension to Quasi-balistic Transport 

EKV Continuous Model 

 The classical DD EKV model has been extended to include ballistic transport 

 The electrostatic is identical to the classical EKV model 

 The ballistic behavior is added following a similar approach to Mugnaini, but with 
a simpler implementation 

 Still early work and requires additional improvement and validation 

 The characteristics of our continuous model at various channel lengths is shown, 
and the results are compared with the Ballistic (B) model and Drift-Diffusion (DD)  
model (without velocity saturation) 
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EKV Extension to Quasi-balistic Transport 

Behavior of a Continuous Model – Long Channel 

 For long-channel devices (L=200nm), the model follows the DD model 
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EKV Extension to Quasi-balistic Transport 

Behavior of a Continuous Model – Short Channel 

 For short-channel devices (L=20nm), the model operates as quasi-ballistic, it 
follows the DD model at low bias and switches to B at higher bias 
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EKV Extension to Quasi-balistic Transport 

Behavior of a Continuous Model – Very Short Channel 

 For very short devices (L=2nm), the model mostly follows the ballistic model 
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Conclusion 

 BSIM and EKV have teamed up to work on the development of the new BSIM6 
bulk MOSFET model 

 Early extraction results on 40nm process show excellent scalability and good 
behavior 

 Technology and voltage scaling pushes operating points more and more into weak 
inversion 

 Velocity saturation strongly affects the current in strong inversion and also in 
moderate inversion but not much in weak inversion 

 Current efficiency strongly degraded in strong inversion but still optimum in weak 
inversion 

 First results on scalable EKV compact model which includes quasi-ballistic 
transport look promising 
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