NanoTera Workshop on Next-Generation MOSFET Compact Models EPFL, December 15-16, 2011

Analog performance of advanced CMOS and EKV3 model

Matthias Bucher Assistant Professor Technical University of Crete (TUC) 73100 Chania, Greece bucher 'at' electronics.tuc.gr

Outline

- Motivation the need for moderate inversion design
- Evolution of CMOS device performance from planar bulk to double-gate and FinFET
- EKV3 charge-based compact model
- EKV3 high-frequency model
- Conclusions

Scaling of F_T for 180nm -> 65nm CMOS

- NMOS transistors, high V_D bias (variable)
- F_T reaches 187, 134, 101, 52 GHz, respectively
- A plateau (max. F_T) is reached
 - ✓ slightly above Moderate Inversion (MI, 0.1 < IC < 10)
 - \checkmark IC ~= 20 ... 50, depends on V_D

Scaling of normalized transconductance

- Weak Inversion (WI, IC<0.1): highest transconductance per given current
- Strong Inversion (SI, IC>10): stronger degradation due to higher fields in more advanced technology

 EKV model offers convenient estimation of large- and small-signal quantities for ideal charge-based MOSFET – not available from other modelling approaches

 DC gain is strongly degraded (@minimum length!) for scaled CMOS → problem for analog/RF design!

Outline

- Motivation the need for moderate inversion design
- Evolution of CMOS device performance from planar bulk to double-gate and FinFET
- EKV3 charge-based compact model
- EKV3 high-frequency model
- Conclusions

Double gate MOSFETs

- DG MOSFET is (one of !?!) the most promising device, because it has less geometry effects such as corner and narrow width effects
- The two gates are easy to be biased separately as they are formed in different process steps
 - symmetric or asymmetric operation possible
- Effective control of short channel effects
- Higher current drive capability and transconductance
- Ideal weak inversion slope

Double gate FET – transconductance and gain scaling

40 10000 →_L_15nm $V_{DS} = 0.5 V$ L 20nm **L_30nm** 30 1000 L_50nm —L_100nni 9m/Id(V-1) ►L_250nn **g**m∕g_d 100 $V_{DS} = 0.5 V$ 10 10 $N_A = 1 \times 10^{15} \text{cm}^{-3}$ $t_{si} = 6 nm$ L 30nm $t_{av} = 1.1 \text{ nm}$ L 50nm 0 1 1.E-11 1.E-09 1.E-05 1.E-03 I. 1. W/L 1.E-03 1.E-11 1.E-09 1.E-05

Transconductance efficiency (g_m/I_D) and intrinsic gain (g_m/g_{ds})

- For gate lengths below 50 nm, important decrease in device efficiency and voltage gain → drain/gate engineered DG MOSFETs required
- TCAD simulation

Double gate FET – capacitance and F_T scaling

Capacitance $C_{\text{GS}}\text{+}C_{\text{GD}}$ and cut-off frequency \textbf{F}_{T}

- Extremely high speed of intrinsic devices
- Parasitics need to be considered

FinFET transconductance & gain

FinFET: short-channel effects on gm/ID

Wambacq e.a., ISSCC 2008

- Better gm/gds in FinFETs compared to planar
- Higher speed in planar bulk CMOS (strained silicon)
- Higher parasitic capacitances series resistance in FinFETs

FinFET V_T & n scaling

- 80nm, n-FinFETs, measured characteristics.
- Scaling versus channel length RSCE appears
- Show severe subthreshold slope degradation @ L=80nm

FinFET Early voltage scaling

- 80nm n-FinFETs
- V_A scaling versus channel length
- FinFET Early voltage is very high V_{A,FinFET} >= 10V_{A,planar bulk} @same L
- entails high intrinsic gain vs. planar

10

10-7

10⁻⁶

Channel Length (m)

10-5

FinFET IV modelling with EKV3

- Ideal transconductance to current ratio
- "planar-like" (very low substrate doping)
- Short channel weak inversion slope remains good (L=90nm)
- similar observations as in planar bulk Si MOSFETs moderate inversion degradation of gm/ID

FinFET IV modelling with EKV3

- Short-channel output characteristics
- Velocity saturation effects, CLM, DIBL, ... needed
 - ✓ many similarities with bulk Si MOSFETs

Outline

- Motivation the need for moderate inversion design
- Evolution of CMOS device performance from planar bulk to double-gate and FinFET
- EKV3 charge-based compact model
- EKV3 high-frequency model
- Conclusions

EKV3 model overview

- Due to CMOS scaling, ICs operate more and more in moderate and weak inversion
- <u>Design methods</u> and <u>models</u> are required
 'classical' methods don't cover moderate inversion
- EKV3 is a Compact MOS Transistor Model dedicated to Analog/RF IC design
 - ✓ Developed as a successor of EKV2.6
 - ✓ Full charge-based modelling approach close to physics and design
 - ✓ Special attention to analog/RF IC design requirements
 - ✓ Covers essential effects down to 45nm CMOS
 - ✓ Scaling over Technology Width Length T Bias
 - ✓ EKV3 available for implementation to CAD vendors.

Configurations of EKV3

- Simple model only internal accounting for (S,D) series resistance
- Simple model with external series resistance
- Simple RF model with gate and substrate resistance
- Full RF model with substrate resistivity network
- Full RF & NQS (channel segmentation) model.

Bucher e.a., SSE(52), 2008

EKV3 – charge based model & extensions

- Basis of charge model development is surface potential equation & inversion charge linearization
 - ✓ Same parameters as surface potential model
 - ✓ Preserves the essence of a surface potential model.
- Extensions for CV:
 - ✓ Vertical non-uniform doping
 - ✓ Polydepletion
 - Quantum effects
- Extensions of IV:
 - Charge-based vertical field mobility
 - Charge-based velocity saturation
 - Charge-based CLM
 - ✓ Gate tunnelling

EKV3 model scaling effects

- RSCE, INWE, combined short&narrow-channel effects
- DIBL, charge-sharing
- Halo/pocket implant effects
 - ✓ including @long channel
- Bias-dependent overlap & inner fringing capacitances
- Bias-dependent series resistance
- Geometry & temperature scaling
- Parasitic effects modelling
 - ✓ Layout dependent stress
 - Edge conduction
 - ✓ Gate tunneling

✓

EKV3 model basic parameters

Parameter	NMOS	Pmos	Parameter	NMOS	Pmos	PARAMETER	NMOS	Pmos	PARAMETER	NMOS	Pmos
FLAGS & SETUP PARAMETERS			INVERSE NARROW WIDTH EFFECT			GATE CURRENT			STI STRESS EFFECT		
SIGN	1.0	-1.0	WR	103n	43n	KG	13.9u	24.4u	SAREF	1.423u	1.423u
TNOM	27.0	27.0	QWR	5.5u	306u	ХВ	5.0	4.98	SBREF	1.423u	1.423u
TG	-1.0	-1.0	NWR	5.1m	-32m	EB	42.0G	29.42G	KVTO	0.0	6.0n
QOFF	0.0	0.0	DRAIN INDUCED B	ARRIER LOV	VERING	LOVIG	24n	29.06n	KKP	-38n	32n
XL	0.0	0.0	ETAD	1.19	1.65	IMPACT IONIZATIO	N CURRENT	r	KGAMMA	0.0	0.0
xw	0.0	0.0	SIGMAD	306m	1.1	IBA	0.0	0.0	KETAD	33n	0.0
SCALE 1.0 1.0		GEOMETRICAL PARAMETERS			IBB	987MEG	445MEG	KUCRIT	-8.8	0.0	
OXIDE, SUBSTRATE & GATE DOPING			DL 25.23n 82n			IBN 110m 109m			WIDTH SCALING PARAMETERS		
VTO	91m	-132m	DW	-9n	0.0	EDGE DEVICE			WE0	45n	157n
COX	13.5m	13.1m	DLC	0.0	0.0	DGAMMAEDGE	0.0	0.0	WF1	0.0	0.0
XI	22n	11.4n	DWC	13.9n	117n	DPHIEDGE	0.0	0.0	WRIX	45n	0.0
PHIE	458m	434m	11	0.0	0.0	WEDGE	0.0	0.0	WUCRIT	-44n	138n
GAMMA	149m	23.9m	LLN	1.1	1.1	Overlap Capacitances		WLAMBDA	0.0	24n	
GAMMAG	14.7	5.9	WDL	6f	0.0	LOV	23n	26n	WETAD	0.0	-48n
NO	1.018	1.023	LDW	2.8f	0.0	GAMMAOV	4.1	3.4	WUCEX	0.0	0.0
OUANTUM EFFEC	тs		DRAIN INDUCED T	HRESHOLD	SHIFT	VFBOV	0.0	0.0	WLR	0.0	0.0
AOMA	18	570m	FPROUT	2.9MEG	9.75MEG	VOV	1.0	1.0	WOLR	0.0	-22n
AQMI	480m	372m	PDITS	57u	14u	FRINGING CAPACI	TANCE		WNLR	139n	-176n
ETAOM	738m	742m	PDITSL	0.0	0.0	KJF	0.0	0.0	WDPHIEDGE	0.0	0.0
VERTICAL FIELD MOBILITY			PDITSD	190m	780m	CJF 0.0 0.0			LENGTH SCALING PARAMETERS		
KP	1.050m	290.0u	DDITS	9.0	9.0	TEMPERATURE PA	RAMETERS		LWR	0.0	0.0
EO	130MEG	92MEG	MOBILITY SCALING	3 Paramete	RS	TCV	310u	-530u	LQWR	1.4u	0.0
E1	9.7G	8.1G	КА	380m	0.0	BEX	-1.3	-1.2	LNWR	0.0	-55n
ETA	1.0	1.21	LA	270n	2.7u	TETA	0.0	0.0	LDPHIEDGE	0.0	0.0
ZC	0.9u	0.95u	КВ	465m	0.0	UCEX	1.4	3.7	COMBINED SCALIN	IG PARAMET	ERS
THC	0.0	0.0	LB	19n	165n	TLAMBDA	223m	1.32	WLDPHIEDGE	0.0	0.0
VELOCITY SATUR	ATION & C	LM	WKP1	249n	307n	TE0EX	0.0	490m	WLDGAMMAEDGE	0.0	0.0
UCRIT	3.9MEG	16.9MEG	WKP2	605m	-272m	TE1EX	0.0	1.1			
LAMBDA	430m	1.454	WKP3	509m	1.51	IBBT	950u	730u			
DELTA	2.01	1.02	WKP3	509m	1.51	TEMPERATURE & GEOMETRY SCALING		SOURCE-DRAIN SERIES RESISTANCE			
ACLM	838m	827m	LONG & WIDE VT	O & GAMM	A	TCVL	0.0	-37p	RLX	73u	51u
CHARGE SHARIN	g Effect		LVT	1.089	1.076	TCVW	82p	31p	RSH	0.0	0.0
NCS	1.6	21	WVT	104u	104u	TCVWL	0.0	0.0	LDIF	0.0	0.0
LETA0	1.2MEG	2.78MEG	AVT	36m	158m	RESISTANCE TEMP	ERATURE S	CALING	HDIF	234n	234n
LETA	1.054	1.54	LGAM	1.098	1.45u	TR	0.0	-4.6m	GATE RESISTANCE		
LETA2	-24n	0.0	WGAM	110u	1.3	TR2	0.0	0.0	GC	1.3	1.3
WETA	0.0	0.0	AGAM	25.8m	-211m				RGSH	52	51
REVERSE SHORT CHANNEL EFFECT			MATCHING PARAMETERS			FLICKER NOISE PARAMETERS			SUBSTRATE RESISTANCE		
LR	67.8n	38.9n	AVTO	0.0	0.0	AF	1.0	1.0	RDSBSH	1.467K	10.9K
QLR	3.4m	8.2m	AGAMMA	0.0	0.0	KF	0.0	0.0	RBWSH	1.2K	1.2K
NLR	78m	7.6	AKP	0.0	0.0	EF	2.0	2.0	RSBWSH	35	56
FLR	1.1	0.0				KGNF	0.0	0.0	RDBWSH	35	56

EKV3 – long channel

EKV3 – short-channel

- Correct weak & moderate inversion behavior
 - ✓ Smoothness and correct asymptotic behavior
 - ✓ Correct weak inversion slope and DIBL modelling
- Transconductance-to-current ratio vs. drain current (log. axis)

Illustrates combination of: DIBL, CS, velocity saturation, CLM modelling @ Lgate = 70nm

EKV3 – CV characteristics of MOSFETs

- Moderate inversion in MOSFETs highly important for analog/RF IC design
- Good trade-off among gain, speed, linearity, noise, matching
- Low-medium saturation voltage, series resistance effect negligible
- Reduced impact of mobility effects (vertical field) and velocity saturation

Outline

- Motivation the need for moderate inversion design
- Evolution of CMOS device performance from planar bulk to Double-gate and FinFET
- EKV3 charge-based compact model
- EKV3 high-frequency model
- Conclusions

EKV3 scalable model for high frequency

- Non quasi-static model (NQS)
 - ✓ channel segmentation
 - ✓ consistent AC/transient
- Gate- and substrate- parasitics scale with multi-finger layout

R _G	~W _f /(L*N _F)
R_{SB}, R_{DB}	~1/W _f
R _B	~1/W _f
R _{DSB}	~L/(W _f *N _F)

Multi-finger RF MOSFETs

Source=Bulk

Bazigos e.a., Physica Status Solidi C(5), 2008

- Layout of RF multi-finger MOSFET
 - ✓ Number of fingers N_F
 - ✓ Finger Width W_f
 - ✓ Gate Length L

- Ground-Signal-Ground (GSG) RF Pads
 - ✓ 2 port configuration
- Open-Short de-embedding structures

STI stress in multi-finger RF MOSFETs

Bazigos e.a., Physica Status Solidi C(5), 2008

- NMOS, L=180nm, W_f=2µm
- Layout-dependent stress effects due to shallow-trench isolation (STI)
 - Threshold voltage dependence V_T vs. N_F
 - Max. drain current dependence I_D / N_F vs. N_F

CV

Bucher e.a., RFMiCAE(18), 2008

Long/short gate and inversion capacitance

Bucher e.a., RFMiCAE(18), 2008

- Y parameter scalability over channel length for NMOS
 - ✓ L=110 nm, 180 nm, 250 nm, 450 nm, 1 um, 2um
 - ✓ W=5 um, NF=10
 - ✓ VG=0.6V, VD=0.5V

- F_T versus IC in 110nm CMOS, EKV301.02 model
- Highest F_T is reached at IC ~10-30 (!)
- Most probable range for biasing of RF circuits for low noise is: 1 < IC < 20 (depending on technology and application)

Low frequency noise with EKV3.1

- Mavredakis e.a., WCM-NanoTech, 2010
- Bias dependence of low frequency noise covered (EKV3.1)
- Combines carrier number and mobility fluctuations
- Increase in noise in strong inversion
- Increase in noise (referred to gate) may also be observed in weak inversion

Outline

- Motivation the need for moderate inversion design
- Evolution of CMOS device performance from planar bulk to Double-gate and FinFET
- EKV3 charge-based compact model
- EKV3 high-frequency model
- Conclusions

Conclusions

- Moderate inversion design even at RF (scaling!)
- Future (today!) DG and FinFET technologies give:
 - better short-channel behaviour, higher intrinsic gain. FT may be degraded
 @same channel length
- EKV3: analog/RF IC design-oriented, charge-based, compact model
 - Native implementations in: ELDO (Mentor Graphics), Smash (Dolphin), Spectre (Cadence), Smartspice (Silvaco).
 - Parameter extraction support (GMC Suisse & AdMOS)
 - Model covers all RF aspects from DC to RF (small/large signal including NQS) and Noise.
 - ✓ Extended RF validations in 180nm, 110nm, 90nm CMOS.
 - ✓ Fully scalable with L, W, NF, bias, f, technology.
 - ✓ Simple model structure & parameter extraction.
- EKV3.1 new model release in 1st quarter 2012.

Acknowledgments

nano-tera.ch

- All EKV Team
 - Christian Enz, Jean-Michel Sallese, François Krummenacher
 - ✓ Wladek Grabinski
 - Antonios Bazigos, Maria-Anna Chalkiadaki
 - ✓ Rupendra Sharma, Nikos Mavredakis, Angelos Antonopoulos, Nikos Makris
- Contact: Prof. Matthias Bucher Director, Electronics Laboratory ECE Dept., Technical University of Crete (TUC), 73100 Chania, Crete, Greece phone: +30 28210 37210 bucher 'at' electronics.tuc.gr, <u>http://www.electronics.tuc.gr</u>

References

- A. Bazigos, M. Bucher, F. Krummenacher, J.-M. Sallese, A.-S. Roy, C. Enz, "EKV3 Compact MOSFET Model Documentation, Model Version 301.02", *Technical Report*, Technical University of Crete, June 2008.
- C. Enz, E. Vittoz, "Charge-based MOS transistor modeling", Wiley, 2006.
- M. Bucher, A. Bazigos, F. Krummenacher, J.-M. Sallese, C. Enz, "EKV3.0: An Advanced Charge Based MOS Transistor Model", in W. Grabinski, B. Nauwelaers, D. Schreurs (Eds.), *Transistor Level Modeling for Analog/RF IC Design*, pp. 67-95, Springer, 2006.
- A. Bazigos, M. Bucher, J. Assenmacher, S. Decker, W. Grabinski, Y. Papananos, "An Adjusted Constant-Current Method to Determine Saturated and Linear Mode Threshold Voltage of MOSFETs", *IEEE Trans. on Electron Devices*, Vol. 58, N° 11, pp. 3751-3758, Nov. 2011.
- N. Mavredakis, A. Antonopoulos, M. Bucher, "Bias Dependence of Low Frequency Noise in 90nm CMOS", Workshop on Compact Modeling, NSTI-Nanotech/Microtech, Vol. 2, pp. 805-808, Anaheim, California, June 21-25, 2010.
- M. Bucher, A. Bazigos, S. Yoshitomi, N. Itoh, "A scalable advanced RF IC design-oriented MOSFET model", *Int. Journal of RF and Microwave Computer Aided Engineering*, Vol. 18, N° 4, pp. 314-325, 2008.
- M. Bucher, A. Bazigos, "An efficient channel segmentation approach for a large-signal NQS MOSFET model", *Solid-State Electronics,* Vol. 52, N° 2, pp. 275-281, 2008.
- A. Bazigos, M. Bucher, P. Sakalas, M. Schroter, W. Kraus, "High-frequency compact modelling of Si-RF CMOS", *Physica Status Solidi (c)*, Vol. 5, N° 12, pp. 3681-3685, 2008.