Introduction to Reliability Simulation with EKV Device Model Benoît Mongellaz

Laboratoire IXL

ENSEIRB - Université Bordeaux 1 - UMR CNRS 5818

EKV Workshop november 4-5th, Lausanne

EKV 1

Motivation & Goal

- Introduced new activities to EKV modelling development
- Implemented Ageing/Reliability model into EKV
- Developed future experiments on advanced process to Design In Reliability
- Discussed technical needs to R&D works interfacing with industrial partners

Context

- Reliability requirements are more and more important for advanced process (CMOS, HVMOS...)
- Shrinked devices are most sensitive to stresses induce loss of performance
- Reliability prediction from process qualification
- What are the method to take into account physic failure mode on IC performances and reliability?

- IC Reliability Prediction
- Reliability Simulation Tools
- EKV Reliability Model
- R&D Works

How to predict NBTI and HCI wear-out failures effects on IC performances?

EK\

5

IC Reliability Prediction

EKV

 Included external interface to take into account EKV reliability models

- Reliability Prediction
- Reliability Simulation Tools
 - Functionalities
- EKV Reliability Model
- R&D Works

Reliability Simulation Tools

ΤοοΙ	Owner	Model	Simulator
BERT	UC Berkeley	HCIM, HCIB, TDDB, EM, ESD, SEU,TDRE	SPICE
HOTRON	Texas Instrument	HCIM, EM, MS	SPICE
PRESS	Philips/MESA	HCIM, EM, ESD	PSTAR
HCIM = Hot-Carrier injection MOS, TDDB = Time Dependent Dielectric Breakdown, EM = Electromigration,			

ESD = Electro-Static Discharge,

TDRE = Totale-Dose Radiation Effects,

= Electromigration,

SEU = Single Event Upset,

= Mechanical Stress MS

Reliability Simulation Tools

9

- Reliability Prediction
- Reliability Simulation Tools
- EKV Reliability Model
 - A Wear-Out Failure : Hot-Carrier Injection
- R&D Works

Hot-Carrier Injection

- Injection mechanism
 - CHE : Channel Hot Electron
 - DAHC : Drain Avalanche Hot Carrier
- Effects :
 - Electrical parameter shifting
 - Reduce device lifetime
 - Loss of performance
- Reliability indicators :
 - Substrate current Ib
 - Gate current Ig
 - Drain-source voltage Vds

- Reliability Prediction
- Reliability Simulation Tools
- EKV Reliability Model
 - Operational device lifetime
 - Electrical parameter shifting
- R&D Works

EKV Reliability Models

- JEDEC standard method [1]
 - I-V characterization
- Taken into account degradation criteria :
 - 100 mV threshold voltage shift
 - 10 % gm variation
 - 5 % linear or saturation current
- Used indicators to device lifetime :
 - Vds, Ib, Ig
- Extracted parameter shifting model versus ageing time

Operational Device Lifetime

- Takeda model [2]
 - drain-source voltage method

- Hu model [3]
 - substrate current method
 - gate current method

Electrical Parameter Shifting

- Evaluated device performance degradation
- Depend on the stress applied to device
- Taken into account effects of gradually changing bias condition
- The amount of degradation : stress(T)= $\frac{1}{T}\int \tau(t)dt$

Electrical Parameter Shifting

- The parameter time evolution : $P(t)=P_0(0)+\Delta P(t)$
- The parameter shifting models :
 - Power law [2] : $\Lambda P(t) = A(stress(t))^n$
 - $\Delta P(t) = B(\ln(1 + Cstress(t)))^n$ - Logarithmic law [4] :
 - Exponential law [5] :

 $\Delta P(t) = Dexp(Estress(t)^n)$

EKV 16

What are the needs?

- Use EKV 3.0 release
 - Substrate, gate currents are defined
- Do I-V and reliability experiments
 - Calibrate EKV electrical model
 - Define the degradation trend of each electrical parameter (VT0, KP, LAMBDA...) to build reliability models
- Use EKV device model is a key point thanks to a minimum set of parameters

- Reliability Prediction
- Reliability Simulation Tools
- EKV Reliability Model
- R&D Works

R&D Future Works

- Collaboration with industrial partners
- Target process : CMOS, HVMOS...
- Access to device samples and IC demonstrators
 Digital blocks and analog blocks
- Develop WLR process qualification experiments at LEG/EPFL Laboratory
- Build EKV reliability models
- Include EKV model in a reliability simulation tool

EKV⁻

10

Reference

- [1] JEDEC standard JESD-28, "A procedure for measuring N-Channel MOSFET hot carrier induced degradation at maximum substrate current", June 1995.
- [2] E. Takeda, N. Suzuki, "An Empirical Model for Device Degradation Due to Hot-Carrier Injection", IEEE Electron Device Letters, vol. EDL-4, n°4, pp. 111-113, April 1983.
- [3] C. Hu and als, "Hot-Electron Induced MOSFET Degradation Model, Monitor and Improvement", IEEE J. Of Solid-State Circuits, vol. SC-20, pp. 295-305, February 1985.
- [4] D. R. Wolters and als *« Trapping of Hot Electrons"*, Proc. 6th INFOS, 1989.
- [5] B. Marchand and als, « A New Hot Carrier Degradation law for MOSFET Lifetime Prediction", Microeleectronics Reliability, 1998, 1103-1107.

