Thermal modelling of

smart power devices

Bart Desoete AMI Semiconductor

Thermal simulation tool

- Thermal simulation tool developed in Matlab
- Analytical solution based on Green's functions
- Assumptions:
 - Adiabatic top boundary, while other boundaries at infinity
 - Rectangular power sources
- Adiabatic die edges: using method of images
- Calculation of T(x,y,z,t):
 - For any number of power sources
 - For any power function P(t)
- Advantages:
 - Faster than dedicated commercial software
 - Good accuracy
 - Flexible for designers

AM

Simulations on smart-power IC

Example: 2 DMOS drivers inside H-bridge

Power step function: 12.5 W per driver

Method of images

- Adiabatic die edges: introduce image sources
- Number of images limited by thermal diffusion boundary (grows with time)

Comparison commercial software

- Numerical simulations: MSC.Marc software
- Good agreement for small Cu thickness

AM

commercial software

developed tool

Comparison commercial software

- Numerical simulations: Flotherm software
- Good agreement up to 10 s: much longer than typical diffusion time (~ 100 ms)

Pulsed measurements validation

- Mobility decrease model: $I/I_0 = (T/T_0)^{-k}$
- Current decrease used to predict temperature increase (using high-field k-value)
- Good agreement if T₀ same as predicted by analytical model

AM

Thermal failure prediction

- Energy capability measurements:
 range of (V_{DS}, V_{GS})-values → range of (P_{fail}, t_{fail})-values
- Prediction of T_{fail} using tool:
 - Low V_{DS}: agreement with TCAD simulations
 - High V_{DS}: earlier failure explained by impact-ionisation

Acknowledgements

Acknowledgements:

P. Moens¹, E. Driessens², B. Elattari², G. Van den Bosch², R. Gillon¹, G. Groeseneken¹

¹AMI Semiconductor Belgium BVBA, Westerring 15, B-9700 Oudenaarde, Belgium ²IMEC, Kapeldreef 75, B-3001 Leuven, Belgium

 Project funding: IWT Project COMPOSE (Characterisation, Optimization and Modelling of Power Semiconductor Devices, project nr. 30042)

