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Introduction

Introduction
Noise sets the lower limit for signal amplification and detection, whereas upper 
limit is set by device non linearity
Reduction of supply voltage in deep submicron CMOS technologies reduces upper 
limit and forces noise to become smaller at the cost of a higher power consumptionlimit and forces noise to become smaller at the cost of a higher power consumption
Flicker noise largely dominates at low frequency (below the corner frequency), 
particularly for deep submicron CMOS
Thermal noise dominates at HF and is hence important for RF IC design
It is dominated by the intrinsic channel thermal noise (~80-90%)
It is therefore crucial to properly model thermal noise for RF IC design (for example 
LNA design)LNA design)
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The Long-channel Charge-based Noise Model

The Long-channel Charge-based Noise Model

1. General noise calculation in MOSFETs

2. Channel thermal noise model

3 Flicker noise3. Flicker noise
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The Long-channel Charge-based Noise Model

General MOST Noise Calculation
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Δxnoisy piece of channel
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drain noise

Noiseless channel except for a slice of channel comprised between x and x+Δx
and having a resistance ΔR
Local noise (including both thermal and flicker noise) modeled by current source 
δIn which induces a fluctuation of the drain current δInD through the 
(trans)conductance
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The Long-channel Charge-based Noise Model

Two-Transistors Approach
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Drain current fluctuation due to local noise source
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The Long-channel Charge-based Noise Model

Total Noise Drain Current PSD

PSD of drain current due to local fluctuation
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Can also use local noise voltage source instead of current source
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The Long-channel Charge-based Noise Model

Long-Channel Approximation

If mobility assumed constant, the conductance Gch is given by
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The Long-channel Charge-based Noise Model

Long-Channel Thermal Noise

The PSD of the local noise source is given by
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The PSD of the total noise at the drain is then given by

where GnD is the thermal noise conductance given by
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The thermal noise PSD and conductance at the drain is proportional to the total 
charge stored in the channel

(long-channel)

The Long-channel Charge-based Noise Model

Thermal Noise Conductance Calculation

Normalized thermal noise conductance defined by
1
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Using the charge-based drain current expression

Allows to perform the integration in the charge domain
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The Long-channel Charge-based Noise Model

Long-Channel Thermal Noise

The thermal noise at low-frequency can be modeled as a current source between 
source and drain having a PSD given by
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The Long-channel Charge-based Noise Model

Channel Thermal Noise in Weak Inversion

The total normalized inversion charge in weak inversion is given by
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T

which corresponds to full shot noise of both forward and reverse components

This result is consistent with the fact that the current in weak inversion is 
dominated by the diffusion current
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The Long-channel Charge-based Noise Model

Thermal Noise Parameter

The thermal noise parameter δnD related to the drain is defined as

dso

nD
nD G

G
≡δ sspecmsdso qGGG ⋅==

where Gdso is the channel conductance at VDS=0 which is equal to the source 
transconductance Gms

δnD tells how much the thermal noise deviates from the value it takes when it 
operates like a resistor having a conductance Gdso

δnD compares noise at a given operating point to the noise at VDS=0

Mainly useful for device modeling but useless for circuit designers
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Mainly useful for device modeling but useless for circuit designers

The noise conductance can then be expressed as a function of the source 
transconductance as

msnDnD GG ⋅= δ

The Long-channel Charge-based Noise Model

Thermal Noise Parameter

For long-channel devices, we have
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The thermal noise conductance is then given by
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The Long-channel Charge-based Noise Model

Thermal Noise Parameter
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The Long-channel Charge-based Noise Model

Thermal Noise Excess Factor

The thermal noise excess factor γnD is defined as

m
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≡γ where Gm is the gate transconductance

γnD shows how much noise is generated at the drain for a given Gm

Contrary to δnD, the noise conductance Gn and the transconductance Gm are 
evaluated at the same operating point
Since Gm→0 for VDS→0, γnD is becoming large for small VDS
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The thermal noise conductance (in saturation) is the given by
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The Long-channel Charge-based Noise Model

Input Gate Referred Thermal Noise

For Gm≠0 and in particular in saturation, the thermal noise can also be referred to 
the gate as a voltage source having a PSD given by
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where the input (or gate) referred thermal noise resistance RnG is given by

The Long-channel Charge-based Noise Model

Flicker Noise

Basically two main causes to this 1/f noise:
Carrier number fluctuation ΔN (Mc Worther model): trapping of mobile charge in traps 
located in the oxide close to the Si-SiO2 interface resulting in fluctuations of the 
inversion chargeinversion charge
Carrier mobility fluctuation Δμ (Hooge model)

The PSD of the input referred gate voltage fluctuations is given by

μΔΔΔΔΔ += )()()( 222 fSfSfS
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Inversely proportional to frequency and to gate area

Note that KΔN and KΔμ are slightly bias dependent
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The Long-channel Charge-based Noise Model

Flicker Noise – Total Flicker Noise

μΔΔΔΔΔ += 222
nGnGnG VNVV SSS

10 -8

qs / q d = 20 (saturation)
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S Δ
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2
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z]

Δμ

total

ΔN

Usually number fluctuation dominates over mobility fluctuation

For design purpose, the gate referred noise PSD can be considered at first order 
as bias independent
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if = I D / I spec

The Long-channel Charge-based Noise Model

Flicker Noise – Total Flicker Noise

Simple model for design

If number fluctuation dominates mobility fluctuation
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The Long-channel Charge-based Noise Model

Total MOST Noise (in saturation)
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The Long-channel Charge-based Noise Model

Corner Frequency
The corner frequency is defined as the frequency for which the 1/f noise PSD is equal to 
the thermal noise PSD
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If n=1, the corner frequency scales approximately as 1/(Cox L2)

© C. Enz | 2008 Slide 21EKV Workshop - The EKV Charge-based Noise Model

fc
f

increase Gm at constant W·Lincrease W·L at constant Gm



12The EKV Charge-based Noise Model

EKV Workshop, June 30 2008© C. Enz 2008

The Extended Charge-based Model

Short-channel Effects on Thermal Noise

Thermal noise is affected by following effects:
1. Velocity saturation (VS)
2. Carrier heating (CH)
3. Mobility reduction due to the vertical field (MRV)
4. Channel length modulation (CLM)

Evaluate the impact of each of these effects on δnD and γnD

Each effect will be analyzed separately
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The Extended Charge-based Model

Effect of Velocity Saturation

For short-channel devices in SI and saturation lateral electrical field larger than 
critical field carrier velocity saturation

Charge 
builds-up 
at drain

high lateral
electrical field

Carrier enter 
velocity 

saturation

critical field carrier velocity saturation

Carrier velocity limited additional charge builds up close to the drain 
additional thermal noise without increase of Gm increase of δnDsat compared to 
the long-channel value 2/3
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The Extended Charge-based Model

Hot Carriers and Effective Temperature

High lateral electric field carrier not in thermal equilibrium with lattice higher 
carrier temperature higher thermal noise
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P. Klein, EDL, Aug. 1999.

The Extended Charge-based Model

Short-channel Effects on δnD

4
vg = VG / UT = 70
L = 0.18 μm
Ec = 2 V/μm (λ c = 0.15)

3
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δ n
D

with short-channel effects

c μ c )
θ= 0.3
χ = 30 nm

long-channel value
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A. S. Roy and C. C. Enz, TED, April 2005.
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The Extended Charge-based Model

Short-channel Effects on δnDsat (in saturation)

4
vd = V D / U T = 70
L = 0.18 μm
Ec = 2 V/μm

Scholten (IEDM99) L=0.17 μm
Chen (TED02) L=0.18 μm
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sa
t

with short-channel effects

Ec  2 V/μm
(λc = 0.15)
θ= 0.3, χ = 30 nm
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The Extended Charge-based Model

Short-channel Effects on γnD (in saturation)

4

3

vg = VG / UT = 70, L = 0.18 μm
Ec = 2 V/μm (λc = 0.15)
θ= 0.3, χ = 30 nm3

2

1

γ n
D
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with short-channel effects

 0.3, χ  30 nm

approximate long-channel value
(in strong inversion and saturation)
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Conclusions
Want to learn more about MOS transistor 

operation in weak and moderate inversion?

Charge-Based MOS Transistor Modeling –
The EKV model for low-power and RF IC design

C. C. Enz and E. A. Vittoz

Available now from Wiley
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www.wiley.com

Thank you for your attention!


