

<page-header><section-header><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block>

<page-header><page-header><section-header><equation-block><equation-block><equation-block><equation-block><text><equation-block><text>

<page-header>The Long-channel Charge-based Noise Model Long-Channel Thermal Noise • The PSD of the local noise source is given by $S_{\delta l_n^2}(x) = \frac{4kT}{\Delta R(x)} = 4kT \cdot \frac{W \cdot \mu \cdot (-Q_i(x))}{\Delta x}$ • The PSD of the total noise at the drain is then given by $S_{\Delta l_{nD}^2} = 4kT \cdot G_{nD}$ where G_{nD} is the thermal noise conductance given by $G_{nD} = \frac{1}{L^2} \cdot \int_0^L W \cdot \mu \cdot (-Q_i(x)) \cdot dx = \mu \cdot \frac{W}{L^2} \cdot \int_0^L -Q_i(x) \cdot dx = \frac{\mu}{L^2} \cdot |Q_I|$ • The thermal noise PSD and conductance at the drain is proportional to the total charge stored in the channel $|Q_I| = W \cdot \int_0^L -Q_i(x) \cdot dx \qquad (long-channel)$

<page-header><section-header><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block>

<page-header><page-header><section-header><text><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block>

<page-header><section-header><section-header><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block>

The Long-channel Charge-based Noise Model
Flicker Noise
 Basically two main causes to this 1/f noise:
 Carrier number fluctuation △N (Mc Worther model): trapping of mobile charge in traps located in the oxide close to the Si-SiO2 interface resulting in fluctuations of the inversion charge
Carrier mobility fluctuation Δµ (Hooge model)
 The PSD of the input referred gate voltage fluctuations is given by
$S_{\Delta V_{nG}^{2}}(f) = S_{\Delta V_{nG}^{2}}(f) \Big _{\Delta N} + S_{\Delta V_{nG}^{2}}(f) \Big _{\Delta \mu}$
where $S_{\Delta V_{nG}^2}(f)\Big _{\Delta N} \cong \frac{K_{\Delta N}}{W \cdot L \cdot C_{ox}^2 \cdot f}$ and $S_{V_{nG}^2}\Big _{\Delta \mu} \cong \frac{K_{\Delta \mu}}{W \cdot L \cdot C_{ox} \cdot f}$
 Inversely proportional to frequency and to gate area
 Note that K_{AN} and K_{Au} are slightly bias dependent
C. Enz 2008 EKV Workshop - The EKV Charge-based Noise Model Slide 17

© C. Enz

