EKV3 Workshop CSEM, Neuchatel, June 30, 2008

EKV3 MOSFET Model Status, Analog/RF Capabilities, and ongoing Developments

Matthias Bucher Technical University of Crete (TUC), Greece

Outline

Team & partnerships

Moderate Inversion in Advanced CMOS

- ✓ Modeling \leftarrow → Characterization \leftarrow → Circuit Design
- Current Status of EKV3
 - ✓ Verilog-A Code
 - ✓ IV, CV, T scaling
- Analog/RF capabilities of EKV3
- Conclusions

EKV team, industry, r&d projects

- EPFL, Switzerland
 - François Krummenacher, Jean-Michel Sallese, Christian Enz, Ananda Roy
- TUC Greece
 - Matthias Bucher, Antonios Bazigos
- GMC-Suisse
 - Wladek Grabinski
- Companies supporting EKV3:
 - ✓ Atmel
 - austriamicrosystems
 - Cypress Semiconductor
 - Infineon
 - Toshiba
 - ✓ XFAB
- COMON FP7 Project (2008-2011)
 - ✓ FinFET and HVMOS modelling

Moderate inversion – low- frequency

- Normalized gm and gds vs. IC and L
- Anomalous scaling of output conductance in WI

M. Bucher TUC

Moderate inversion – high frequency

Moderate Inversion in MOSFETs – highly important for analog/RF IC design

- Good trade-off among gain, speed, linearity, noise, matching
- Low-medium saturation voltage, Series resistance effect negligible
- Reduced impact of mobility effects (vertical field) and velocity saturation

EKV3 model overview

- Due to CMOS scaling, ICs operate more and more in moderate and weak inversion
- Design methods and models are required
 'classical' methods don't cover moderate inversion
- EKV3 is a Compact MOS Transistor Model dedicated to Analog/RF IC design
 - ✓ Developed as a successor of EKV2.6 (since 1997)
 - Charge-based approach close to physics and design
 - ✓ Special attention to analog/RF IC design requirements
 - Covers essential effects down to 65nm CMOS
 - ✓ Scaling over Technology Width Length T Bias
 - KV3 available in CAD tools (ELDO, Cadence, Smash).
 - ✓ Available Parameter Extraction Toolkits

EKV3 – charge model basics

Basis of charge model development is surface potential equation & inversion charge linearization

- Same parameters as surface potential model
- Preserves the essence of a surface potential model.

Extensions for CV:

- Vertical non-uniform doping
- Polydepletion
- Quantum effects

Extensions of IV:

- Charge-based vertical field mobility
- Charge-based velocity saturation
- ✓ Charge-based CLM
- Gate tunnelling

EKV3 mobility modelling

- Effective-field based mobility modelling
 - Surface-roughness scattering (high vertical field)
 - Phonon-scattering intermediate field strengths
 - Coulomb scattering effects (low vertical field; particularly at very high Nsub, low T)
- 5 parameters in all:

 \checkmark E0, E1, ETA, THC, ZC

 Local mobility is integrated along the channel

$$E_{eff} \propto Q_b + \eta \cdot Q_i$$

M. Bucher TUC

EKV3 velocity saturation/CLM modelling

- Variable-order (1st-2nd), charge-based velocityfield relationship
 - ✓ Continuous at VD=VS
 - Requires 2 parameters:

UCRIT, DELTA [1..2]

- Scales mobility with channel Length
- Charge-based channel length modulation (CLM) model.
 - ✓ Continuous at VD=VS

LAMBDA

M. Bucher TUC

EKV3 model scaling effects

- RSCE, INWE, combined short&narrow-channel effects
- DIBL, charge-sharing
- Halo/Pocket implant effects
 - including @long channel
- Bias-dependent overlap & inner fringing capacitances
- Bias-dependent series resistance
- Geometry & temperature scaling
- Parasitic effects modelling
 - Layout dependent stress
 - Edge conduction
 - Gate tunneling

✓ …

Phenomena covered by EKV3

Modelled effect	Related Parameters / Comments
Physical Modelling of Charges Including Accumulation Region Polysilicon Depletion, Quantum Mechanical Effects	COX(TOX), PHIF, GAMMA(NSUB), VTO(VFB), GAMMAG(NGATE)
Bias-Dependent Overlap Capacitances	LOV, GAMMAOV(NOV), VFBOV
NQS	[Channel Segmentation]
RF Model External Sub-Circuit	[Appropriate Scaling of RG, RSUBs with W, L and NF]
Mobility (Reduction due to Vertical Field Effect) Surface Roughness-, Phonon-, Coulomb Scattering	KP(U0), E0, E1, ETA ZC, THC
Impact Ionization Current	IBA, IBB, IBN
Gate Current (IGS, IGD, IGB)	KG, XB, UB

Phenomena covered by EKV3

Modelled effect	Related Parameters / Comments
Longitudinal Field Effect	UCRIT(VSAT), LAMBDA,
Velocity Saturation, Channel Length Modulation	DELTA
Reverse Short Channel Effect	LR, QLR, NLR
Inverse Narrow Width Effect	WR, QWR, NWR
Drain Induced Barrier Lowering	ETAD, SIGMAD
Source and Drain Charge Sharing	LETA, {LETA2}, WETA
Halo/Pocket implant effects	LETA0
Edge Conduction	WEDGE, DGAMMAEDGE, DPHIEDGE
Geometrical Effects, Width scaling	Various Parameters (DL, WQLR,)
Noise Flicker Noise, Short-Channel Thermal Noise, Induced Gate and Substrate Noise	AF, KF
Temperature Effects	Various Parameters
TOTAL	<140

EKV3 parameter set

* Flags + SIGN = 1+ TG = -1* Scale parameters + SCALE = 1.0+ XI = 0.0+ XW = 0.0* DIBL * Cgate parameters + COX = 8.58E-3+ GAMMAG = 18.4* RSCE + AQMA = 0.0+ AQMI = 0.0+ ETAQM = 0.75* Nch. parameters + VTO = 400.0E-3* INWE + PHIF = 450.0E-3+ GAMMA = 300.0E-3+ XJ = 30.0E-9+ N0 = 1.025* Mobility + KP = 390.0E-6 + E0 = 438.0E+6+ E1 = 159.0E+6+ ETA = 0.57+ ZC = 1.0E-6+ KJF = 150.0E-12 + THC = 0.0+ CJF = 300.0E-3

* Charge sharing + LETA0 = 1.0E+6+1 FTA = 1.3+ LETA2 = 0.0+ WETA = 1.0+ NCS = 0.5+ ETAD = 0.75+ SIGMAD = 1.0+ LR = 100E-9+ QLR = 580E-6+ NLR = 100.0E-3 + FLR = 2+ WR = 80.0F-9+ QWR = 500.0E-6+ NWR = 12.0E-3* Series resistance + RLX = 170.0E-6 * Overlap & fringing + LOV = 25.0E-9+ GAMMAOV = 5.0+ VFBOV = 0.0

* Long-ch. gds degr. + PDITS = 2.58E-6+ PDITSD = 0.91+ PDITSI = 0.0+ FPROUT = 1.85E+6 + DDITS = 0.1* Matching par. + AVTO = 0.0+ AKP = 0.0+ AGAMMA = 0.0* Vsat & CLM par. + UCRIT = 5.0E+6 + DFI TA = 1.5+ LAMBDA = 0.5+ ACLM = 0.85* Geometrical par. + DL = -16.7E-9+ DLC = -23.0E-9+ LL = 0.0+ DW = -45.3E-9+ LDW = 0.0

* Gate current + KG = 50.0E-6+ XB = 5.5+ EB = 21.0E + 9+ LOVIG = 40.0E-12* Temperature par. + TNOM = 30.0+ TCV = 600.0E-6+ BEX = -1.6+ TE0EX = -4.15+ TE1EX = 0.0+ TETA = 2.0E-3+ UCFX = 1.2+ TLAMBDA = 0.15+ TCVL = 0.0+ TCVW = 0.0+ TCVWL = 0.0+ WDL = 0.0+ LLN = 1.0+ DWC = 0.0

- Use conventional IV & CV data
- Sequence: CV, then wide/long IV, wide/short IV, narrow/long IV, narrow/short IV, T.
- IF specific measurements can be made, use Pinch-off voltage technique
- Has been implemented in IC-CAP (Agilent)

Pinch-off voltage measurement in MI

 V_{TO} and n_0 vs. W, L **V**_{TO} **[V]** ersus VV and L íreduced se n at Vp=0 versus W and L (NMOS reduced 1 n₀ [-] D 46 ∩ 44 1.2 0.42 Ę 9 0.36 0.34 0.32 10 Llumj [um] W [um] W [um] 10-1 10-1 10-1

- Threshold voltage VTO
 - ✓ vs. L shows known reverse short-channel effect (RSCE)
 - Less pronounced RSCE @ narrow channel.
- Slope factor n0
 - ✓ vs. L: n0 reduced due to charge-sharing, DIBL
 - ✓ vs. W: almost unaffected.

EKV3 – ID-VG

.5um

0

Ш

2um.

Ш

3

M. Bucher TUC

EKV3 – gate current

- All the tunneling current components are included
- ✤ Extract tunneling current coefficients KG, XB, UB

EKV3 – STI edge conduction effect

Edge conduction effect on ID-VG, gm/ID-ID, and IG-VG

M. Bucher TUC

EKV3 short-channel

L=70nm VD=1.5V

L=70nm VD=1.5V

- Correct weak & moderate inversion behavior
 - Smoothness and correct asymptotic behavior
 - Correct weak inversion slope and DIBL modeling
- Transconductance-to-current ratio vs. drain current (log. axis)

EKV3 short-channel

Illustrates combination of: DIBL, CS, velocity saturation, CLM modeling @
Lgate = 70nm

M. Bucher TUC

EKV3 temperature scaling

EKV3-Day, CSEM, June 30, 2008

T=-SS°C

T=30°C T=155°C

2

2

EKV3 temperature scaling

- \clubsuit VT vs. L and vs. T, VD = 2V
- Single model cards for each type of device, all conditions

EKV3 CV modeling

PHIF / $\mathbf{\Phi}_{f}$	400mV
COX(Tox)	12mF/m2 (2.9 nm)
VTO(VFB)	250 mV (-900mV)
GAMMA	200 mV ^{-1/2}
GAMMAG	7 V ^{-1/2}
GAMMAOV	2.5 V ^{-1/2}
LOV	20 nm
VFBOV	0 V

- Continuous model, symmetric and good reciprocity
- Extension to cover depletion/accumulation
- Bias-dependent overlap & inner fringing capacitance
 - ✓ LOV, GAMMAOV(NOV), VFBOV, CJF, KJF

EKV3 model for RF

- Non quasi-static model (NQS)
 - channel segmentation
 - consistent AC/transient
- Gate- and substrate- parasitics scale with multi-finger layout

R _G	~W _f /(L*N _F)
R_{SB},R_{DB}	~1/W _f
R _B	~1/W _f
R _{DSB}	~L/(W _f *N _F)

- ✤ Layout of RF multi-finger MOSFET
 - ✓ Number of fingers N_F
 - ✓ Finger Width W_f
 - ✓ Gate Length L

- Ground-Signal-Ground (GSG) RF Pads
 - 2 port configuration
- Actual MOSFETs
- Open-Short de-embedding structures

150

µm pitch

- ✤ NMOS, L=180nm, W_f=2µm
- Stress effects due to shallow-trench isolation (STI)
 - Threshold voltage V_T vs. N_F
 - Max. drain current I_D / N_F vs. N_F

Multifinger devices @ various VG values, saturation

M. Bucher TUC

- ✤ f_T versus IC in 110nm CMOS, EKV301.02 model
- Highest f_T is reached at IC ~10-30 (!)
- Most probable range for biasing of RF circuits for low noise is:
 - 1 < IC < 10 (depending on technology)

R2R current dividing circuit using MOSFETs

R2R MOSFET Current Division Circuit with EKV3.0

- Normalized branch currents vs. bias current in the R2R-MOSFET show correct current division principle
 - Requires that all MOSFETs share the same gate and bulk voltage
 - EKV3.0 (similarly as former versions of EKV) show correct behavior
 - The circuit was initially proposed for model benchmarking, M. Bucher, FSA modeling committee meeting Aug. 1997

R2R circuit & matching

- 200 Monte-Carlo runs
 - ✓ includes matching for β, V_{TO}, γ
 - Shows relative spread of branch current increases due to matching
- ELDO (C-Code) implementation used here
 - ✓ Matching can be implemented
- ✤ Verilog-A ?!
 - ✓ How to implement statistics? In particular, correlations?

Current code status: EKV301.02

EKV3 model code releases:

- ✓ 301.02: June 2008
- ✓ 301.01: November 2007 (Available in ELDO, Cadence, Smash)
- ✓ 301.00: September 2007
- ✓ 300.02: April 2007
- ✓ 300.01: October 2006
- ✓ 300.00: March 2005
- ♦ Improvements in 301.01 \rightarrow 301.02
 - Enhanced Operating Point Information
 - Corrected Junction Charges Calculation
 - Enhanced Width Effect on Overlap Charges
 - Included DITS Effect on Edge Device
 - ✓ Enhanced Geometric Effects Calculation for Multi-finger RF Devices
 - ✓ Matching Parameters are Model Parameters
 - Verilog-AMS Related Improvements (Nesting of Internal Functions)

EKV3 Verilog-A code

The Verilog-A Code of EKV3

- Hierarchical Structure
 - 18 files
 - one main file
 - many smaller
 - In total: ~100KB
- Compatible with (at least) ELDO, ADS, SPECTRE, ADMS, ...
- Used as the Reference Code for all Model Implementations
 - ADMS provides "standard" C-code Various Simulators.

EKV3 implementation status

EKV3 Verilog-A code compatible with ADMS v2.2.4

- ✓ Tested with XML Interface for SPICE3
- Different XML Interfaces for Different Simulators
- Implementations available for EKV301.01
 - ELDO (Mentor Graphics)
 - ✓ Spectre (Cadence)
 - Smash (Dolphin Integration)
 - ✓ ADS (Agilent)
 - Tiburon Interface used for actual EKV3 design kits.
 - GoldenGate.

Developments in EKV3.1

- More flexible mobility modeling of short-channel transistors.
- Improved modeling of output conductance of long-channel halo-implanted devices.
- Improved vertical/lateral Non-Uniform Doping.
- Extended accounting for layout-dependent stress effects.
- Noise model enhancements.
 - Improved Accounting for carrier heating/velocity saturation in induced gate noise.
 - Refined scaling of 1/f noise model equations & parameters.
- Statistical aspects / device matching.
 - Refined matching models for ID
 - Accounting for IG current matching

EKV3 summary

EKV3: a design-oriented, charge-based, compact model for analog/RF IC design.

- Implementations in ELDO (Mentor), Smash (Dolphin), Spectre (Cadence), ADS/GoldenGate (Agilent).
- Parameter extraction support (GMC Suisse & AdMOS)

Relation to advanced analog/RF IC design.

- Characterization methods based on design needs.
- ✓ Small-signal characterization method vs. IC & L.
- Pinch-off voltage method.
- ✓ Simple model structure & parameter extraction.
- ✓ Example validations on 110nm, 90nm CMOS.
- Extensions in EKV3.1: emphasis on RF, noise, and advanced technology scaling aspects.

Acknowledgments

- ✤ All EKV Team, esp.
 - François Krummenacher, Christian Enz, Jean-Michel Sallese, Ananda Roy
 - Antonios Bazigos for code development & support
 - Wladek Grabinski, for Web-site and Verilog-A support

 Contact: Prof. Matthias Bucher Electronics Laboratory Technical University of Crete 73100 Chania, Crete, Greece phone: +30 28210 37210 fax: +30 28210 37542 bucher `at` electronics.tuc.gr http://www.electronics.tuc.gr

Recent references on EKV3

- M. Bucher, A. Bazigos, S. Yoshitomi, N. Itoh, "A Scalable Advanced RF IC Design-Oriented MOSFET Model", Int. Journal of RF and Microwave Computer Aided Engineering, Vol. 18, N°4, pp. 314-325, 2008.
- M. Bucher, A. Bazigos, "An Efficient Channel Segmentation Approach for a Large-Signal NQS MOSFET Model", Solid-State Electronics, Vol. 52, N°2, pp. 275-281, February 2008 (DOI: 10.1016/j.sse.2007.08.015).
- A. Bazigos, M. Bucher, P. Sakalas, M. Schroter, W. Kraus, "High-frequency Compact Modelling of Si-RF CMOS", accepted, *Phys. Status Solidi (c), Current Topics in Solid State Physics.*
- S. Yoshitomi, A. Bazigos, M. Bucher, "The EKV3 Model Parameter Extraction and Characterization of 90nm RF-CMOS Technology", 14th Int. Conf. on Mixed Design of Integrated Circuits and Systems (MIXDES'2007), (available on ieeexplore) pp. 74-79, Ciechocinek, Poland, June 21-23, 2007.
- A. Bazigos, M. Bucher, F. Krummenacher, J.-M. Sallese, A.-S. Roy, C. Enz, "EKV3 Compact MOSFET Model Documentation, Model Version 301.01", *Technical Report,* Technical University of Crete, November 23, 2007.
- C. Enz, E. Vittoz, "Charge-based MOS Transistor Modeling, The EKV model for low-power and RF IC design", ISBN 978-0-470-85541-6, Wiley, 2006.
- M. Bucher, A. Bazigos, F. Krummenacher, J.-M. Sallese, C. Enz, "EKV3.0: An Advanced Charge Based MOS Transistor Model", in W. Grabinski, B. Nauwelaers, D. Schreurs (Eds.), *Transistor Level Modeling for Analog/RF IC Design*, pp. 67-95, ISBN 1-4020-4555-7, Springer, 2006.
- J.-M. Sallese, M. Bucher, F. Krummenacher, P. Fazan, "Inversion Charge Linearization in MOSFET Modeling and Rigorous Derivation of the EKV Compact Model", *Solid-State Electronics*, Vol. 47, pp. 677-683, 2003.