A Step towards Non-Presentable Models of Homotopy Type Theory

Nima Rasekh

École Polytechnique Fédérale de Lausanne

July 6th, 2020
Syntax vs. Semantics

Mathematics

Syntax
(Type Theories)

Semantics
(Category Theories)

Internal Language

Models

Extensional Type Theories

Intensional Type Theories

1 – Categories

(∞, 1) – Categories
Syntax vs. Semantics

Mathematics

Syntax
(Type Theories)

Internal Language

Semantics
(Category Theories)

Models

Extensional Type Theories

Intensional Type Theories

1 − Categories

(∞, 1) − Categories
Extensional Type Theories vs. 1-Categories

- Type Theory
 - Extensional Martin-Löf Type Theory
 - Higher order type theory

- Category Theory
 - Cartesian closed 1-categories
 - Locally Cartesian closed 1-categories
 - Elementary 1-topoi

Lambek

Lambek, Scott
- Introduction to higher order categorical logic (1988)
Intensional Type Theories vs. \((\infty, 1)\)-Categories

Type Theory

- Type Theory with dependent sums and intensional identity types

 \[
 \mathsf{UI} \\
 \mathsf{Pi}, \mathsf{Sigma}, \mathsf{id} - \text{types} \\
 \mathsf{UI} \\
 \mathsf{Homotopy type theories}
 \]

Category Theory

- Intensional Martin-Löf Type Theory with \(\mathsf{Pi}, \mathsf{Sigma}, \mathsf{id} - \text{types}\)

- \(\mathsf{UI}\)

- Homotopy type theories

Internal Language

Kapulkin-Szumilo

- \(\mathsf{Kapulkin, Szumilo}\)

- Finely complete \((\infty, 1) - \text{categories}\)

Kapulkin

- \(\mathsf{Kapulkin}\)

- Locally Cartesian closed \((\infty, 1) - \text{categories}\)

- \(\mathsf{UI}\)

- ???

Is there anything we can say about models of intensional type theory?

If we add one non-elementary condition to the \((\infty, 1)\)-category side, namely \textit{presentability}, we do get interesting models:

1. \textit{Presentable locally Cartesian closed} \((\infty, 1)\)-\textit{categories} are models of Intensional Martin-Löf Type Theory with \(\Pi\)-, \(\Sigma\)-, and \textit{id}-types. [Gepner-Kock, 2017], [Lumsdaine-Warren, 2015], [Shulman, 2015].

2. \textit{Grothendieck} \((\infty, 1)\)-\textit{topoi} (presentable locally Cartesian closed \((\infty, 1)\)-categories that satisfy \textit{descent}) are a model for homotopy type theory [Shulman, 2019].
Intensional Type Theories vs. $(\infty, 1)$-Categories

Type Theory

- Type Theory with dependent sums and intensional identity types
- Intensional Martin-Löf Type Theory with $\Pi, \Sigma, \text{id} - \text{types}$
- Homotopy type theories

Category Theory

- finitely complete $(\infty, 1) - \text{categories}$
- Locally Cartesian closed $(\infty, 1) - \text{categories}$

Internal Language

Models

Kapulkin, Szumilo

Kapulkin

if Presentable

if Grothendieck

???
Intensional Type Theories vs. $(\infty, 1)$-Categories

Type Theory

Type Theory with dependent sums and intensional identity types

UI

Intensional Martin-Löf Type Theory with $\Pi, \Sigma, \text{id} -$ types

UI

Homotopy type theories

Category Theory

Internal Language

Models

Kapulkin, Szumilo

finitely complete $(\infty, 1)$ – categories

UI

Locally Cartesian closed $(\infty, 1)$ – categories

UI

Elementary $(\infty, 1)$– topos ???

Kapulkin

if Presentable

if Grothendieck
Elementary $(\infty, 1)$-topoi are the Answer ...

This suggests that we should develop

Elementary $(\infty, 1)$-Topos Theory

and prove a result analogous to the relation between extensional type theories and elementary 1-topoi.
... but they are difficult to study

We know some things about elementary \((\infty, 1)\)-topoi, but not yet enough to relate it to homotopy type theory. Here is a more realistic step:

Goal

1. *Construct a specific elementary \((\infty, 1)\)-topos.*
2. *Prove it is a model for homotopy type theory.*

This talk focuses on Step 1.
Can we even define *elementary $(\infty, 1)$-topoi*?

Warning

There are definitions of *elementary $(\infty, 1)$-topoi* that have been proposed, but the “correct” definition depends on its relation to *homotopy type theory*.

Nonetheless we will work with a definition throughout this talk!
Definition (Shulman, R.)

An *elementary $(\infty, 1)$-topos* is an $(\infty, 1)$-category \mathcal{E} satisfying the following conditions:

1. \mathcal{E} has finite limits and colimits.
2. \mathcal{E} is locally Cartesian closed.
3. \mathcal{E} has a subobject classifier Ω.
4. There exists a class of object \mathcal{U}^S (*universes*) and embeddings of functors

$$\mathcal{I}^S : \text{Map}(_, \mathcal{U}^S) \hookrightarrow (\mathcal{E}/_)^\sim$$

such that the family of embeddings $\{\mathcal{I}^S\}_S$ is jointly surjective.
What does any of this mean?

1. $\text{Map}(-, \mathcal{U}_S) \to (\mathcal{E}/-) \simeq \Rightarrow$ universal fibration $\tilde{\mathcal{U}}_S \to \mathcal{U}_S$.
2. $\text{Map}(-, \mathcal{U}_S) \hookrightarrow (\mathcal{E}/-) \simeq$ an embedding $\Rightarrow \tilde{\mathcal{U}}_S \to \mathcal{U}_S$ univalent
3. \mathcal{I}_S jointly surjective \Rightarrow every map classified by some \mathcal{U}_S.
4. Disagreement on how to characterize universes.
5. We often want the image of \mathcal{I}_S to be closed under operations (limits, colimits, ...).
How does it relate to other definitions?

Here is a basic result relating various notions of topoi.

Lemma (R.)

Let \mathcal{E} be an elementary $(\infty, 1)$-topos.

1. The subcategory of 0-truncated objects is an elementary 1-topos.

2. \mathcal{E} satisfies descent. In particular \mathcal{E} is presentable if and only if it is a Grothendieck $(\infty, 1)$-topos.

So, it is a common generalization of elementary 1-topoi and Grothendieck $(\infty, 1)$-topoi.
Only Non-Presentability Counts

The result by Shulman implies that presentable elementary $(\infty, 1)$-topoi are already models and we should focus on non-presentable ones.

Question
How can we construct non-presentable elementary $(\infty, 1)$-topoi?
Filter Construction: Introduction

Let \mathcal{E} be a finitely complete 1-category. Let $\mathcal{F} \subset \text{Sub}(1)$ be a filter of subterminal objects, meaning:

1. **Non-Empty**: $1 \in \mathcal{F}$.
2. **Intersections**: $U, V \in \mathcal{F} \Rightarrow U \times V \in \mathcal{F}$.
3. **Upwards closed**: $U \in \mathcal{F}, U \leq V \Rightarrow V \in \mathcal{F}$

Then we will define a new category $\mathcal{E}_\mathcal{F}$.
Filter Construction: Construction

- Objects of \mathcal{E}_F are objects of \mathcal{E}.
- For two objects X, Y we have

$$\text{Hom}_{\mathcal{E}_F}(X, Y) = \{f : X \times U \to Y : U \in \mathcal{F}\} / \sim$$

where for $f : X \times U \to Y$, $g : X \times V \to Y$

$$f \sim g \iff \exists W \in \mathcal{F}(f \times \text{id}_W = g \times \text{id}_W)$$
Filter Construction: Results

Lemma (Johnstone: Sketches of an Elephant)

The quotient map

\[\mathcal{P}_\mathcal{F} : \mathcal{E} \to \mathcal{E}_\mathcal{F} \]

preserves

1. finite limits and colimits,
2. locally Cartesian structure,
3. subobject classifier.

So, if \(\mathcal{E} \) is an elementary 1-topos then \(\mathcal{E}_\mathcal{F} \) is one as well.
Filter Construction: Generalization

We want to generalize this construction to $(\infty, 1)$-categories. Here we need to care about which model of $(\infty, 1)$-categories we are using:

1. Kan enriched categories
2. Quasi-Categories
3. Complete Segal spaces
Filter Construction: Kan enriched categories

1. **Input**: A finitely complete Kan enriched category \mathcal{C} and a filter of subterminal objects \mathcal{F}.
2. We can take \mathcal{C} to be a simplicial object in categories:
 \[
 \mathcal{C}_\bullet : \Delta^{op} \to \mathbf{Cat}.
 \]
3. Construct $(\mathcal{C}_\bullet)_\mathcal{F} : \Delta^{op} \to \mathbf{Cat}$.
4. **Output**: The simplicial category $\mathcal{C}_\mathcal{F}$, which is a Kan enriched category.
Let \mathcal{C} be a finitely complete quasi-category or CSS and \mathcal{F} a filter of subterminal objects. Then define the functor

$$\mathcal{C}/_- : \mathcal{F}^{op} \longrightarrow \mathcal{Cat}_\infty$$

Then we define the *filter construction* as the colimit

$$\mathcal{C}_\mathcal{F} = \text{colim}(\mathcal{C}/_- : \mathcal{F}^{op} \rightarrow \mathcal{Cat}_\infty).$$
The Filter Construction and Topos Theory

Theorem (R.)

Let \(\mathcal{C} \) be finitely complete \((\infty,1)\)-category and \(\mathcal{F} \) a filter of subterminal objects. Then we have a quotient functor

\[
P_\mathcal{F} : \mathcal{C} \to \mathcal{C}_\mathcal{F}
\]

which preserves

1. **finite limits and colimits**
2. *locally Cartesian closed structure*
3. subobject classifiers
4. universes

So, in particular if \(\mathcal{E} \) is an **elementary \((\infty,1)\)-topos** then \(\mathcal{E}_\mathcal{F} \) is one as well.
How do we get non-Presentable Examples?

Theorem (Adelman-Johnstone 82)

Let \mathcal{I} be a set and \mathcal{F} a non-principal filter on $\text{Set}^\mathcal{I}$ (which is just a filter on $\mathcal{P}(\mathcal{I})$). Then the filter construction $(\text{Set}^\mathcal{I})_\mathcal{F}$ is non-presentable elementary 1-topos and so a non-presentable model of higher order type theory.

This result generalizes appropriately.
How do we get non-Presentable Examples?

Theorem (R.)

Let I be a set and \mathcal{F} a non-principal filter on Kan^I. Then the filter construction $(\text{Kan}^I)_\mathcal{F}$ is a non-presentable elementary $(\infty, 1)$-topos.

Example (R.)

Let \mathcal{F} be the filter of co-finite subsets on \mathbb{N} (the Fréchet filter). Then $(\text{Kan}^\mathbb{N})_\mathcal{F}$ is an elementary $(\infty, 1)$-topos, such that:

1. It is not presentable.
2. It has no infinite coproducts (except for initial object).
3. The natural number object is non-standard.
Let’s Summarize!

1. We want models of homotopy type theory.
2. We defined elementary \((\infty, 1)\)-topoi and hope to prove they give us the desired models.
3. Shulman’s result covers the presentable case so the focus should be on non-presentable ones.
4. Using the filter construction, we get a method for construction non-presentable elementary \((\infty, 1)\)-topoi.
5. Can we prove these are models?
How does this tie to Type Theory?

The filter construction is a (filtered) colimit.

Question

Are models of *homotopy type theory* closed under (filtered) colimits?

The results by Shulman only prove closure under presheaf and localization constructions.
References. Thank you! Questions?

For more details see:

Filter Quotients and Non-Presentable $(\infty, 1)$-Toposes,

Thank You!

Questions?