THÉORIE DES GROUPES - SÉRIES 1+2

20 et 27 septembre 2019

Groupes

Exercice 1. Soit (G, \cdot, e) un groupe. Montrer que:

- (a) si $g \cdot a = g \cdot b$ ou $a \cdot g = b \cdot g$, alors a = b, pour tous $a, b, g \in G$,
- (b) l'élément e est l'unique élément de G tel que $e \cdot g = g = g \cdot e$ pour tout $g \in G$,
- (c) chaque élément $g \in G$ a un unique inverse $h \in G$ tel que $h \cdot g = e = g \cdot h$; on écrit $h = g^{-1}$,
- (d) $(g^{-1})^{-1} = g$, pour tout $g \in G$.
- (e) l'unique élément tel que $g \cdot g = g$ est l'élément e.

Exercice 2. Déterminer si chacune des structures suivantes est une structure de groupe. Si oui, déterminer si la structure est abélienne.

- (a) les ensembles \mathbb{N} , \mathbb{Z} , \mathbb{Q} et \mathbb{R} munis de l'addition;
- (b) les ensembles \mathbb{N}^* , \mathbb{Z}^* , \mathbb{Q}^* et \mathbb{R}^* munis de la multiplication;
- (c) l'ensemble $S^1 = \{z \in \mathbb{C} \mid |z| = 1\}$ muni de la multiplication;
- (d) l'ensemble des parties $\mathcal{P}(X) = \{A \mid A \subset X\}$ d'un ensemble X muni de la différence symétrique $A + B = (A \setminus B) \cup (B \setminus A)$, pour $A, B \subseteq X$;
- (e) l'ensemble $GL_n(\mathbb{R})$ des matrices inversibles de taille $n \times n$ muni de la multiplication matricielle;
- (f) étant donné un groupe abélien G et un groupe non-abélien H, leur produit cartésien $G \times H$ muni de la loi $(g,h) \cdot (g',h') = (gg',hh')$;
- (g) l'ensemble \mathbb{R} muni de la loi $x \cdot y = xy + 1$, pour $x, y \in \mathbb{R}$;
- (h) l'ensemble \mathbb{R}^2 muni de la loi $(a,b)\cdot(c,d)=(ac,bc+d)$, pour $(a,b),(c,d)\in\mathbb{R}^2$;

Exercice 3. Soit G un ensemble. On suppose que G admette deux structures de groupes (\cdot, e) et (*, f) telles que, pour tous $a, b, c, d \in G$,

$$(a \cdot b) * (c \cdot d) = (a * c) \cdot (b * d).$$

Montrer que:

- (a) les deux structures de groupe sur G coïncident, i.e. e = f et $g \cdot h = g * h$ pour tous $g, h \in G$,
- (b) le groupe G muni de ces structures est abélien.

Exercice 4. Soit G un groupe fini d'ordre n. Montrer que:

- (a) si n est pair, alors le nombre d'éléments d'ordre 2 est impair. En particulier, G contient au moins un élément d'ordre 2.
- (b) si tous les éléments (sauf l'élément neutre) du groupe G sont d'ordre 2, alors G est abélien.

Sous-groupes

Exercice 5. Vérifier ou réfuter les affirmations suivantes.

- (a) L'intersection de n'importe quelle famille de sous-groupes est un sous-groupe.
- (b) La réunion de n'importe quelle famille de sous-groupes est un sous-groupe.
- (c) L'intersection d'un nombre fini de sous-groupes est un sous-groupe.
- (d) La réunion d'un nombre fini de sous-groupes est un sous-groupe.

Exercice 6. Déterminer si chacun des sous-ensembles suivants est un sous-groupe.

- (a) munis de l'addition, $\mathbb{N} \subset \mathbb{Z}$, $\mathbb{Z} \subset \mathbb{Q}$, $\mathbb{Q} \subset \mathbb{R}$ et $\mathbb{R}_+ \subset \mathbb{R}$, où $\mathbb{R}_+ = \{x \in \mathbb{R} \mid x \geq 0\}$;
- (b) munis de la multiplication, $\mathbb{Z}^* \subset \mathbb{Q}^*$, $\mathbb{Q}^* \subset \mathbb{R}^*$ et $\mathbb{R}^*_+ \subset \mathbb{R}^*$, où $\mathbb{R}^*_+ = \{x \in \mathbb{R} \mid x > 0\}$;
- (c) le sous-ensemble $\mu_n=\{z\in\mathbb{C}\mid z^n=1\}\subset S^1$ des racines $n^{\text{\`e}me}$ de l'unité, muni de la multiplication;
- (d) le sous-ensemble $SL_n(\mathbb{R}) = \{A \in GL_n(\mathbb{R}) \mid \det(A) = 1\} \subset GL_n(\mathbb{R})$ muni de la multiplication matricielle.

Homomorphismes de groupes

Exercice 7. Soit $f:(G,\cdot,e)\to (H,*,e')$ un homomorphisme de groupe. Montrer que:

- (a) f(e) = e',
- (b) si $g \in G$, alors $f(g^{-1}) = f(g)^{-1}$,
- (c) si f est bijectif, alors son inverse $f^{-1}: H \to G$ est aussi un isomorphisme de groupes.

Exercice 8. Soit $f:(G,\cdot,e)\to (H,*,e')$ un homomorphisme de groupe. Vérifier ou réfuter les affirmations suivantes.

- (a) Le noyau de f est un sous-groupe de G.
- (b) L'image de f est un sous-groupe de H.
- (c) La préimage $f^{-1}(K)$ d'un sous-groupe $K \subset H$ est un sous-groupe de G.
- (d) L'image f(L) d'un sous-groupe $L \subset G$ est un sous-groupe de H.

Exercice 9. Vérifier si les applications suivantes sont des homomorphismes de groupes. Si tel est le cas, calculer leur noyau et leur image.

- (a) l'application $f: \mathbb{Z} \to \mathbb{Z}, k \mapsto n \cdot k$, où \mathbb{Z} est muni de l'addition et $n \in \mathbb{N}$ est fixé;
- (b) l'inclusion $f \colon \{0,1\} \to \mathbb{Z}$, où \mathbb{Z} est muni de l'addition et $\{0,1\}$ est tel que 0 est l'élément neutre et 1+1=0;

- (c) l'application $f: \mathbb{Z} \to \{0,1\}$ qui envoie un nombre pair sur 0 et un nombre impair sur 1, où \mathbb{Z} et $\{0,1\}$ sont définis comme ci-dessus;
- (d) l'application $f_r \colon \mathbb{R} \to S^1$, $x \mapsto \exp(irx)$, où \mathbb{R} est muni de l'addition, S^1 est muni de la multiplication et $r \in \mathbb{R}$ est fixé;
- (e) l'application exp: $\mathbb{R} \to \mathbb{R}^*$, $x \mapsto \exp(x)$, où \mathbb{R} est muni de l'addition et \mathbb{R}^* de la multiplication:
- (f) l'application exp: $\mathbb{C} \to \mathbb{C}^*$, $z \mapsto \exp(z)$, où \mathbb{C} est muni de l'addition et \mathbb{C}^* de la multiplication;
- (g) l'application $\gamma_x \colon G \to G, \ g \mapsto x \cdot g \cdot x^{-1}$, où G est un groupe et $x \in G$ est fixé.

Exercice 10 (A rendre). Soit G un groupe.

- (a) Montrer que G est abélien si et seulement si l'application $f: G \to G, g \mapsto g^{-1}$ est un homomorphisme de groupes.
- (b) Supposons que G soit fini. Soit $f: G \to G$ un isomorphisme tel que
 - (i) si f(g) = g, alors g = e, et
 - (ii) $f \circ f$ est l'identité sur G.

Montrer que G est abélien.

Astuce: remarquez que tous les éléments de G sont de la forme $g^{-1} \cdot f(g)$.

Exercice 11. On pose

$$G = \left\{ \begin{pmatrix} x & y \\ -y & x \end{pmatrix} \mid x, y \in \mathbb{R}, \ x^2 + y^2 \neq 0 \right\}.$$

Montrer que G est un groupe muni de la muliplication matricielle. Construire un isomorphisme entre G et \mathbb{C}^* (muni de la multiplication).