
Homology of the real projective plane

April 14, 2019

This is essentially a solution for exercise 2 of set 6 in which one was supposed to find a(n
abstract) simplicial complex K whose realization is homeomorphic to the real projective
plane RP 2 and compute its simplicial homology using a Mayer–Vietoris sequence. For
the sake of clarity, this document is more detailed than what would be expected from a
submission.

In the following, we freely use some usual conventions and abuses of notation such as
representing abstract simplicial complexes and their labelings with pictures, using the
alphabetical ordering of the vertices for homology calculations, writing v instead of tvu

for a 0-simplex etc.
Fixing possible sign issues is left as an exercise to the reader.

The complex and the decomposition
Here is a possible way to realize RP 2 as a simplicial complex:1

K :

a

b

c

d e f a

b

c

def

g

h

i

j

.

To use the Mayer–Vietoris sequence, we want to write K as the union of two subcom-
plexes whose homology (and that of their intersection) we know well (or can compute
easily). One of the many possibilities to do this is as follows:

1There is actually a simplicial complex with only ten 2-simplicies that realizes RP 2, but we’ll stick to
the one above because it’s somewhat more straightforward to come up with: One can obtain RP 2

from a square by identifying “antipodal” points of its boundary, and inspired by how one realizes
the cylinder as a simplicial complex, one can subdivide that square into three “layers” vertically and
horizontally to obtain the simplicial complex above.
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First subcomplex
Note that K1 is a representation of the Möbius strip. You may have seen that its

homology is isomorphic to that of B∆2, but we will compute it to have another demon-
stration of how to use the Mayer–Vietoris sequence and because it will be important to
know an explicit generator of H1pK1q – H1pB∆2q – Z.

Here is the decomposition of K1 that we will use to compute its homology:

K1 “

¨

˚

˚

˚

˚

˝

g

h i

j
˛

‹

‹

‹

‹

‚

K1,1

Y

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

f e

g

h i

j

e f

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

K1,2

.

Note that K1,1 is the union of two copies of ∆2 whose intersection is isomorphic to
∆1. Thus it is acyclic as the union of two acyclic subcomplexes whose intersection is
also acyclic.

Doing the identifications given by the labeling, we see that K1,2 can be written as the
union of two copies of K1,1 whose intersection is isomorphic to ∆1:

K1,2 :

i h

f e

g j

.

Hence K1,2 is also acyclic.
The intersection K1,1XK1,2 consists of two disjoint copies of ∆1 (namely those spanned

by tg, ju and th, iu). Thus HnpK1,1 X K1,2q – 0 for n ą 0 and H0pK1,1 X K1,2q – Z2 is a
free abelian group on the generators rgs and rhs.

We can now compute the homology of K1. First we note that K1 is connected, so
H0pK1q – Z (which can also be seen from the Mayer–Vietoris sequence).
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To calculate H1pK1q, we have a look at the corresponding segment of the Mayer–
Vietoris sequence:

0 – H1pK1,1q ‘ H1pK1,2q Ñ H1pK1q
B1
ÝÑ H0pK1,1 X K1,2q

φ0
ÝÑ H0pK1,1q ‘ H0pK1,2q.

This means that B1 is injective and thus an isomorphism onto its image im B1 “ ker φ0.
To determine ker φ0, we note that rhs “ rgs in H0pK1,1q and H0pK1,2q, so

φ0pmrgs ` nrhsq “ ppm ` nqrgs, ´pm ` nqrgsq P H0pK1,1q ‘ H0pK1,2q

which is zero if and only if m “ ´n. Hence we have

ker φ0 “ t´krgs ` krhs | k P Zu “ Z ¨ prhs ´ rgsq Ď H0pK1,1 X K1,2q “ Z ¨ rgs ‘ Z ¨ rhs.

Thus H1pK1q – Z and the preimage of rhs ´ rgs under B1 is a generator.
Intuitively speaking, this preimage is represented by two sequences of edges connecting

g and h in K1,1 resp. K1,2 such that their union is a cycle in K1. An example of this
would be taking ptg, huq in K1,1 and ptf, gu, te, fu, te, huq in K1,2, which would yield the
generator rtf, gu ` tg, hu ´ te, hu ` te, fus P H1pK1q after choosing appropriate signs.

In order to be more precise about this, we have to recall how B1 is defined using the
following diagram:

0 C1pK1,1 X K1,2q C1pK1,1q ‘ C1pK1,2q C1pK1q 0

0 C0pK1,1 X K1,2q C0pK1,1q ‘ C0pK1,2q C0pK1q 0

ϕ1

d
K1,1XK1,2
1

%1

d
K1,1
1 ‘d

K1,2
1 d

K1
1

ϕ0 %0

.

Namely, given a 1-cycle η in K1, one lifts η along %1, checks that the image of the lift
under d

K1,1
1 ‘ d

K1,2
1 comes from a 0-cycle η1 in C0pK1,1 X K1,2q and sets B1prηsq to be

rη1s P H0pK1,1 X K1,2q.
Hence, if we can find α P C1pK1,2q and β P C1pK1,2q such that pd

K1,1
1 pαq, d

K1,2
1 pβqq “

ph ´ g, g ´ hq “ ϕ0ph ´ gq and γ :“ %1pα, βq “ α ` β P ker dK1
1 , we will have B1prγsq “

rhs ´ rgs, which means that rγs is a generator of H1pK1q.
To realize the example from above, we set α “ tg, hu and β “ ´te, hu`te, fu`tf, gu.

Then we indeed have d
K1,1
1 pαq “ h´g and d

K1,2
1 pβq “ e´h`f´e`g´f “ g´h. Moreover,

a straightforward calculation shows that γ :“ %1pα, βq “ tf, gu ` tg, hu ´ te, hu ` te, fu

is a cycle, so rγs “ rtf, gu ` tg, hu ´ te, hu ` te, fus is indeed a generator of H1pK1q.
Next, we see that H2pK1q is “squeezed between trivial groups” in the MV sequence:

0 – H2pK1,1q ‘ H2pK1,2q Ñ H2pK1q Ñ H1pK1,1 X K1,2q – 0,

so it also is trivial. Moreover, HnpK1q – 0 for n ą 2 as K1 is a 2-dimensional complex.
All in all, we have calculated that

HnpK1q –

#

Z n P t0, 1u

0 otherwise

where H1pK1q “ Z ¨ rtf, gu ` tg, hu ´ te, hu ` te, fus.
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Second subcomplex
After doing the identifications given by the labeling, K2 looks as follows:

K2 :

f

a

b

c

d

e

i

j

g

h

.

The picture makes it evident that |K2| is homeomorphic to a disk and we will show that
K2 is indeed acyclic by decomposing it into two acyclic subcomplexes whose intersection
is acyclic.

First we note that the simplicial complex

L :
u

v

w

is acyclic because it is the union of two copies of ∆1 whose intersection is isomorphic to
∆0.

Now we can iteratively build K2 by starting with a complex isomorphic to the acyclic
complex K1,1 from above and in each step adding a copy of K1,1 in a way that the
intersection is isomorphic to ∆1 or L (thus also acyclic), which means that each complex
in the sequence is acyclic:

    .
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The intersection and the final MV sequence
The intersection K1 X K2 is given by

K1 X K2 :

f e

g

h i

j

e f

which represents a hexagon with vertices f , g, h, e, j, i after doing the identifications
indicated by the labeling.2

We refrain from computing its homology here which can be done directly or using a
Mayer–Vietoris sequence. The result is

HnpK1 X K2q –

#

Z n P t0, 1u

0 otherwise

where H1pK1 X K2q is generated by the class of θ :“ tf, gu ` tg, hu ´ te, hu ` te, ju ´

ti, ju ´ tf, iu, i. e. a generating cycle is given by “going around the circle once”.
Now we start computing the homology of K. Since K is connected, H0pKq – Z.
To compute H1pKq, we will analyze the following segment of the Mayer–Vietoris

sequence:

H1pK1 X K2q
φ1
ÝÑ H1pK1q ‘ H1pK2q

ρ1
ÝÑ H1pKq

B1
ÝÑ H0pK1 X K2q

φ0
ÝÑ H0pK1q ‘ H0pK2q.

Using the homology class of g as a generator of 0-th homology groups of K1, K2 and
K1 X K2, we see that

Z – H0pK1 X K2q
φ0
ÝÑ H0pK1q ‘ H0pK2q – Z2

mrgs ÞÑ pmrgs, ´mrgsq

is injective, i. e. ker φ0 “ 0.
Hence, by exactness, im B1 “ ker φ0 “ 0. This yields, again by exactness, H1pKq “

ker B1 “ im ρ1. Using that ker ρ1 “ im φ1, this means that H1pKq – coker φ1 by the first
isomorphism theorem.

Now φ1 is a homomorphism

Z – H1pK1 X K2q Ñ H1pK1q ‘ H1pK2q – H1pK1q ‘ 0 – Z,

so it maps the generator rθs “ rtf, gu`tg, hu´te, hu`te, ju´ti, ju´tf, ius of H1pK1XK2q

to a multiple k ¨ rγs of the generator rγs “ rtf, gu ` tg, hu ´ te, hu ` te, fus of H1pK1q

and thus its image is k ¨ Z ¨ rγs, which means that its cokernel is isomorphic to Z{kZ.
2This complex may look familiar as one possible way to solve exercise 3a of set 5 was taking an

pn ` 2q-gon for every n ě 1, so some of you may have already computed its homology.
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Intuitively speaking, one can say that “the cycle tf, gu`tg, hu´te, hu`te, ju´ti, ju´

tf, iu goes around the Möbius strip K1 twice”, so k must be 2. This can be made precise
as follows:

Let γ1 :“ te, ju´ti, ju´tf, iu´te, fu P C1pK1 XK2q Ď C1pK1q. Note that γ1 is a cycle
in K1 and that θ “ γ ` γ1, so rθs “ rγs ` rγ1s in H1pK1q. Therefore it is enough to show
that rγs “ rγ1s, i. e. rγ ´ γ1s “ 0, in H1pK1q. Also this has a geometric interpretation:
In the representation of K1 as a rectangle whose top and bottom edge are appropriately
identified, γ ´ γ1 corresponds to the boundary of the rectangle, so it is the image of an
appropriate sum of the 2-simplices in the rectangle under dK1

2 :

“dK1
2 pte, f, gu ` te, g, ju ` tg, h, ju ` th, i, ju ´ te, h, iu ` te, f, iuq

“ptf, gu ´ te, gu ` te, fuq ` ptg, ju ´ te, ju ` te, guq ` pth, ju ´ tg, ju ` tg, huq`

pti, ju ´ th, ju ` th, iuq ´ pth, iu ´ te, iu ` te, huq ` ptf, iu ´ te, iu ` te, fuq

“ptf, gu ` te, fuq ` p´te, juq ` ptg, huq ` pti, juq ´ pte, huq ` ptf, iu ` te, fuq

“ptf, gu ` tg, hu ´ te, hu ` te, fuq ` p´te, ju ` ti, ju ` tf, iu ` te, fuq

“γ ´ γ1.

Hence φ1prθsq indeed corresponds to rγ1s ` rγs “ rγs ` rγs “ 2rγs, so H1pKq – Z{2Z.
Note that the calculation above also shows that ker φ1 “ 0 as φ1 is essentially given

by multiplication by 2. Hence, looking at the exact sequence

0 – H2pK1q ‘ H1pK2q
ρ2
ÝÑ H2pKq

B2
ÝÑ H1pK1 X K2q

φ1
ÝÑ H1pK1q ‘ H1pK2q,

we see that 0 “ ker φ1 “ im B2, so H2pKq “ ker B2 “ im ρ2 “ 0.
Moreover, as K is a 2-dimensional simplicial complex, we have HnpKq – 0 for all

n ą 2.
All in all, we obtain

HnpKq –

$

’

&

’

%

Z n “ 0
Z{2Z n “ 1
0 otherwise

.
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