A characterisation of R_1 -spaces via a Mal'tsev condition

Thomas Weighill

University of Tennessee

Young Topologists Meeting 2015

In this talk, we present a connection between a well-known condition from categorical algebra, and a separation axiom in topology.

In this talk, we present a connection between a well-known condition from categorical algebra, and a separation axiom in topology.

Categorical algebra studies algebras by working in a category satisfying certain axioms.

Such axiomatic contexts include, for example,

- regular categories;
- Mal'tsev and protomodular categories;
- normal, subtractive and semi-abelian categories;
- abelian categories.

Such axiomatic contexts include, for example,

- regular categories;
- Mal'tsev and protomodular categories;
- normal, subtractive and semi-abelian categories;
- abelian categories.

One may ask: of which of these types of categories is a given category of spaces an example?

For example, consider **Top**, and the notion of regular category.

Definition (Barr, Grillet and van Osdol, 1971)

A category $\mathbb C$ is called *regular* if it has finite limits and admits a pullback-stable (regular epi, mono)-factorisation system.

For example, consider **Top**, and the notion of regular category.

Definition (Barr, Grillet and van Osdol, 1971)

A category $\mathbb C$ is called *regular* if it has finite limits and admits a pullback-stable (regular epi, mono)-factorisation system.

Examples of regular categories include **Set** and moreover, any variety of universal algebras. However, **Top** is *not* regular because quotient maps are not pullback-stable.

On the other hand, **Top**^{op}, *is* regular.

On the other hand, **Top**^{op}, *is* regular. Let us then consider **Top**^{op} instead, and ask which axioms it satisfies.

On the other hand, \mathbf{Top}^{op} , is regular. Let us then consider \mathbf{Top}^{op} instead, and ask which axioms it satisfies. In this talk, we consider the notion of Mal'tsev category, and show that

■ **Top**^{op} is not a Mal'tsev category;

On the other hand, \mathbf{Top}^{op} , is regular. Let us then consider \mathbf{Top}^{op} instead, and ask which axioms it satisfies. In this talk, we consider the notion of Mal'tsev category, and show that

- **Top**^{op} is not a Mal'tsev category;
- however, it (and moreover, any regular category) has a largest full subcategory which is (in a certain sense);

On the other hand, \mathbf{Top}^{op} , is regular. Let us then consider \mathbf{Top}^{op} instead, and ask which axioms it satisfies. In this talk, we consider the notion of Mal'tsev category, and show that

- **Top**^{op} is not a Mal'tsev category;
- however, it (and moreover, any regular category) has a largest full subcategory which is (in a certain sense);
- moreover, we show that the objects of this subcategory are characterised by a known separation axiom – they are the so-called R₁-spaces.

Mal'tsev varieties

We begin with the following well-known theorem of universal algebra:

Mal'tsev varieties

We begin with the following well-known theorem of universal algebra:

Theorem (Mal'tsev, 1954)

For a variety X of universal algebras, the following are equivalent:

- the composition of congruences on any object in X is commutative;
- lacktriangleright the algebraic theory of $\mathbb X$ contains a ternary term μ satisfying

$$\mu(x,y,y) = x = \mu(y,y,x).$$

Mal'tsev varieties

We begin with the following well-known theorem of universal algebra:

Theorem (Mal'tsev, 1954)

For a variety $\mathbb X$ of universal algebras, the following are equivalent:

- the composition of congruences on any object in X is commutative;
- lacksquare the algebraic theory of $\mathbb X$ contains a ternary term μ satisfying

$$\mu(x, y, y) = x = \mu(y, y, x).$$

For example, the variety of all groups satisfies this condition: take $\mu(x,y,z)=x-y+z$.

Naturally Mal'tsev categories

One way to generalize Mal'tsev varieties to categories is as follows:

Definition (Johnstone, 1977)

A category $\mathbb C$ is called a *naturally Mal'tsev category* if the identity functor $1_{\mathbb C}$ admits an internal Mal'tsev operation μ in the functor category $\operatorname{Fun}(\mathbb C,\mathbb C)$.

Naturally Mal'tsev categories

One way to generalize Mal'tsev varieties to categories is as follows:

Definition (Johnstone, 1977)

A category $\mathbb C$ is called a *naturally Mal'tsev category* if the identity functor $1_{\mathbb C}$ admits an internal Mal'tsev operation μ in the functor category $\operatorname{Fun}(\mathbb C,\mathbb C)$.

This is a very strong condition: for example, a pointed variety of universal algebras is a naturally Mal'tsev category if and only if it is abelian (i.e. it is the variety of R-modules for some ring R).

Other equivalent conditions

The conditions in the theorem are also equivalent to each of the following:

• every reflexive internal relation is an equivalence relation (where by an *internal relation* we mean a relation from A to B which is a subalgebra of $A \times B$);

Other equivalent conditions

The conditions in the theorem are also equivalent to each of the following:

- every reflexive internal relation is an equivalence relation (where by an *internal relation* we mean a relation from A to B which is a subalgebra of $A \times B$);
- every internal relation R from A to B is difunctional, i.e. it satisfies

$$(x_1Ry_2 \wedge x_2Ry_2 \wedge x_2Ry_1) \Rightarrow x_1Ry_1.$$

This second condition is due to Lambek (1957).

Definition

Given a category $\mathbb C$ with products, an *internal relation* from an object A to an object B is a monomorphism $r:R\to A\times B$.

Definition

Given a category $\mathbb C$ with products, an *internal relation* from an object A to an object B is a monomorphism $r:R\to A\times B$.

Given any internal relation $r: R \to A \times B$ in a category \mathbb{C} , and an object S in \mathbb{C} , there is a corresponding relation on hom-sets:

$$\mathsf{Hom}(S,r):\mathsf{Hom}(S,R)\to\mathsf{Hom}(S,A)\times\mathsf{Hom}(S,B)$$

Definition

Given a category $\mathbb C$ with products, an *internal relation* from an object A to an object B is a monomorphism $r:R\to A\times B$.

Given any internal relation $r: R \to A \times B$ in a category \mathbb{C} , and an object S in \mathbb{C} , there is a corresponding relation on hom-sets:

$$\mathsf{Hom}(S,r):\mathsf{Hom}(S,R)\to\mathsf{Hom}(S,A)\times\mathsf{Hom}(S,B)$$

We call an internal relation *reflexive, transitive, symmetric, difunctional* . . . when for every *S*, the relation above is *reflexive, transitive, symmetric, difunctional* . . . in the usual set-theoretic sense.

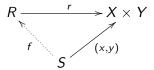
Notation: If we have an internal relation $R \to X \times Y$ and two morphism $x: S \to X$ and $y: S \to Y$, we will write xRy to mean that x and y are related by the relation

$$\mathsf{Hom}(S,r):\mathsf{Hom}(S,R)\to\mathsf{Hom}(S,X)\times\mathsf{Hom}(S,Y).$$

Notation: If we have an internal relation $R \to X \times Y$ and two morphism $x: S \to X$ and $y: S \to Y$, we will write xRy to mean that x and y are related by the relation

$$\mathsf{Hom}(S,r):\mathsf{Hom}(S,R)\to\mathsf{Hom}(S,X)\times\mathsf{Hom}(S,Y).$$

This is equivalent to the existence of a morphism f such that the diagram commutes:



Mal'tsev categories

Definition (Carboni, Lambek and Pedicchio, 1990)

A *Mal'tsev category* is a category in which every internal relation is difunctional.

That is, a Mal'tsev category is a category in which every object S in $\mathbb C$ satisfies:

(D) for every internal relation R in \mathbb{C} , the relation Hom(S,R) between hom-sets is difunctional.

Mal'tsev categories

Definition (Carboni, Lambek and Pedicchio, 1990)

A *Mal'tsev category* is a category in which every internal relation is difunctional.

That is, a Mal'tsev category is a category in which every object S in $\mathbb C$ satisfies:

(D) for every internal relation R in \mathbb{C} , the relation Hom(S,R) between hom-sets is diffunctional.

Question: Is **Top**^{op} a Mal'tsev category?

Mal'tsev categories

Definition (Carboni, Lambek and Pedicchio, 1990)

A *Mal'tsev category* is a category in which every internal relation is difunctional.

That is, a Mal'tsev category is a category in which every object S in $\mathbb C$ satisfies:

(D) for every internal relation R in \mathbb{C} , the relation Hom(S, R) between hom-sets is diffunctional.

Question: Is **Top**^{op} a Mal'tsev category?

Answer: No. One can construct a non-diffunctional co-relation using the Sierpiński space.

Condition (D)

Recall the condition on the previous slide:

(D) for every internal relation R in \mathbb{C} , the relation Hom(S,R) between hom-sets is diffunctional.

Condition (D)

Recall the condition on the previous slide:

(D) for every internal relation R in \mathbb{C} , the relation Hom(S,R) between hom-sets is diffunctional.

Theorem

Let $\mathbb C$ be a regular category admitting binary coproducts. Then $D(\mathbb C)$, the full subcategory of all objects satisfying condition (D), is the largest full subcategory of $\mathbb C$ which is Mal'tsev and which is closed under regular quotients and binary coproducts in $\mathbb C$.

Note that $D(\mathbb{C})$ is closed under regular quotients and binary coproducts because the Yoneda embedding $Y:\mathbb{C}^{\mathrm{op}}\to \mathbf{Set}^\mathbb{C}$ takes colimits to limits. Thus a colimit/regular quotient of objects in $D(\mathbb{C})$ takes each internal relation to a limit/regular subobject of difunctional relations, which will itself be difunctional.

Note that $D(\mathbb{C})$ is closed under regular quotients and binary coproducts because the Yoneda embedding $Y:\mathbb{C}^{\mathrm{op}}\to \mathbf{Set}^\mathbb{C}$ takes colimits to limits. Thus a colimit/regular quotient of objects in $D(\mathbb{C})$ takes each internal relation to a limit/regular subobject of difunctional relations, which will itself be difunctional. Also, it is clearly Mal'tsev by definition.

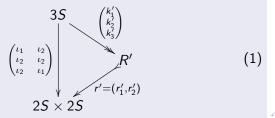
Note that $D(\mathbb{C})$ is closed under regular quotients and binary coproducts because the Yoneda embedding $Y:\mathbb{C}^{\mathrm{op}}\to \mathbf{Set}^\mathbb{C}$ takes colimits to limits. Thus a colimit/regular quotient of objects in $D(\mathbb{C})$ takes each internal relation to a limit/regular subobject of difunctional relations, which will itself be difunctional. Also, it is clearly Mal'tsev by definition.

To show that $D(\mathbb{C})$ is the largest such category, we need the following lemma.

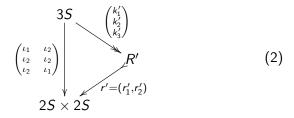
Lemma

For a regular category $\mathbb C$ admitting binary coproducts and an object S in $\mathbb C$, the following are equivalent:

- (a) S satisfies (D);
- (b) $\iota_1 R' \iota_1$, where $\iota_1 : S \to 2S$ is the first coproduct injection and (R', r'_1, r'_2) is the relation from 2S to 2S appearing in the (regular epi, mono)-factorisation of the vertical morphism in the following diagram:

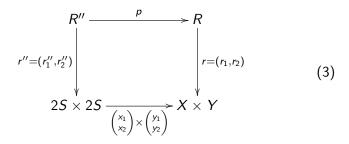


This lemma is adapted from a theorem due to Bourn and Z. Janelidze. One direction is easy to show: if we consider the relation R' below:

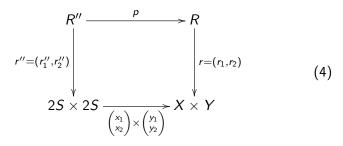


then we have $\iota_1 R' \iota_2$, $\iota_2 R' \iota_2$ and $\iota_2 R' \iota_1$, so $\iota_1 R' \iota_1$ if $\mathsf{Hom}(S, R')$ is difunctional.

Conversely, given a relation $R \to X \times Y$ for which x_1Ry_2 , x_2Ry_2 and x_2Ry_1 , consider the pullback.

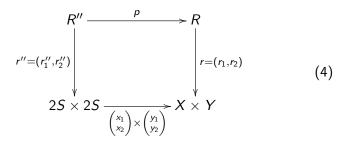


Conversely, given a relation $R \to X \times Y$ for which x_1Ry_2 , x_2Ry_2 and x_2Ry_1 , consider the pullback.



By construction of R'' we have that $\iota_1 R'' \iota_2$, $\iota_2 R'' \iota_2$ and $\iota_2 R'' \iota_1$, so that R'' contains the relation R' from the theorem.

Conversely, given a relation $R \to X \times Y$ for which x_1Ry_2 , x_2Ry_2 and x_2Ry_1 , consider the pullback.



By construction of R'' we have that $\iota_1 R'' \iota_2$, $\iota_2 R'' \iota_2$ and $\iota_2 R'' \iota_1$, so that R'' contains the relation R' from the theorem. But then $\iota_1 R'' \iota_1$, and we obtain $x_1 R y_1$ as required.

Topological spaces

Let us return to **Top**^{op}. What we have shown is that:

■ **Top**^{op} is not a Mal'tsev category,

Topological spaces

Let us return to **Top**^{op}. What we have shown is that:

- Top^{op} is not a Mal'tsev category,
- but it admits a largest full subcategory $D(\mathbf{Top}^{op})$ which is;

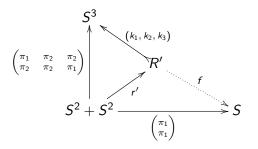
Topological spaces

Let us return to **Top**^{op}. What we have shown is that:

- **Top**^{op} is not a Mal'tsev category,
- but it admits a largest full subcategory $D(\mathbf{Top}^{op})$ which is;
- moreover, we can test to see if an object is in this subcategory, by checking for a relation between two particular morphisms – i.e. the existence of a certain morphism.

Test for the dual of (D)

Following the theorem, a space S satisfies the dual of (D) if and only if there is a continuous map f which makes the diagram commute:



where R' is the subspace of S^3 which is the image of the vertical map, i.e. the subspace

$$\{(x, y, z) \mid x = y \lor y = z\}$$

Test for dual of (D)

The map f is uniquely defined if it exists, so it is enough to check continuity.

Test for dual of (D)

The map f is uniquely defined if it exists, so it is enough to check continuity.

Lemma

The map f is continuous if and only if S is an R_1 -space in the sense of Davis (1961), i.e. satisfies the following separation axiom:

(R₁) for all $x, y \in X$, if there exists an open set A such that $x \in A$ and $y \notin A$, then there exists disjoint open sets B and C such that $x \in B$ and $y \in C$.

As a set map, $f: R' \to S$ takes a triple (x, y, z) to x if y = z and to z if x = y.

As a set map, $f: R' \to S$ takes a triple (x, y, z) to x if y = z and to z if x = y.

(⇒): Suppose f is continuous. Let A be an open set with $x \in A$ and $y \notin A$. Then

$$f^{-1}(A) = \{(x.y,z) \mid (x=y \land z \in A) \lor (y=z \land x \in A)\}$$

is open in R'. Thus there exist open sets U, W and V in S such that $(x,y,y) \in U \times W \times V \cap R' \subseteq f^{-1}(A)$. But (z,z,y) can never be in $f^{-1}(A)$ for any z – otherwise $y \in A$! Thus U and W do not intersect, and x and y are separated by neighbourhoods as required.

(⇐): Suppose S is an R_1 -space and let A be open in S with $(x,y,y) \in f^{-1}(A)$. If $y \in A$, then

$$(x, y, y) \in A \times A \times A \cap R' \subseteq f^{-1}(A).$$

Otherwise, pick open sets $x \in U$ and $y \in V$ such that $U \cap V = \emptyset$ and note that

$$(x, y, y) \in U \times V \times V \cap R' \subseteq f^{-1}(A)$$

.

R_1 -spaces

Where do R_1 -spaces fit in?

R_1 -spaces

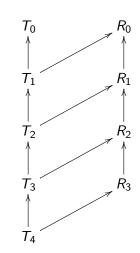
Where do R_1 -spaces fit in?

points are closed

Hausdorff

regular Hausdorff

normal Hausdorff



preregular

regular

We have presented a connection between two notions:

- the notion of a Mal'tsev variety, or term, and
- the notion of an R₁-space.

via the language of categories.

A natural question is: do other such connections exist?

A natural question is: do other such connections exist?

 Other term conditions from algebra can be translated this way: for example, the case for a binary subtraction term has been considered by Z. Janelidze (in fact that result predates this one).

A natural question is: do other such connections exist?

- Other term conditions from algebra can be translated this way: for example, the case for a binary subtraction term has been considered by Z. Janelidze (in fact that result predates this one).
- Work on finding relational conditions for other separation axioms is still in progress (e.g. R_0 and regular spaces).

Thank you.