
Syllabus: European Talbot workshop on structured ring spectra

Bjørn Dundas and Birgit Richter

Background reading for spectra [EKMM97, HSS00, Schw, Le91] and for K-theory [DGM13, We13].

1. Mentor’s talk Overview talk: What are structured ring spectra? What are they good for? In which
respects do they behave differently from ordinary rings?

2. Thom spectra and Bousfield localization What is Bousfield localization and what effect does it
have [Ra84]? Describe some local phenomena and examples (Lubin-Tate, Morava K-theory as quo-
tient, K(n)-local sphere spectrum), Morava stabilizer group ([Ra86]). Thom spectra as an important
family of examples of ring spectra (’classical’ construction [Mi, R98, Ko96, Ra84, M77, M09b], other
constructions [Schl09, ABGHR]).

3. Infinite loop space machines and K-theory Every permutative category gives rise to a connective
spectrum and conversely every connective spectrum can be modelled by a permutative category. One
can jazz up the construction to allow bimonoidal categories as input and produce ring spectra; biper-
mutative categories giving rise to commutative ring spectra. Explain the results and give an overview
which structured ring spectra arise in this way [ShSh79, S74, M10, EM09, M78, M09a, T95].

4. (Dg and simplicial) rings and structured ring spectra How do (simplicial, dg) rings embed into
structured ring spectra? Schwede [Schw99] proved that connectiveHZ-algebras correspond to simplicial
rings, Shipley showed that differential graded rings are Quillen equivalent to HZ-algebras. Earlier
Dundas showed that every functor with smash product can be approximated by simplicial rings [D97].
There are pitfalls, however: Dugger-Shipley found HZ-algebras that are equivalent as ring spectra but
whose corresponding dg-rings are not quasiisomorphic and Lawson showed that commutative Γ-rings
are not what you might think they are [DS07, L09].

5. Picard and Brauer groups Given a commutative ring spectrum R, we would like to understand
its modules and algebras, in particular its invertible module spectra and possible Azumaya algebra
spectra over it. Explain some results about Picard groups, define the Brauer group of a commutative
ring spectrum and present some examples [MaSt, St92, HMS94, HS99, Ka10, AG14, BR05, BRS12].

6. Galois extensions of structured ring spectra Discuss the case of ordinary commutative rings,
define Galois extension of commutative ring spectra and explain some of the properties. Examples:
KO → KU , K(n)-local examples between the K(n)-local sphere and Lubin-Tate, cochain Galois
extensions between S and HFp [R08]. How does one determine brave new Galois groups [Ma]?

7. Hochschild and topological Hochschild homology Briefly recall Hochschild homology for algebras
[Lo98] and then explain the various definitions of THH, the Bökstedt spectral sequence and tell us for
what kinds of (brave new) rings THH is known [Bö1, Bö2, S00, EKMM97, Gr, A05, AHL10, McCS93]...

8. Higher and iterated THH Topological Hochschild homology of a commutative ring spectrum R can
be expressed as R ⊗ S1. Taking an n-torus (or an n-sphere) instead of a 1-sphere gives iterated (or
higher) topological Hochschild homology. Higher THH can be used to calculate iterated THH using the
cell structure on the n-torus. What is known? How can we compute these things? [BCD10, CDD11,
DLR, Ve]
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9. Topological André Quillen (co)homoloogy and Postnikov towers of commutative S-algebras
For connective commutative ring spectra there is a Postnikow tower in the setting of commutative ring
spectra refining the ordinary one. The corresponding k-invariants live in topological André-Quillen
cohomology. Explain the definition of this cohomology theory and how to build the tower [B99].

10. Obstruction theory In algebra we can usually see whether a ring is associative or commutative or
not. For homotopy ring spectra it can be hard to see whether the multiplication can be rigidified to a
strict ring structure. This can be done by showing that the ordinary Postnikov tower of a spectrum can
be refined to one in the world of associative or commutative ring spectra [B99] or obstruction theory
can help: [Ro89, Ro03, A11, GH04, GH].

11. Algebraic K-theory of rings and ring spectra – intro Describe Quillen’s definition of algebraic
K-theory of rings [Q72, Q73], and the value of πnK(R) for small n [We13]. What is Waldhausen’s
S.-construction [DGM13]?

12. Algebraic K-theory of rings and ring spectra – some big theorems Algebraic K-theory is
notoriously hard to calculate. Anything that helps is welcome! There are several deep results that
reduce that calculation of the algebraic K-theory of rings to other algebraic K-groups and these might
be known or ’easier’ to calculate. Give an overview (see for instance [We13, St89, G87, Schli06,
Ta12],[DGM13, I.2.7]) and focus on one result, for instance on the fundamental theorem comparing
K∗(R[t]) to K∗(R).

13. Dennis trace map Introduce the Dennis trace map from algebraic K-theory to Hochschild homology
and variants of cyclic homology. What is topological cyclic homology? [BHM93, D04, DGM13, Mad94,
BGT14]

14. Topological cyclic homology and the cyclotomic trace map Report on some calculations of TC
and of the cyclotomic trace map ([Mad94, BöMa94, D], see also [AGHL14] for a recent result). For
background on the deRham-Witt complex see [H1, H2]

15. Algebraic K-theory of ring spectra – geometric features of algebraic K-theory What should
arithmetic properties of ring spectra be? We probably don’t know, but we do know that algebraic
K-theory of ring spectra sometimes carries geometric information: Waldhausen’s A-theory is related
to geometric topology, algebraic K-theory of connective complex K-theory is related to a categorified
version of vector bundles (2-vector bundles), Stolz and Teichner aim at describing the spectrum of
topological modular forms via field theories and K-theory. Give an overview over these examples and
discuss one case in more detail ([Wa85, BDRR13, BDRR11, O12, R-ICM, ST04, ST11]).

16. Algebraic K-theory of ring spectra – localization sequences, logarithmic structures Blum-
berg and Mandell [BlM08] proved that there is a localization sequence, i.e., a cofiber sequence

K(Z)→ K(ku)→ K(KU).

This result was conjectured by Rognes. Algebraic K-theory of connective ring spectra can be ap-
proached via trace methods but for periodic spectra like periodic complex K-theory, KU , this is not
the case, so far. Rognes developed the notion of logarithmic ring spectra [R09] and in joint work with
Sagave and Schlichtkrull they calculated logarithmic topological Hochschild homology. Conjecturally
there is a trace map from K(KU) to log-THH [BlM08, R09, RSS, Sa14]. Logarithmic structures already
appear in [HM03].

17. Rognes’ red-shift conjecture What is the red-shift conjecture? What evidence is there to support
this conjecture? What do we know about Galois descent for algebraic K-theory? ([R-ICM, R-MSRI]
and references therein, [AR02, introduction].)

18. Discussion: What are future directions?
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