n-Butterflies: Modeling Derived Morphisms of Strict *n*-Groups

Gregory (Ivan) Dungan II

Department of Mathematics USMA, West Point

July 9, 2015

Outline

n-Homotopy Types

▶ A homotopy n-type is an object X of $Ho(\mathbf{Top}_Q)$ in which $\pi_k(X) = \mathbf{1}$ for k > n.

n-Homotopy Types

- ▶ A homotopy n-type is an object X of $Ho(\mathbf{Top}_Q)$ in which $\pi_k(X) = \mathbf{1}$ for k > n.
- ► The category of homotopy *n*-types is the full subcategory

$$\mathbf{H} \mathsf{n} \mathsf{Typ} \subseteq Ho(\mathsf{Top}_Q).$$

n-Homotopy Types

- ▶ A homotopy n-type is an object X of $Ho(\mathbf{Top}_Q)$ in which $\pi_k(X) = \mathbf{1}$ for k > n.
- ► The category of homotopy *n*-types is the full subcategory

$$\mathbf{HnTyp} \subseteq Ho(\mathbf{Top}_Q).$$

▶ Moreover, H1Typ $\subseteq H2$ Typ $\subseteq Hn$ Typ $\subseteq Ho($ Top $_O).$

Connected Homotopy 1-Types

▶ The functor $\pi_1 : \mathbf{Top}^c \to \mathbf{Grp}$ induces

$$\mathsf{H}1\mathsf{Typ}^c\simeq\mathsf{Grp}$$

Connected Homotopy 1-Types

▶ The functor $\pi_1 : \mathbf{Top}^c \to \mathbf{Grp}$ induces

$$\mathsf{H}1\mathsf{Typ}^c\simeq\mathsf{Grp}$$

► Groups model connected homotopy 1-types.

Connected Homotopy 1-Types

▶ The functor $\pi_1 : \mathbf{Top}^c \to \mathbf{Grp}$ induces

$$\mathsf{H}1\mathsf{Typ}^c\simeq\mathsf{Grp}$$

- ► Groups model connected homotopy 1-types.
- ▶ $[X,Y]_{\mathsf{Top}} \cong \mathsf{Grp}(\pi_1(X),\pi_1(Y))$ where X,Y are connected homotopy 1-types.

Crossed Modules

▶ A **crossed module** $[G : \partial]$ is a homomorphism of groups $\partial : C_2 \to C_1$ with a right action x^a of G_1 on G_2 satisfying

CM1
$$\partial(x^a) = a^{-1}\partial(x)a$$

CM2 $x^{\partial(y)} = y^{-1}xy$

Crossed Modules

▶ A **crossed module** $[G : \partial]$ is a homomorphism of groups $\partial : C_2 \to C_1$ with a right action x^a of G_1 on G_2 satisfying

CM1
$$\partial(x^a) = a^{-1}\partial(x)a$$

CM2 $x^{\partial(y)} = y^{-1}xy$

▶ A morphism $f : [G, \partial] \rightarrow [H, \delta]$ is a commutative diagram

$$\begin{array}{ccc}
G_2 & \xrightarrow{f_1} & H_2 \\
\downarrow & & \downarrow \\
G_1 & \xrightarrow{f_1} & H_1
\end{array}$$

such that f_2 is f_1 -equivariant.

Crossed Modules

▶ A **crossed module** $[G : \partial]$ is a homomorphism of groups $\partial : C_2 \to C_1$ with a right action x^a of G_1 on G_2 satisfying

CM1
$$\partial(x^a) = a^{-1}\partial(x)a$$

CM2 $x^{\partial(y)} = y^{-1}xy$

▶ A morphism $f : [G, \partial] \rightarrow [H, \delta]$ is a commutative diagram

$$G_2 \xrightarrow{f_1} H_2$$

$$\downarrow \qquad \qquad \downarrow$$

$$G_1 \xrightarrow{f_1} H_1$$

such that f_2 is f_1 -equivariant.

► Crossed modules with morphisms form a category xm.

Connected Homotopy 2-Types

Theorem (B. Noohi [?])

The Moerdijk-Svensson model structure on **xm** induces the equivalence

$$\mathsf{H2Typ}^c \simeq Ho(\mathsf{xm})$$

Connected Homotopy 2-Types

Theorem (B. Noohi [?])

The Moerdijk-Svensson model structure on xm induces the equivalence

$$\mathsf{H2Typ}^c \simeq Ho(\mathsf{xm})$$

Crossed modules model connected homotopy 2-types.

Connected Homotopy 2-Types

Theorem (B. Noohi [?])

The Moerdijk-Svensson model structure on xm induces the equivalence

$$\mathsf{H2Typ}^c \simeq Ho(\mathsf{xm})$$

- Crossed modules model connected homotopy 2-types.
- ► The morphisms $[X, Y]_{xm}$ model morphisms of connected homotopy 2-types.

▶ $[H,G]_{xm} = xm(Q,G)/ \simeq$ where Q is a cofibrant replacement of H.

- ▶ $[H,G]_{xm} = xm(Q,G)/ \simeq$ where Q is a cofibrant replacement of H.
- ▶ We would like to avoid computing cofibrant replacements.

- ▶ $[H,G]_{xm} = xm(Q,G)/ \simeq$ where Q is a cofibrant replacement of H.
- ▶ We would like to avoid computing cofibrant replacements.

Theorem (B. Noohi [?])

There is a bijection

$$[\mathsf{H},\mathsf{G}]_{\mathsf{xm}} \xrightarrow{\cong} \pi_0(\mathsf{B}(\mathsf{H},\mathsf{G}))$$

where B(H, G) is the groupoid of butterflies.

- ▶ $[H,G]_{xm} = xm(Q,G)/ \simeq$ where Q is a cofibrant replacement of H.
- ▶ We would like to avoid computing cofibrant replacements.

Theorem (B. Noohi [?])

There is a bijection

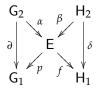
$$[\mathsf{H},\mathsf{G}]_{\mathsf{xm}} \xrightarrow{\cong} \pi_0(\mathsf{B}(\mathsf{H},\mathsf{G}))$$

where B(H, G) is the groupoid of butterflies.

► The connected components of B(G, H) model morphisms of connected homotopy 2-types.

Butterflies

A butterfly from $[G : \partial]$ to $[H : \delta]$ is a commutative diagram

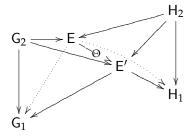


where both diagonals are complexes, $H_2 \to E \to G_1$ is short exact and for $x \in E, g \in G_2, h \in H_2$

$$\alpha(g^{p(x)}) = x^{-1}\alpha(g)x \qquad \qquad \beta(h^{f(x)}) = x^{-1}\beta(h)x$$

Morphisms of Butterflies

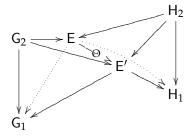
 \blacktriangleright A morphism of butterflies is an isomorphism $\Theta: \mathsf{E} \to \mathsf{E}'$ such that



commutes.

Morphisms of Butterflies

▶ A morphism of butterflies is an isomorphism $\Theta : E \to E'$ such that



commutes.

▶ Butterflies from $[G : \partial]$ to $[H : \delta]$ with morphisms form a groupoid denoted by B(G, H).

Question

► Can we model morphisms of other spaces up to homotopy type?

Question

- ► Can we model morphisms of other spaces up to homotopy type?
- In particular, is there an analog of butterflies for these spaces?

$$\cdots \xrightarrow{\delta_{k+1}} \mathsf{G}_k \xrightarrow{\delta_k} \mathsf{G}_{k-1} \xrightarrow{\delta_{k-1}} \cdots \xrightarrow{\delta_3} \mathsf{G}_2 \xrightarrow{\delta_2} \mathsf{G}_1 \xrightarrow{\delta_0} \mathsf{G}_0$$

▶ A crossed complex $[G, \delta]$ over a groupoid G_1 is a sequence

$$\cdots \xrightarrow{\delta_{k+1}} \mathsf{G}_k \xrightarrow{\delta_k} \mathsf{G}_{k-1} \xrightarrow{\delta_{k-1}} \cdots \xrightarrow{\delta_3} \mathsf{G}_2 \xrightarrow{\delta_2} \mathsf{G}_1 \xrightarrow{\delta_0} \mathsf{G}_0$$

1. For $k \geq 2$, $G_k = \{G_k(x)\}_{x \in G_0}$ where $G_k(x)$ is a group.

$$\cdots \xrightarrow{\delta_{k+1}} \mathsf{G}_k \xrightarrow{\delta_k} \mathsf{G}_{k-1} \xrightarrow{\delta_{k-1}} \cdots \xrightarrow{\delta_3} \mathsf{G}_2 \xrightarrow{\delta_2} \mathsf{G}_1 \xrightarrow{\delta_0} \mathsf{G}_0$$

- 1. For $k \geq 2$, $G_k = \{G_k(x)\}_{x \in G_0}$ where $G_k(x)$ is a group.
- 2. For $k \geq 3$, $G_k(x)$ is abelian.

$$\cdots \xrightarrow{\delta_{k+1}} \mathsf{G}_k \xrightarrow{\delta_k} \mathsf{G}_{k-1} \xrightarrow{\delta_{k-1}} \cdots \xrightarrow{\delta_3} \mathsf{G}_2 \xrightarrow{\delta_2} \mathsf{G}_1 \xrightarrow{\delta_0} \mathsf{G}_0$$

- 1. For $k \geq 2$, $G_k = \{G_k(x)\}_{x \in G_0}$ where $G_k(x)$ is a group.
- 2. For $k \geq 3$, $G_k(x)$ is abelian.
- 3. δ is a functor which respects G_0 such that $\delta \circ \delta = 1$.

$$\cdots \xrightarrow{\delta_{k+1}} \mathsf{G}_k \xrightarrow{\delta_k} \mathsf{G}_{k-1} \xrightarrow{\delta_{k-1}} \cdots \xrightarrow{\delta_3} \mathsf{G}_2 \xrightarrow{\delta_2} \mathsf{G}_1 \xrightarrow{\delta_0} \mathsf{G}_0$$

- 1. For $k \geq 2$, $G_k = \{G_k(x)\}_{x \in G_0}$ where $G_k(x)$ is a group.
- 2. For $k \geq 3$, $G_k(x)$ is abelian.
- 3. δ is a functor which respects G_0 such that $\delta \circ \delta = 1$.
- 4. G_1 acts on G_k on the right and satisfies:

$$\cdots \xrightarrow{\delta_{k+1}} \mathsf{G}_k \xrightarrow{\delta_k} \mathsf{G}_{k-1} \xrightarrow{\delta_{k-1}} \cdots \xrightarrow{\delta_3} \mathsf{G}_2 \xrightarrow{\delta_2} \mathsf{G}_1 \xrightarrow{\delta_0} \mathsf{G}_0$$

- 1. For $k \geq 2$, $G_k = \{G_k(x)\}_{x \in G_0}$ where $G_k(x)$ is a group.
- 2. For $k \geq 3$, $G_k(x)$ is abelian.
- 3. δ is a functor which respects G_0 such that $\delta \circ \delta = 1$.
- 4. G_1 acts on G_k on the right and satisfies:
 - 4.1 For $a \in G_k(x), f \in G_1(x,y)$, then $a^f \in G_k(y)$.
 - 4.2 For $k \ge 2$, δ_k preserves the action.
 - 4.3 Im δ_2 acts by conjugation on G_2 and trivially on G_k for k > 2.

$$\cdots \xrightarrow{\delta_{k+1}} \mathsf{G}_k \xrightarrow{\delta_k} \mathsf{G}_{k-1} \xrightarrow{\delta_{k-1}} \cdots \xrightarrow{\delta_3} \mathsf{G}_2 \xrightarrow{\delta_2} \mathsf{G}_1 \xrightarrow{\delta_0} \mathsf{G}_0$$

- 1. For $k \geq 2$, $G_k = \{G_k(x)\}_{x \in G_0}$ where $G_k(x)$ is a group.
- 2. For $k \geq 3$, $G_k(x)$ is abelian.
- 3. δ is a functor which respects G_0 such that $\delta \circ \delta = 1$.
- 4. G_1 acts on G_k on the right and satisfies:
 - 4.1 For $a \in G_k(x), f \in G_1(x, y)$, then $a^f \in G_k(y)$.
 - 4.2 For $k \ge 2$, δ_k preserves the action.
 - 4.3 Im δ_2 acts by conjugation on G_2 and trivially on G_k for k > 2.
- ▶ $[G, \delta]$ is a reduced crossed complex if G_1 is a group.

▶ A morphism $f : H \rightarrow G$ is the data:

- ▶ A morphism $f : H \rightarrow G$ is the data:
 - 1. Set map $f_0: \mathsf{H}_0 \to \mathsf{G}_0$
 - 2. Functors $f_k : H_k \to G_k$ over f_0 compatible with δ and the action.
- Crossed complexes with morphisms form a category Xc.

- ▶ A morphism $f : H \rightarrow G$ is the data:
 - 1. Set map $f_0: H_0 \rightarrow G_0$
- 2. Functors $f_k : \mathsf{H}_k \to \mathsf{G}_k$ over f_0 compatible with δ and the action.
- Crossed complexes with morphisms form a category Xc.
- ► Reduced crossed complexes form a full subcategory xc.

- ▶ A morphism $f : H \rightarrow G$ is the data:
 - 1. Set map $f_0: \mathsf{H}_0 \to \mathsf{G}_0$
 - 2. Functors $f_k : \mathsf{H}_k \to \mathsf{G}_k$ over f_0 compatible with δ and the action.
- Crossed complexes with morphisms form a category Xc.
- ► Reduced crossed complexes form a full subcategory xc.
- ▶ Reduced n-Crossed Complexes $nxc : G_k = 1$ for all k > n

Truncated Examples

▶
$$xc^1 : G_k = 0 \text{ for } k \ge 1$$

$$\mathbf{xc}^1 \simeq \mathbf{Grp} \simeq \mathbf{H} 1 \mathbf{Typ}^c$$

Truncated Examples

▶
$$xc^1 : G_k = 0 \text{ for } k \ge 1$$

$$\mathsf{xc}^1 \simeq \mathsf{Grp} \simeq \mathsf{H} 1 \mathsf{Typ}^c$$

▶
$$xc^2 : G_k = 0 \text{ for } k \ge 2$$

$$\mathbf{xc}^2 \simeq \mathbf{xm} \leadsto Ho(\mathbf{xc}^2) \simeq \mathbf{H}2\mathbf{Typ}^c$$

▶ Initial object in **Xc** is the empty crossed complex ∅

- ▶ Initial object in **Xc** is the empty crossed complex ∅
- ► Final object in **Xc**

1:
$$\cdots \longrightarrow 1 \longrightarrow 1 \longrightarrow 1 \longrightarrow 1$$

- ▶ Initial object in **Xc** is the empty crossed complex ∅
- ► Final object in **Xc**

1:
$$\cdots \longrightarrow 1 \longrightarrow 1 \longrightarrow 1 \longrightarrow 1$$

- ▶ Initial object in **Xc** is the empty crossed complex ∅
- ► Final object in **Xc**

1:
$$\cdots \longrightarrow 1 \longrightarrow 1 \longrightarrow 1 \longrightarrow 1$$

- ▶ Initial object in **Xc** is the empty crossed complex ∅
- ► Final object in **Xc**

1:
$$\cdots \longrightarrow 1 \longrightarrow 1 \longrightarrow 1 \longrightarrow 1$$

► The unit interval crossed complex 1:

1.
$$I_0 = \{0, 1\}$$

- ▶ Initial object in **Xc** is the empty crossed complex ∅
- ► Final object in **Xc**

1:
$$\cdots \longrightarrow 1 \longrightarrow 1 \longrightarrow 1 \longrightarrow 1$$

- ► The unit interval crossed complex I:
 - 1. $I_0 = \{0, 1\}$
 - 2. $I_k(0) = 1$ and $I_k(1) = 1$

- ▶ Initial object in **Xc** is the empty crossed complex ∅
- ► Final object in **Xc**

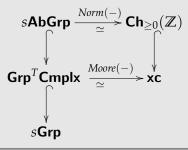
1:
$$\cdots \longrightarrow 1 \longrightarrow 1 \longrightarrow 1 \longrightarrow 1$$

- ► The unit interval crossed complex I:
 - 1. $I_0 = \{0, 1\}$
 - 2. $I_k(0) = \mathbf{1}$ and $I_k(1) = \mathbf{1}$
 - 3. $I_1(0,1) = <\iota> \text{ and } I_1(1,0) = <\iota^{-1}>$

Extended Dold-Kan Theorem

Theorem (N. Ashley)

The Moore complex gives an extension of the Dold-Kan correspondence to the category of reduced crossed complexes **xc**.



A *m*-fold left homotopy $(g, \phi_k^m : H_k \to G_{k+m}) : [H : \partial] \to [G : \delta]$ is a morphism

A *m*-fold left homotopy $(g, \phi_k^m : H_k \to G_{k+m}) : [H : \partial] \to [G : \delta]$ is a morphism

A *m*-fold left homotopy $(g, \phi_k^m : H_k \to G_{k+m}) : [H : \partial] \to [G : \delta]$ is a morphism

1. $\phi_1^m(ab) = \phi_1^m(a)^{g_1(b)}\phi_1^m(b)$ for $a, b \in H_1$;

A *m*-fold left homotopy $(g, \phi_k^m : H_k \to G_{k+m}) : [H : \partial] \to [G : \delta]$ is a morphism

- 1. $\phi_1^m(ab) = \phi_1^m(a)^{g_1(b)}\phi_1^m(b)$ for $a, b \in H_1$;
- 2. $\phi_k^m(xy) = \phi_k^m(x)\phi_k^m(y)$ for $x,y \in H_k$ where $k \ge 2$;

A *m*-fold left homotopy $(g, \phi_k^m : H_k \to G_{k+m}) : [H : \partial] \to [G : \delta]$ is a morphism

- 1. $\phi_1^m(ab) = \phi_1^m(a)^{g_1(b)}\phi_1^m(b)$ for $a, b \in H_1$;
- 2. $\phi_k^m(xy) = \phi_k^m(x)\phi_k^m(y)$ for $x, y \in H_k$ where $k \ge 2$;
- 3. ϕ_k^m is g_1 -equivariant for $k \geq 2$.

Internal Hom and Tensor

Theorem (R. Brown, P. Higgins [?])

For crossed complexes H, G, there is a crossed XC(H, G) given by

$$\mathbf{XC}(\mathsf{H},\mathsf{G})_0 = \mathbf{Xc}(\mathsf{H},\mathsf{G})$$

$$XC(H, G)_k = \{k - \text{fold left homotopies}\}$$

Internal Hom and Tensor

Theorem (R. Brown, P. Higgins [?])

For crossed complexes H, G, there is a crossed XC(H, G) given by

$$\mathbf{XC}(\mathsf{H},\mathsf{G})_0 = \mathbf{Xc}(\mathsf{H},\mathsf{G})$$

$$XC(H, G)_k = \{k - \text{fold left homotopies}\}$$

Theorem (R. Brown, P. Higgins [?])

For every $C, D, E \in \mathbf{Xc}$,

$$Xc(C \otimes D, E) \cong Xc(C, XC(D, E))$$

which makes $(Xc, \otimes, 1)$ a closed symmetric monoidal category.

n-Homotopy Groups

For a crossed complex $[G : \delta]$ and $x \in G_0$

▶ Connected Components: $\pi_0(G) = \pi_0(G_1)$;

n-Homotopy Groups

For a crossed complex $[G : \delta]$ and $x \in G_0$

- ▶ Connected Components: $\pi_0(G) = \pi_0(G_1)$;
- ► Fundamental Homotopy Group: $\pi_1(G,x) = \operatorname{coker} \delta_2(x)$;

n-Homotopy Groups

For a crossed complex $[G : \delta]$ and $x \in G_0$

- ▶ Connected Components: $\pi_0(G) = \pi_0(G_1)$;
- ► Fundamental Homotopy Group: $\pi_1(G,x) = \operatorname{coker} \delta_2(x)$;
- ▶ *n*-Homotpy Group: $\pi_n(G, x) = H_n(G(x))$.

Weak Equivalences and Fibrations

▶ A weak equivalence is a morphism $f : H \rightarrow G$ in Xc which induces

$$\pi_0(\mathsf{H}) \cong \pi_0(\mathsf{G})$$

 $\pi_k(\mathsf{H},x) \cong \pi_k(\mathsf{G},f_0(x))$

Weak Equivalences and Fibrations

▶ A weak equivalence is a morphism $f : H \rightarrow G$ in Xc which induces

$$\pi_0(\mathsf{H}) \cong \pi_0(\mathsf{G})$$

 $\pi_k(\mathsf{H}, x) \cong \pi_k(\mathsf{G}, f_0(x))$

- ▶ A **fibration** is a morphism $f : H \rightarrow G$ in **Xc** such that
 - 1. $f_1: H_1 \rightarrow G_1$ is a fibration of groupoids;

Weak Equivalences and Fibrations

▶ A weak equivalence is a morphism $f : H \rightarrow G$ in Xc which induces

$$\pi_0(\mathsf{H}) \cong \pi_0(\mathsf{G})$$

 $\pi_k(\mathsf{H},x) \cong \pi_k(\mathsf{G},f_0(x))$

- ▶ A **fibration** is a morphism $f : H \rightarrow G$ in **Xc** such that
 - 1. $f_1: H_1 \to G_1$ is a fibration of groupoids;
 - 2. $f(x)_k : H_k(x) \to G_k(f_0(x))$ is a surjection for all $x \in H_0$ and $k \ge 2$.

Model Structure

Theorem (R. Brown, M. Golasinski [?])

Weak equivalences and fibrations form a closed model structure on $\boldsymbol{X}\boldsymbol{c}.$

Theorem (R. Brown, M. Golasinski [?])

Weak equivalences and fibrations form a closed model structure on Xc.

► The homotopy category of **Xc** has as morphisms

$$[\mathsf{H},\mathsf{G}]_{\boldsymbol{\mathsf{Xc}}}=\boldsymbol{\mathsf{Xc}}(\mathsf{Q},\mathsf{G})/\simeq$$

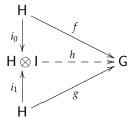
where Q is a cofibrant replacement of H.

Homotopy

For $f,g: H \to G$, a homotopy from f to g is a morphism

$$h: \mathsf{H} \otimes \mathsf{I} \to \mathsf{G}$$

such that



commutes.

Relation to 1-Fold Left Homotopy

Theorem (A. Tonks [?])

▶ Let $f,g: H \to G$ be morphisms of reduced crossed complexes. Defining a homotopy $h: f \simeq g$ is equivalent to defining a 1-fold left homotopy

$$(g, \phi_k : \mathsf{H}_k \to \mathsf{G}_{k+1})$$

Relation to 1-Fold Left Homotopy

Theorem (A. Tonks [?])

▶ Let $f,g: H \to G$ be morphisms of reduced crossed complexes. Defining a homotopy $h: f \simeq g$ is equivalent to defining a 1-fold left homotopy

$$(g, \phi_k : \mathsf{H}_k \to \mathsf{G}_{k+1})$$

► Moreover, *f* is determined by

$$f_1(a) = g_1(a)\delta_2(\phi_1(a)) f_k(x) = g_k(x)\delta_{k+1}(\phi_k(x))\phi_{k-1}(\partial_k(x))$$

Relation to 1-Fold Left Homotopy

Theorem (A. Tonks [?])

▶ Let $f,g: H \to G$ be morphisms of reduced crossed complexes. Defining a homotopy $h: f \simeq g$ is equivalent to defining a 1-fold left homotopy

$$(g, \phi_k : \mathsf{H}_k \to \mathsf{G}_{k+1})$$

► Moreover, *f* is determined by

$$f_1(a) = g_1(a)\delta_2(\phi_1(a)) f_k(x) = g_k(x)\delta_{k+1}(\phi_k(x))\phi_{k-1}(\partial_k(x))$$

▶ In other words, the quotient set $[H,G]_{Xc} = Xc(Q,G)/\simeq$ can be described using 1-fold left homotopies.

Definition

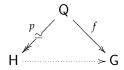
▶ We would like to model $[H,G]_{xc} = Xc(Q,G)/\simeq$.

Definition

- ▶ We would like to model $[H,G]_{xc} = Xc(Q,G)/\simeq$.
- ▶ Define *derived morphisms* to be the elements of the set Xc(Q, G).

Definition

- ▶ We would like to model $[H,G]_{xc} = Xc(Q,G)/\simeq$.
- ▶ Define *derived morphisms* to be the elements of the set Xc(Q, G).
- ▶ Derived morphisms can be viewed as fractions:



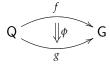
where $p : Q \to H$ is a cofibrant replacement of H.

Derived Groupoid

The derived groupoid <u>Rhom</u>(H, G) is defined by <u>Rhom</u>(H, G)₀ = Xc(Q, G) and morphisms of the form

Derived Groupoid

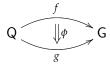
► The derived groupoid <u>Rhom</u>(H, G) is defined by <u>Rhom</u>(H, G)₀ = Xc(Q, G) and morphisms of the form



where ϕ is a 1-fold left homotopy.

Derived Groupoid

► The derived groupoid <u>Rhom</u>(H, G) is defined by <u>Rhom</u>(H, G)₀ = Xc(Q, G) and morphisms of the form



where ϕ is a 1-fold left homotopy.

▶ By definition, there is a bijection

$$[\mathsf{H},\mathsf{G}]_{\mathbf{xc}} \cong \pi_0(\underline{\mathbf{Rhom}}(\mathsf{H},\mathsf{G})).$$

Model of Derived Morphisms

► The main result:

Model of Derived Morphisms

► The main result:

Theorem (D.)

Let H, G be reduced n-crossed complexes. Then there is an equivalence of categories

$$\underline{\mathsf{Rhom}}(\mathsf{H},\mathsf{G}) \simeq n\mathsf{B}(\mathsf{H},\mathsf{G})$$

where nB(H, G) is the groupoid of n-butterflies.

Results

Model of Derived Morphisms

▶ The main result:

Theorem (D.)

Let H, G be reduced n-crossed complexes. Then there is an equivalence of categories

$$\underline{\mathsf{Rhom}}(\mathsf{H},\mathsf{G}) \simeq n\mathsf{B}(\mathsf{H},\mathsf{G})$$

where nB(H,G) is the groupoid of n-butterflies.

Corollary

Let H, G be reduced *n*-crossed complexes. Then there is a bijection

$$[\mathsf{H},\mathsf{G}]_{\mathbf{xc}}\cong\pi_0(n\mathsf{B}(\mathsf{H},\mathsf{G}))$$

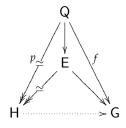
where nB(H,G) is the groupoid of n-butterflies.

Algebraic Replacement

► Goal: avoid computing a cofibrant replacement of H.

Algebraic Replacement

- ▶ Goal: avoid computing a cofibrant replacement of H.
- ▶ Instead, find a crossed complex E which satisfies



∇ Factorization

▶ For a derived morphism $f: Q \rightarrow G$, consider the morphism

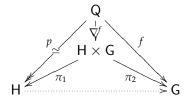
$$abla^f:\mathsf{Q}\to\mathsf{H}\times\mathsf{G}.$$

∇ Factorization

▶ For a derived morphism $f : Q \rightarrow G$, consider the morphism

$$\nabla^f:\mathsf{Q}\to\mathsf{H}\times\mathsf{G}.$$

▶ Then the following diagram commutes.

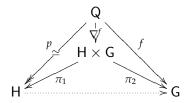


∇ Factorization

▶ For a derived morphism $f: Q \rightarrow G$, consider the morphism

$$abla^f:\mathsf{Q}\to\mathsf{H}\times\mathsf{G}.$$

▶ Then the following diagram commutes.



▶ But not necessarily a fraction!

▶ For a derived morphism $f : [Q : \xi] \to [G : \delta]$ in nxc, there is a reduced n-crossed complex

$$\mathsf{H}_n \times \mathsf{G}_n \longrightarrow \mathsf{Q}_{n-1} \times^{\nabla_n^f} \mathsf{H}_n \times \mathsf{G}_n \longrightarrow \mathsf{Q}_{n-2} \longrightarrow \mathsf{Q}_{n-3} \longrightarrow \cdots$$

▶ For a derived morphism $f:[Q:\xi] \to [G:\delta]$ in $n\mathbf{xc}$, there is a reduced n-crossed complex

$$\mathsf{H}_n \times \mathsf{G}_n \longrightarrow \mathsf{Q}_{n-1} \times^{\nabla_n^f} \mathsf{H}_n \times \mathsf{G}_n \longrightarrow \mathsf{Q}_{n-2} \longrightarrow \mathsf{Q}_{n-3} \longrightarrow \cdots$$

where in the n=2 case replace product with semidirect product.

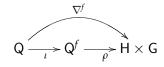
▶ For a derived morphism $f : [Q : \xi] \to [G : \delta]$ in nxc, there is a reduced n-crossed complex

$$\mathsf{H}_n \times \mathsf{G}_n \longrightarrow \mathsf{Q}_{n-1} \times^{\nabla_n^f} \mathsf{H}_n \times \mathsf{G}_n \longrightarrow \mathsf{Q}_{n-2} \longrightarrow \mathsf{Q}_{n-3} \longrightarrow \cdots$$

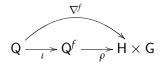
where in the n=2 case replace product with semidirect product.

▶ We will call this crossed complex the n-pushout below ∇_n^f and denote it by $[Q^f: \mathcal{E}^f]$.

▶ Let $f : [H : \partial] \to [G : \delta]$ be a morphism $n\mathbf{x}\mathbf{c}$ and Q a cofibrant replacement of H. Then we have the factorization:



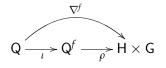
▶ Let $f : [H : \partial] \to [G : \delta]$ be a morphism $n\mathbf{xc}$ and Q a cofibrant replacement of H. Then we have the factorization:



Theorem (D.)

The morphism $\iota: Q \to Q^f$ is a weak equivalence.

▶ Let $f : [H : \partial] \to [G : \delta]$ be a morphism $n\mathbf{x}\mathbf{c}$ and Q a cofibrant replacement of H. Then we have the factorization:



Theorem (D.)

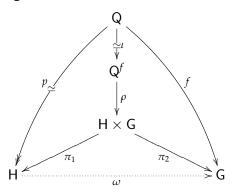
The morphism $\iota: Q \to Q^f$ is a weak equivalence.

Theorem (D.)

The morphism $cotr_{n-1}(\iota) : cotr_{n-1}(\mathsf{Q}) \to cotr_{n-1}(\mathsf{Q}^f)$ is an isomorphism in degree n-1 and the identity for k < n-1.

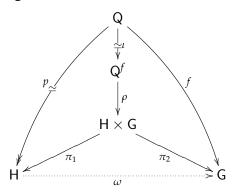
Induced Fraction

► The following diagram commutes.



Induced Fraction

▶ The following diagram commutes.

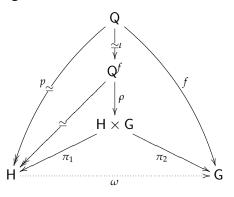


Theorem (D.)

The induced morphism $Q^f \longrightarrow G \times H \xrightarrow{\pi_1} G$ is a trivial fibration.

Induced Fraction

► The following diagram commutes.

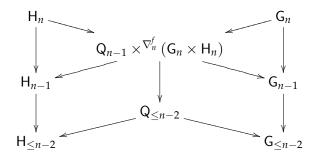


Theorem (D.)

The induced morphism $Q^f \longrightarrow G \times H \xrightarrow{\pi_1} G$ is a trivial fibration.

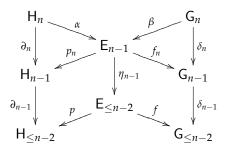
Unfolding Qf

▶ By unfolding the map $Q^f \xrightarrow{\rho} H \times G$, we have a commutative diagram



Definition

A *n*-**Butterfly** from H to G is



where $[\mathsf{E}:\eta] \xrightarrow{p} [\mathsf{H}_{\leq n-1}:\partial]$ and $[\mathsf{E}:\eta] \xrightarrow{f} [\mathsf{G}_{\leq n-1}:\partial]$ are morphisms of reduced (n-1)-crossed complexes;

Definition Continued

the induced sequences

$$1 \longrightarrow \mathsf{G}_n \xrightarrow{\beta} \mathsf{E}_{n-1} \xrightarrow{u_n} \ker \eta_{n-2} \times_{\ker \partial_{n-2}} \mathsf{H}_{n-1} \longrightarrow 1$$
$$\mathsf{E}_k \xrightarrow{u_k} \ker \eta_{k-1} \times_{\ker \partial_{k-1}} \mathsf{H}_k \longrightarrow 1$$

for $k \le n-2$ are exact;

Definition Continued

the induced sequences

$$1 \longrightarrow \mathsf{G}_n \xrightarrow{\beta} \mathsf{E}_{n-1} \xrightarrow{u_n} \ker \eta_{n-2} \times_{\ker \partial_{n-2}} \mathsf{H}_{n-1} \longrightarrow 1$$
$$\mathsf{E}_k \xrightarrow{u_k} \ker \eta_{k-1} \times_{\ker \partial_{k-1}} \mathsf{H}_k \longrightarrow 1$$

for $k \le n-2$ are exact;

▶ the compositions $\eta_{n-1} \circ (\alpha \times \beta)$ and $f_n \circ \alpha$ are complexes

Definition Continued

the induced sequences

$$1 \longrightarrow \mathsf{G}_n \xrightarrow{\beta} \mathsf{E}_{n-1} \xrightarrow{u_n} \ker \eta_{n-2} \times_{\ker \partial_{n-2}} \mathsf{H}_{n-1} \longrightarrow 1$$
$$\mathsf{E}_k \xrightarrow{u_k} \ker \eta_{k-1} \times_{\ker \partial_{k-1}} \mathsf{H}_k \longrightarrow 1$$

for $k \le n-2$ are exact;

- ▶ the compositions $\eta_{n-1} \circ (\alpha \times \beta)$ and $f_n \circ \alpha$ are complexes
- \triangleright α , β satisfy the compatibility conditions

$$lpha\left(x^{p_1(a)}
ight)=lpha(x)^a$$
 and $eta\left(y^{f_1(a)}
ight)=eta(y)^a$

Folding a *n*-Butterfly

Theorem (D.)

Let $([E, \eta], p, f, \alpha, \beta)$ be a n-butterfly from G to H. Then the induced morphism

$$\begin{array}{ccc}
\mathsf{H}_n \times \mathsf{G}_n & \xrightarrow{\pi_1} & \mathsf{H}_n \\
\downarrow^{\alpha \times \beta} & & \downarrow^{\partial_n} \\
\mathsf{E}_{\leq n-1} & \xrightarrow{p} & \mathsf{H}_{\leq n-1}
\end{array}$$

of reduced n-crossed complexes is a trivial fibration.

Folding a *n*-Butterfly

Theorem (D.)

Let $([E, \eta], p, f, \alpha, \beta)$ be a n-butterfly from G to H. Then the induced morphism

$$\begin{array}{ccc} \mathsf{H}_n \times \mathsf{G}_n & \xrightarrow{\pi_1} & \mathsf{H}_n \\ \downarrow^{\alpha \times \beta} & & \downarrow^{\partial_n} \\ \mathsf{E}_{\leq n-1} & \xrightarrow{p} & \mathsf{H}_{\leq n-1} \end{array}$$

of reduced n-crossed complexes is a trivial fibration.

▶ We denote the folded *n*-butterfly on the left by E*.

n-Butterfly over Q

Corollary

Let $p: \mathsf{Q} \to \mathsf{H}$ be a cofibrant replacement of $\mathsf{H}.$ Then there exists a lift l

n-Butterfly over Q

Corollary

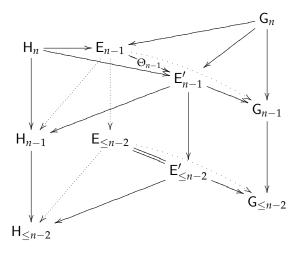
Let $p: Q \to H$ be a cofibrant replacement of H. Then there exists a lift l

Definition

Let Q be a cofibrant replacement of H. A *n-butterfly over* Q is an *n*-butterfly with a lift l such that $cotr_{n-1}(l): cotr_{n-1}(Q) \to cotr_{n-1}(E^*)$ is an isomorphism in degree n-1 and the identity for k < n-1.

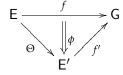
Morphisms of n-Butterflies

A morphism of n-butterflies over Q from H to G is a diagram



n-Butterflies Groupoid

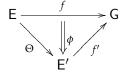
▶ where Θ is an isomorphism in degree n-1, the identity for k < n-1, and makes the diagram



commute up to a left 1-fold homotopy ϕ .

n-Butterflies Groupoid

▶ where Θ is an isomorphism in degree n-1, the identity for k < n-1, and makes the diagram



commute up to a left 1-fold homotopy ϕ .

Theorem (D.)

The n-butterflies from H to G over Q with the morphisms form a groupoid denoted by nB(H,G).

Property of Morphisms of *n*-Butterflies

Corollary

Let (Θ, ϕ) : $([E, \eta], p, f, \alpha, \beta) \to ([E', \eta'], p', f', \alpha', \beta')$ be a morphism of n-butterflies. Then the induced morphism $E^* \to (E')^*$ of reduced n-crossed complexes is a weak equivalence.

Property of Morphisms of *n*-Butterflies

Corollary

Let (Θ, ϕ) : $([E, \eta], p, f, \alpha, \beta) \to ([E', \eta'], p', f', \alpha', \beta')$ be a morphism of n-butterflies. Then the induced morphism $E^* \to (E')^*$ of reduced n-crossed complexes is a weak equivalence.

Theorem (D.

Let H,G be reduced n-crossed complexes. Then there is an equivalence of categories

$$\underline{\mathbf{Rhom}}(\mathsf{H},\mathsf{G}) \simeq n\mathsf{B}(\mathsf{H},\mathsf{G}).$$

Moreover, there is a bijection

$$[\mathsf{H},\mathsf{G}]_{\mathsf{xc}} \cong \pi_0(n\mathsf{B}(\mathsf{H},\mathsf{G})).$$

Thank you. Questions?