On the Alexander Polynomial of a welded ribbon tangle

Celeste Damiani

Laboratoire de Mathématiques Nicolas Oresme

Lausanne, Young Topologists' Meeting 2015

(joint work with Vincent Florens)

Panoramic view

Ribbon tubes: 2015, Audoux, Bellingeri, Meilhan, Wagner.

Classical tangles: 2012, Bigelow, Cattabriga, Florens. Functoriality: 2014, Florens, Massuyeau. Ribbon tangles in B⁴

Alexander functor:

functorial generalization of the Alexander polynomial Welded tangle diagrams in B²

Alexander polynomial:

combinatorial invariant

> Virtual case: 2010, Archibald.

Panoramic view

Ribbon tubes: 2015, Audoux, Bellingeri, Meilhan, Wagner.

Classical tangles: 2012, Bigelow, Cattabriga, Florens. Functoriality: 2014,

Florens, Massuyeau.

Ribbon tangles in B⁴

Alexander functor:

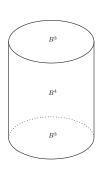
functorial generalization of the Alexander polynomial Welded tangle diagrams in B²

Alexander polynomial:

combinatorial invariant

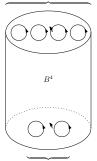
> Virtual case: 2010, Archibald.

•
$$B^4 = B^3 \times [0,1];$$



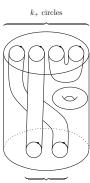
- $B^4 = B^3 \times [0,1];$
- k_+ circles in the upper copy of B^3 , and k_- circles in the lower copy of B^3 ;

 k_+ disjoint, unlinked, oriented, trivially embedded circles



 k_{-} disjoint, unlinked, oriented, trivially embedded circles

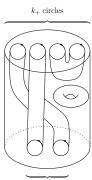
- $B^4 = B^3 \times [0,1];$
- k_+ circles in the upper copy of B^3 , and k_- circles in the lower copy of B^3 ;
- A_1, \ldots, A_k embedded annuli and E_1, \ldots, E_m embedded tori E_1, \ldots, E_m s.t.:



k_ circles

$$k = \frac{k_+ + k_-}{2}$$

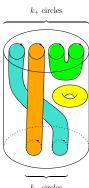
- $B^4 = B^3 \times [0,1];$
- k_+ circles in the upper copy of B^3 , and k_- circles in the lower copy of B^3 ;
- A_1, \ldots, A_k embedded annuli and E_1, \ldots, E_m embedded tori E_1, \ldots, E_m s.t.:
 - ∂A_i is the disjoint sum of two circles;



k_ circles

$$k = \frac{k_+ + k_-}{2}$$

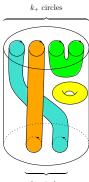
- $B^4 = B^3 \times [0,1];$
- k_+ circles in the upper copy of B^3 , and $k_$ circles in the lower copy of B^3 ;
- A_1, \ldots, A_k embedded annuli and E_1, \ldots, E_m embedded tori E_1, \ldots, E_m s.t.:
 - ∂A_i is the disjoint sum of two circles;
 - · both annuli and tori admit a filling with 3-balls and solid tori;



k_ circles

$$k = \frac{k_+ + k_-}{2}$$

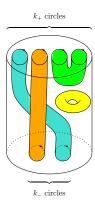
- $B^4 = B^3 \times [0,1];$
- k_+ circles in the upper copy of B^3 , and $k_$ circles in the lower copy of B^3 ;
- A_1, \ldots, A_k embedded annuli and E_1, \ldots, E_m embedded tori E_1, \ldots, E_m s.t.:
 - ∂A_i is the disjoint sum of two circles;
 - · both annuli and tori admit a filling with 3-balls and solid tori;
 - singular points are ribbon singularities.



k_− circles

$$k = \frac{k_+ + k_-}{2}$$

- $B^4 = B^3 \times [0,1];$
- k_+ circles in the upper copy of B^3 , and k_- circles in the lower copy of B^3 ;
- A_1, \ldots, A_k embedded annuli and E_1, \ldots, E_m embedded tori E_1, \ldots, E_m s.t.:
 - ∂A_i is the disjoint sum of two circles;
 - both annuli and tori admit a filling with 3-balls and solid tori;
 - singular points are ribbon singularities.



$$k = \frac{k_+ + k_-}{2}$$

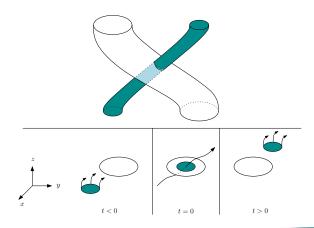
The set of ribbon tangles

 rTA_n : set of ribbon tangles up to ambient isotopy fixing the boundary circles.

Ribbon singularity

Flatly transverse disk whose preimage are two disk:

- one in the interior of a filling,
- the other with interior included in the interior of a filling, and an essential curve as boundary.



Representing welded ribbon tangles

Broken surfaces

Projecting a ribbon tangle's singularity in $B^3 = B^2 \times I$:

Warning

We loose the information about whether the "flying disk" was moving upward or downward!

Representing welded ribbon tangles

Broken surfaces

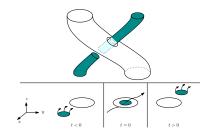
Projecting a ribbon tangle's singularity in $B^3 = B^2 \times I$:

Warning

We loose the information about whether the "flying disk" was moving upward or downward!

Convention

Erase a neighbourhood of the tube corresponding to the lower preimage disk.



From ribbon tangles to broken surfaces

Representing ribbon tangles

Any ribbon tangle can be represented by a broken surface diagram.

- \rightarrow Yanagawa (1969): flat embeddings of 2-spheres in \mathbb{R}^4 .
- → Audoux, Bellingeri, Meilhan, Wagner (2014): ribbon tubes.

Contents

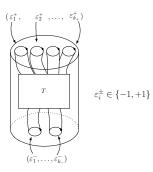
- Ribbon tangles and broken surfaces
- 2 The Alexander functor
- Welded diagrams and the Tube map
- A combinatorial approach to the Alexander functor
- Calculating the Alexander functor with the Alexander polynomia.

The category Rib

The category Rib

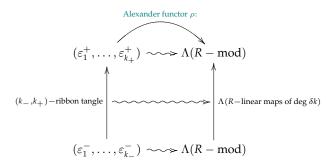
Objects: sequences of signs $(\varepsilon_1, \ldots, \varepsilon_k)$;

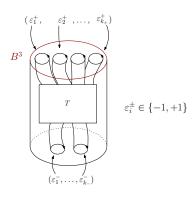
Morphisms: $(\varepsilon^{-}, \varepsilon^{+})$ -ribbon tangle with stacking as composition.



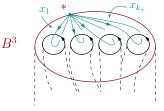
Construction of the functor

Objects of Rib \leadsto R-modules $(R = \mathbb{Z}[t, t^{-1}])$ Morphisms of Rib \leadsto Linear maps of degree δk between exterior algebras of R-modules.





$$(\varepsilon_1^+, \varepsilon_2^+, \ldots, \varepsilon_{k_+}^+)$$



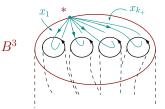
$$\chi_+ \colon \pi_1(B^3 \setminus \{C_1, \dots, C_n\}, *) \to \mathbb{Z} = \langle t \rangle$$

$$\chi_i \mapsto t^{\varepsilon_i^+}$$

One variable or many variables?

It is possible to take $\mathbb{Z}^{k_+} = \langle t_1, \dots, t_{k_+} \rangle$ in order to obtain a multivariable invariant (one variable for each component).

$$(\varepsilon_1^+, \varepsilon_2^+, \ldots, \varepsilon_{k_+}^+)$$



$$\chi_+ \colon \pi_1(B^3 \setminus \{C_1, \dots, C_n\}, *) \to \mathbb{Z} = \langle t \rangle$$

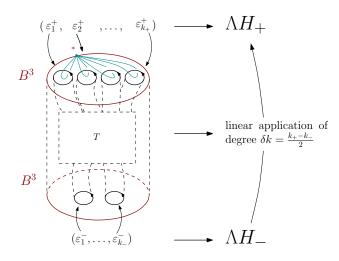
$$x_i \mapsto t^{\varepsilon_i^+}$$

This epimorphisms defines a covering $(B^3 \setminus \{C_1, \dots, C_n\})_+^{\chi}$.

The module H_+

We define H_+ to be $H_1((B^3 \setminus \{C_1, \ldots, C_n\})_+^{\chi}, *; \mathbb{Z}[t, t^{-1}]).$

The R-modules H_- and H_+



The *R*-module *H*

Let T be a ribbon tangle with n components, we denote:

- the exterior $X_T = B^4 \setminus \text{Tub }(T)$;
- m_{\pm} the inclusion maps of the upper and lower copies of B^3 in X_T ;
- the homology group $H_1(X_T) \simeq \mathbb{Z}^n$ is generated by the meridians of the annuli and tori;
- χ be the extention of the epimorphisms χ_+ and χ_- ;
- \hat{X}_T the maximal abelian cover defined.

The R-module H

Let T be a ribbon tangle with n components, we denote:

- the exterior $X_T = B^4 \setminus \text{Tub }(T)$;
- m_{\pm} the inclusion maps of the upper and lower copies of B^3 in X_T ;
- the homology group $H_1(X_T) \simeq \mathbb{Z}^n$ is generated by the meridians of the annuli and tori;
- χ be the extention of the epimorphisms χ_+ and χ_- ;
- \hat{X}_T the maximal abelian cover defined.

The module H

We define H to be $H_1(\hat{X}_T, *; \mathbb{Z}[t, t^{-1}])$, where * is a basepoint on $\partial_* B^4$.

1.

• $R = \mathbb{Z}[t, t^{-1}]$; M a R-module of finite type with a deficiency k presentation:

$$\langle \gamma_1, \ldots, \gamma_{p+k} \mid r_1, \ldots, r_p \rangle$$
.

- Γ = free R-module engendred by $\langle \gamma_1, \ldots, \gamma_{p+k} \rangle$.
- $\hat{r} = r_1 \wedge \cdots \wedge r_p$ and $\hat{\gamma} = \gamma_1 \wedge \cdots \wedge \gamma_{p+k}$.

The Alexander function

 $\varphi_{(M,k)}: \wedge^k M \to R$ is the *R*-linear application defined by:

$$u \wedge \hat{r} = \varphi(u) \cdot \hat{\gamma}$$

for each $u = u_1 \wedge \cdots \wedge u_k \in \wedge^k M$.

For *k* fixes, different deficiency *k* presentations give the Alexander functions which differ by a multiplicative unitary element of *R*.

The Alexander functor ρ

$$\varphi_{(H,k)}: \wedge^k H \to R$$
 Alexander function, $i_{\pm}: H_{\pm} \to H, k = \frac{k_+ + k_-}{2}, \delta k = \frac{k_+ - k_-}{2}$.

Alexander invariant

$$\rho_{\tau}: \wedge (\rho_{i,\tau}): \wedge H_{-} \to \wedge H_{+}$$

is defined as follows: for $u_- \in \wedge^i H_-$, $\rho_{i,\tau}(u_-)$ is the element of $\wedge^{i+\delta k} H_+$ that, for each $w_+ \in \wedge^{k-i} H_+$, satisfies:

$$\varphi(H,k)(i_{-}(u_{-}) \wedge i_{+}(w_{+})) = \det_{+}(\rho_{i,\tau}(u_{-}) \wedge w_{+}).$$

where $\det_+: \wedge^{k_+} H_+ \to R$ is a volume form on H_+ .

 \rightarrow Classical case: Bigelow, Cattabriga et Florens (2012).

Functoriality

 ρ is a functor from the category of 3-dim cobordisms with a representation of their fundamental group to the category of \mathbb{Z} -graded R-modules.

 \rightarrow Classical case: Florens et Massuyeau (2014).

Contents

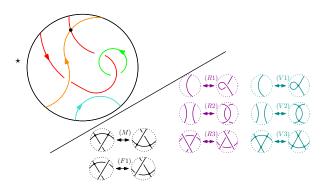
- Ribbon tangles and broken surfaces
- 2 The Alexander functor
- Welded diagrams and the Tube map
- A combinatorial approach to the Alexander functor
- Calculating the Alexander functor with the Alexander polynomial

Welded diagrams

Welded *k*-tangle diagram *T*

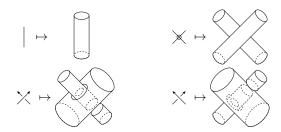
Immersion of k oriented arcs and a certain number of circles in B^2 such that:

- $\partial I \subset \partial B_2$,
- double points: finite number, transverse, decorated as positive, negative or virtual, modulo generalized Reidemeister moves.



The tube application

For every diagram, one can associate a broken surface, and hence a ribbon tangle by "blowing up" strings as follows:

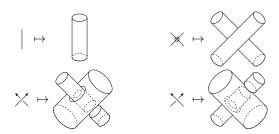


The tube map

This assignment defines a map Tube: diagrams $\rightarrow rTA_n$.

The tube application

For every diagram, one can associate a broken surface, and hence a ribbon tangle by "blowing up" strings as follows:



The tube map

This assignment defines a map Tube: diagrams $\rightarrow rTA_n$.

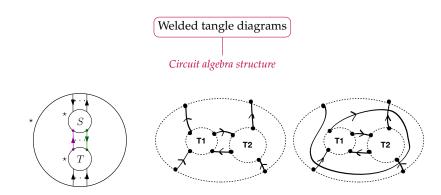
Proposition (Yanagawa, Satoh - Audoux, Bellingeri, Meilhan, Wagner)

The map *Tube* is surjective.

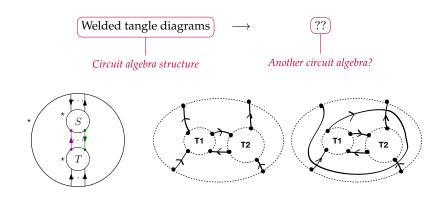
Contents

- Ribbon tangles and broken surfaces
- 2 The Alexander functor
- Welded diagrams and the Tube map
- A combinatorial approach to the Alexander functor
- Calculating the Alexander functor with the Alexander polynomial

The Alexander "polynomial" for welded tangle diagrams

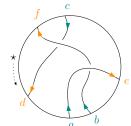


The Alexander "polynomial" for welded tangle diagrams



A pair of modules defined on welded tangle diagrams

The modules H_{in} and H_{out}



- $X^{in} = \{a, b, c\}$ $\rightarrow H_{in} = \mathbb{Z}[t^{\pm 1}]$ -module over X^{in} $X^{out} = \{d, e, f\}$ $\rightarrow H_{out} = \mathbb{Z}[t^{\pm 1}]$ -module over X^{out}

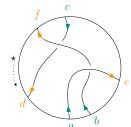
Alexander Half Densities

An Alexander Half Density of X^{in} and X^{out} , is an element of

$$\mathcal{D}(X^{in},X^{out})=\wedge^n(H_{in}\oplus H_{out}).$$

A pair of modules defined on welded tangle diagrams

The modules H_{in} and H_{out}



- $X^{in} = \{a, b, c\}$ $\rightarrow H_{in} = \mathbb{Z}[t^{\pm 1}]$ -module over X^{in} $X^{out} = \{d, e, f\}$ $\rightarrow H_{out} = \mathbb{Z}[t^{\pm 1}]$ -module over X^{out}

Alexander Half Densities

An Alexander Half Density of X^{in} and X^{out} , is an element of

$$\mathcal{D}(X^{in}, X^{out}) = \bigwedge^{n} (H_{in} \oplus H_{out}).$$

The circuit algebra of Alexander Half Densities

Alexander Half Densities with composition (multilinear applications among AHD) form a circuit algebra.

The Alexander matrix

T welded tangle diagram, we can associate a matrix of the form:

A(T) =	Internal arcs	Internal arcs	X^{in}	Xout	
	X^{out}				\int

The Alexander polynomial of a welded tangle diagram

The Alexander polynomial of a welded tangle diagram

We define:

$$\mathcal{A}(T) = \sum_{i_1 < \dots < i_k} (A(T)^{i_1, \dots, i_k}) x_{i_1} \wedge \dots \wedge x_{i_k} \in \wedge^k (H_{in} \oplus H_{out})$$

where $A(T)^{i_1 < \cdots < i_k}$ is the minor of A, with respect to the columns corresponding to internal arcs and arcs i_1, \ldots, i_k .

Properties

An invariant morphism of circuit algebras

- \mathcal{A} is a morphism between the circuit algebras \mathcal{T} of welded tangle diagrams and \mathcal{D} of Alexander Half Densities;
- \mathcal{A} is an invariant for welded tangle diagrams defined modulo a unit of $\mathbb{Z}[t, t^{-1}]$.

 \rightarrow Virtual case: Jana Archibald (2010).

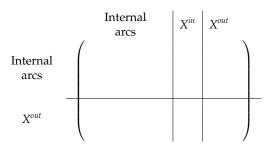
Contents

- Ribbon tangles and broken surfaces
- 2 The Alexander functor
- Welded diagrams and the Tube map
- A combinatorial approach to the Alexander functor
- 5 Calculating the Alexander functor with the Alexander polynomial

A presentation matrix for *H*

Proposition

The matrix A(T) is a presentation matrix for H with deficiency k.



Playing with braids

For a braid T: $k = k_- = k_+$, and $\delta k = \frac{k_+ - k_-}{2} = 0$.

- **Bigelow, Cattabriga, Florens:** ρ_i : $\wedge^i H_- \to \wedge^i H_+$ is the i-th external power of the Burau representation, modulo a multiplicative unit of R, that depends on the chosen presentation for H.
- Chosing A(T) as presentation matrix, we get

$$\rho = \bigoplus_{i} \rho_{i} = -\bigoplus_{i} \wedge \rho_{Burau}.$$

Main result

Theorem (2015 - D., Florens)

Let τ be an $(\varepsilon^-, \varepsilon^+)$ -ribbon tangles avec k_- et k_+ circles, $T(\tau)$ welded tangle diagram obtained by projection. There's a fonctorial isomorphism

$$\alpha \colon \bigwedge^k (H_{in} \oplus H_{out}) \to \operatorname{Hom}_{\delta k}(\bigwedge H_-, \bigwedge H_+)$$

that sends $A(T(\tau))$ to $\rho(\tau)$.

Decomposition

Partition of the points of a welded tangle diagrams that tht Tube map will send to circles "at the top" and "at the bottom".

Theorem (2015 - D., Florens)

Let T be a welded tangle diagram, and μ a decomposition. There's an isomorphism

$$\beta \colon \operatorname{Hom}_{\delta k}(\wedge H_-, \wedge H_+) \to \wedge^k (H_- \oplus H_+) \cong \wedge^k (H_{in} \oplus H_{out})$$

that send $\rho(\tau_{\mu}(T))$ to $\mathcal{A}(T)$. In particular, $\beta(\rho(\tau_{\mu}(T)))$ does not depend on the choice of μ .

Thank you for your attention.