A Generalization of the Boltzmann Distribution & Hodge theory

Michael J. Catanzaro

Wayne State University

YTM July 7, 2015

Outline

- Motivation
- 2 Spanning trees
- 3 Spanning co-trees
- 4 Applications

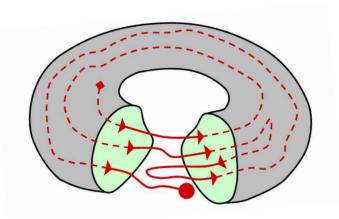
Classical currents

- Consider an electrical circuit, represented by a circular wire $(M = S^1 \times D^2)$ attached to a battery.
- The *current at* α is the number of charged particle crossings at an oriented cross-section α of the wire, per unit time.

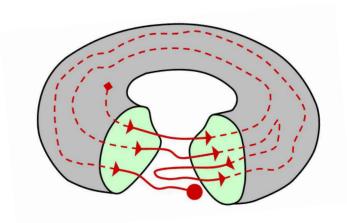
Classical currents

- Consider an electrical circuit, represented by a circular wire $(M = S^1 \times D^2)$ attached to a battery.
- The *current at* α is the number of charged particle crossings at an oriented cross-section α of the wire, per unit time.
- For a single electron, the contribution to the current is $\omega_{\alpha}=\frac{1}{t}N$, where $N=N_{+}-N_{-}$. If $\eta:S^{1}\to M$ is the trajectory, then $\omega=[\eta]t^{-1}\in H_{1}(M;\mathbb{R})$.

An example



An example



We're interested in studying these for general closed submanifolds $\eta:K\to M$ under some stochastic vector field.

The graph case

Let X be a graph, with edges X_1 and vertices X_0 . Suppose we're given functions

$$E: X_0 \to \mathbb{R}$$
 $W: X_1 \to \mathbb{R}$

thought of as energies (or resistances) associated to each vertex and edge.

Let X be a graph, with edges X_1 and vertices X_0 . Suppose we're given functions

$$E: X_0 \to \mathbb{R}$$
 $W: X_1 \to \mathbb{R}$

thought of as energies (or resistances) associated to each vertex and edge. Form the *master operator*

$$H = -\partial e^{-\beta \hat{W}} \partial^* e^{\beta \hat{E}} : C_0(X; \mathbb{R}) \to C_0(X; \mathbb{R})$$

where $\beta>0$ is a noise (temperature) factor. Consider the *master* equation

$$\frac{dp}{dt} = Hp$$

Current generation

• In the case of fixed E and W, no current will be generated.

Current generation

- In the case of fixed E and W, no current will be generated.
- If $M_X = \{E, W\}$, then $\gamma : [0, \tau] \to M_X$ does produce non-trivial currents.
- If $\gamma(0) = \gamma(\tau)$, then letting $\tau \to \infty$, we have

average current
$$Q(\gamma) = \int_0^1 \sum_{k \in X_1} A^k(\gamma, \dot{\rho}^B) dt$$

- In the case of fixed E and W, no current will be generated.
- If $M_X = \{E, W\}$, then $\gamma : [0, \tau] \to M_X$ does produce non-trivial currents.
- If $\gamma(0) = \gamma(\tau)$, then letting $\tau \to \infty$, we have

average current
$$Q(\gamma) = \int_0^1 \sum_{k \in X_1} A^k(\gamma, \dot{\rho}^B) dt$$

- A is the solution to the Kirchhoff problem, and ρ^B is the Boltzmann distribution.
- A can be expressed as a sum of spanning trees and ρ^B as a sum over the vertices of X.

Boltzmann distribution

- Consider a graph X with $W \equiv 0$.
- The steady state solution $\dot{p}=Hp=-\partial\partial^*e^{\beta\hat{E}}=0$ yields $p_j=e^{-\beta E_j}j$. Normalizing, we obtain the classical Boltzmann distribution

$$\rho^B = \frac{\sum_j e^{-\beta E_j} j}{\sum_j e^{\beta E_j}}.$$

Boltzmann distribution

- Consider a graph X with $W \equiv 0$.
- The steady state solution $\dot{p}=Hp=-\partial\partial^*e^{\beta\hat{E}}=0$ yields $p_j=e^{-\beta E_j}j$. Normalizing, we obtain the classical Boltzmann distribution

$$\rho^{B} = \frac{\sum_{j} e^{-\beta E_{j}} j}{\sum_{j} e^{\beta E_{j}}}.$$

• Define a modified inner product on $C_0(X; \mathbb{R})$, $\langle x, y \rangle_E = e^{\beta E_x} \langle x, y \rangle$. We see that ρ^B is closed, and co-closed in the modified inner product;

$$\langle \rho^B, \partial y \rangle_E = \langle \partial^* \rho^B, y \rangle = 0,$$

so ρ^{B} is orthogonal to all boundaries in the modified inner product.

Theorem (Hodge)

There exists a decomposition of the k-forms on a Riemannian manifold

$$\Omega^{k}(M) \cong \Delta_{k}(M) \bigoplus B^{k}(M) \bigoplus B_{k}(M)$$

$$\cong harmonic \bigoplus co-exact \bigoplus exact$$

where

- $B_k := \operatorname{im}(d : C^{k-1}(M) \to C^k(M))$
- $B^k := \operatorname{im}(d^* : C^{k+1}(M) \to C^k(M))$
- $\Delta_k(M) = \ker d \cap \ker d^*$

Let X be a connected CW complex of dimension d.

Fix $W: X_d \to \mathbb{R}$ and $E: X_{d-1} \to \mathbb{R}$.

Definition

A spanning tree for X is a subcomplex T such that

- $H_d(T; \mathbb{Z}) = 0$,
- $\beta_{d-1}(T) = \beta_{d-1}(X)$, where $\beta_k(X)$ denotes the k-th Betti number,
- $X^{(d-1)} \subset T$, where $X^{(k)}$ is the k-skeletion of X.

Let X be a connected CW complex of dimension d.

Fix $W: X_d \to \mathbb{R}$ and $E: X_{d-1} \to \mathbb{R}$.

Definition

A spanning tree for X is a subcomplex T such that

- $H_d(T; \mathbb{Z}) = 0$,
- $\beta_{d-1}(T) = \beta_{d-1}(X)$, where $\beta_k(X)$ denotes the k-th Betti number,
- $X^{(d-1)} \subset T$, where $X^{(k)}$ is the k-skeletion of X.

Let θ_T denote the order of the torsion subgroup of $H_{d-1}(T; \mathbb{Z})$ and define the weight of T to be the positive real number

$$w_T := \theta_T^2 \prod_{b \in T_d} W(b)^{-1}.$$

For a spanning tree T of X, define a linear transformation

$$\bar{T}: C_d(X;\mathbb{R}) \to Z_d(X;\mathbb{R}).$$

For a d-cell b: if b is contained in T then $\overline{T}(b) = 0$. Otherwise, let c generate $Z_d(T \cup b) = H_d(T \cup b)$. Set $t_b = \langle c, b \rangle$. Then $\overline{T}(b) := c/t_b$, is a real d-cycle of X.

For a spanning tree T of X, define a linear transformation

$$\bar{T}: C_d(X;\mathbb{R}) \to Z_d(X;\mathbb{R}).$$

For a d-cell b: if b is contained in T then $\overline{T}(b) = 0$. Otherwise, let c generate $Z_d(T \cup b) = H_d(T \cup b)$. Set $t_b = \langle c, b \rangle$. Then $\overline{T}(b) := c/t_b$, is a real d-cycle of X.

Theorem (C, Chernyak, Klein)

The orthogonal projection $C_d(X;\mathbb{R})_W \to Z_d(X;\mathbb{R})$ is given by

$$A = \frac{1}{\Delta} \sum_{T} w_{T} \, \bar{T} \,,$$

where the sum is over all spanning trees, and $\Delta = \sum_{T} w_{T}$.

A spanning co-tree for X is a subcomplex L such that

- $i_*: H_{d-1}(L; \mathbb{R}) \cong H_{d-1}(X; \mathbb{R})$
- $\beta_{d-2}(L) = \beta_{d-2}(X)$.
- $X^{(d-2)} \subset L \subset X^{(d-1)}$

A spanning co-tree for X is a subcomplex L such that

- $i_*: H_{d-1}(L; \mathbb{R}) \cong H_{d-1}(X; \mathbb{R})$
- $\beta_{d-2}(L) = \beta_{d-2}(X)$.
- $X^{(d-2)} \subset L \subset X^{(d-1)}$

By definition we have

Define the weight of a spanning co-tree to be

$$\tau_L := |\operatorname{cok} \phi_L|^2 \prod_{b \in T_{d-1}} E(b)^{-1}$$

For a spanning co-tree L of X, define ψ_L by the following diagram

$$H_{d-1}(X;\mathbb{R}) \xrightarrow{\phi_L^{-1}} Z_{d-1}(L;\mathbb{R})$$

$$\downarrow i_L$$

$$Z_{d-1}(X;\mathbb{R})$$

For a spanning co-tree L of X, define ψ_L by the following diagram

$$H_{d-1}(X;\mathbb{R}) \xrightarrow{\phi_L^{-1}} Z_{d-1}(L;\mathbb{R})$$

$$\downarrow i_L$$

$$Z_{d-1}(X;\mathbb{R})$$

Theorem (C, Chernyak, Klein)

The splitting $H_{d-1}(X;\mathbb{R}) \to Z_{d-1}(X;\mathbb{R})$ is given by

$$\rho^B = \frac{1}{\tau} \sum_{L} \tau_L \psi_L$$

where the sum is over all spanning co-trees, and $\tau = \sum_{L} \tau_{L}$.

Combining these two splittings, we get

$$C_d(X;\mathbb{R})_W \cong Z_d(X;\mathbb{R}) \bigoplus B^d(X;\mathbb{R})$$

$$0 \longrightarrow Z_d(X; \mathbb{R}) \xrightarrow{A} C_d(X; \mathbb{R}) \xrightarrow{\partial} B_{d-1}(X; \mathbb{R}) \longrightarrow 0$$

$$0 \longrightarrow B_d(X;\mathbb{R}) \longrightarrow Z_d(X;\mathbb{R}) \longrightarrow H_d(X;\mathbb{R}) \longrightarrow 0$$

Combining these two splittings, we get

$$C_d(X;\mathbb{R})_W \cong Z_d(X;\mathbb{R}) \bigoplus B^d(X;\mathbb{R})$$

$$\cong H_d(X;\mathbb{R}) \bigoplus B_d(X;\mathbb{R}) \bigoplus B^d(X;\mathbb{R})$$

$$0 \longrightarrow Z_d(X; \mathbb{R}) \longrightarrow C_d(X; \mathbb{R}) \stackrel{\partial}{\longrightarrow} B_{d-1}(X; \mathbb{R}) \longrightarrow 0$$

$$0 \longrightarrow B_d(X; \mathbb{R}) \longrightarrow Z_d(X; \mathbb{R}) \longrightarrow H_d(X; \mathbb{R}) \longrightarrow 0$$

Applications

$$Q(\gamma) = \int_0^1 \sum_k A^k(\gamma, \dot{\rho}^B) dt$$

In the low temperature, adiabatic limit, we have the following:

Theorem (Chernyak, Klein, Sinitsyn)

For a connected graph X, the image of $Q: LM_X \to H_1(X; \mathbb{R})$ is contained the integral lattice $H_1(X; \mathbb{Z}) \subset H_1(X; \mathbb{R})$.

$$Q(\gamma) = \int_0^1 \sum_k A^k(\gamma, \dot{\rho}^B) dt$$

In the low temperature, adiabatic limit, we have the following:

Theorem (Chernyak, Klein, Sinitsyn)

For a connected graph X, the image of $Q: LM_X \to H_1(X; \mathbb{R})$ is contained the integral lattice $H_1(X; \mathbb{Z}) \subset H_1(X; \mathbb{R})$.

Theorem (C, Chernyak, Klein)

Let X be a d-dimensional connected CW complex.

- 1 Q can be written in the above form.
- **2** The image of $Q: LM_X \to H_d(X; \mathbb{R})$ is contained in $H_d(X; \mathbb{Z}[\frac{1}{D}])$, where D is determined by topological data.