Free loop spaces and Koszul duality Young Topologists Meeting 2015, Lausanne

Kaj Börjeson

What?

We study the homology of free loop spaces $H_*(LX; \mathbb{k})$ where $LX = Map(S^1, X)$ is the unbased mapping space.

Why?

This has been studied for a long time since the Betti numbers of $H_*(LM; \mathbb{k})$ have strong connections to the number of closed geodesics of a Riemannian manifold M (with sufficiently generic metric). Faster growing Betti numbers implies more closed geodesics.

Why?

This has been studied for a long time since the Betti numbers of $H_*(LM; \mathbb{k})$ have strong connections to the number of closed geodesics of a Riemannian manifold M (with sufficiently generic metric). Faster growing Betti numbers implies more closed geodesics.

More recently, this is part of the study of $String\ topology$ since a seminal paper of Chas and Sullivan in 1999. If M is a manifold, $H_*(LM;\Bbbk)$ has a lot of algebraic structure; it is an example of a topological field theory.

Problem?

Calculating $H_*(LM; \mathbb{k})$ is very difficult in general.

Problem?

Calculating $H_*(LM; \mathbb{k})$ is very difficult in general.

We use Koszul duality to attack this for manifolds that are highly connected in relation to their dimension, more specifically, (n-1)-connected manifolds of dimension at most 3n-2. This is joint work with A. Berglund.

Crash course in Koszul duality theory

Definition

Let C be a differential graded coalgebra and let A be a differential graded algebra. The convolution algebra is a differential graded algebra with underlying module the graded module homomorphisms Hom(C,A). The product is given by

$$f \star g = \mu_A \circ (f \otimes g) \circ \Delta_C,$$

where Δ_C is the comultiplication of C and μ_A is the multiplication of A. The differential is given by

$$\partial(f) = d_A \circ f - (-1)^f f \circ d_C.$$

A twisting morphism $C \to A$ is an element τ of degree -1 in the convolution algebra satisfying

$$\partial(\tau) + \tau \star \tau = 0.$$

Example

Examples of (differential graded) coalgebras are the chains (with coefficients in a field k) on a space $C_*(X;k)$ and the homology $H_*(X;k)$. The comultiplication comes from the diagonal map $X \to X \times X$.

Example

Examples of (differential graded) algebras are the chains on a <u>based</u> loop space $C_*(\Omega X; \mathbb{k})$ and the homology $H_*(\Omega X; \mathbb{k})$. The product structure comes from concatenation of loops.

Example

There is a prototypical twisting morphism $\tau: C_*(X; \mathbb{k}) \to C_*(\Omega X; \mathbb{k})$. A degree 1 simplex corresponding to a loop in X is sent to the corresponding degree 0 simplex of ΩX .

Given a twisting morphism τ , the twisted tensor product $C \otimes_{\tau} A$ is the tensor product of graded modules with the differential $d = d_{C \otimes A} + d_{\tau}$, where $d_{C \otimes A}$ is the usual differential on the tensor product of chain complexes and

$$d_{\tau} := (Id_C \otimes \mu_A) \circ (Id_C \otimes \tau \otimes Id_A) \circ (\Delta_C \otimes Id_A).$$

The twisted convolution algebra is the differential graded algebra

$$Hom^{\tau}(C, A) = (Hom(C, A), \star, \partial^{\tau}),$$

with differential $\partial^{\tau} = \partial + [\tau, -]$, where,

$$\partial(f) = d_A \circ f - (-1)^f f \circ d_C, \quad [\tau, f] = \tau \star f - (-1)^{|f|} f \star \tau.$$

A coalgebra C and an algebra A are called $Koszul\ dual$ if there is a twisting morphism τ such that $C\otimes_{\tau}A$ is an acyclic complex. In this case we also call the coalgebra C and algebra A Koszul.

A space X is formal over \Bbbk if there is a weak equivalence of differential graded coalgebras:

$$C_*(X; \mathbb{k}) \sim H_*(X; \mathbb{k}).$$

A space X is coformal over \Bbbk if there is a weak equivalence of differential graded algebras:

$$C_*(\Omega X; \mathbb{k}) \sim H_*(\Omega X; \mathbb{k}).$$

A space X is formal over \Bbbk if there is a weak equivalence of differential graded coalgebras:

$$C_*(X; \mathbb{k}) \sim H_*(X; \mathbb{k}).$$

A space X is coformal over \Bbbk if there is a weak equivalence of differential graded algebras:

$$C_*(\Omega X; \mathbb{k}) \sim H_*(\Omega X; \mathbb{k}).$$

Theorem (Berglund)

If a simply connected space X of finite k-type is both formal and coformal over k, $H_*(X;k)$ is Koszul dual to $H_*(\Omega X;k)$.

A space X is formal over \Bbbk if there is a weak equivalence of differential graded coalgebras:

$$C_*(X; \mathbb{k}) \sim H_*(X; \mathbb{k}).$$

A space X is coformal over \Bbbk if there is a weak equivalence of differential graded algebras:

$$C_*(\Omega X; \mathbb{k}) \sim H_*(\Omega X; \mathbb{k}).$$

Theorem (Berglund)

If a simply connected space X of finite k-type is both formal and coformal over k, $H_*(X;k)$ is Koszul dual to $H_*(\Omega X;k)$.

Theorem (Berglund-B.)

Let $n \geq 2$. An (n-1)-connected manifold of dimension at most 3n-2 is formal and coformal over a field k if and only if $dim(H_*(X;k)) \neq 3$.

A space X is formal over \Bbbk if there is a weak equivalence of differential graded coalgebras:

$$C_*(X; \mathbb{k}) \sim H_*(X; \mathbb{k}).$$

A space X is coformal over \Bbbk if there is a weak equivalence of differential graded algebras:

$$C_*(\Omega X; \mathbb{k}) \sim H_*(\Omega X; \mathbb{k}).$$

Theorem (Berglund)

If a simply connected space X of finite k-type is both formal and coformal over k, $H_*(X;k)$ is Koszul dual to $H_*(\Omega X;k)$.

Theorem (Berglund-B.)

Let $n \geq 2$. An (n-1)-connected manifold of dimension at most 3n-2 is formal and coformal over a field k if and only if $dim(H_*(X;k)) \neq 3$.

Remark

Over the rationals, other spaces that are both formal and coformal include spheres, suspensions, loop spaces and configuration spaces of points in \mathbb{R}^n . The property of being formal and coformal is also preserved by products and wedges.

Free loop space homology and Hochschild cohomology

Remark

The set of twisting morphisms Tw(C,A) determines a bifunctor. It is representable in both arguments

$$Tw(C, A) \cong Hom_{dgAlg}(\Omega C, A) \cong Hom_{dgCoalg}(C, BA).$$

We call B and Ω the bar and cobar constructions respectively.

Free loop space homology and Hochschild cohomology

Remark

The set of twisting morphisms Tw(C,A) determines a bifunctor. It is representable in both arguments

$$Tw(C,A)\cong Hom_{dgAlg}(\Omega C,A)\cong Hom_{dgCoalg}(C,BA).$$

We call B and Ω the bar and cobar constructions respectively.

The bar contruction BA can be explicitly described as $\bigoplus_{k\geq 0} (sA)^{\otimes k}$ where s is raising the degree by 1. The comultiplication is given by a sum over all deconcatenations and $d_{BA}(sa_1\otimes\cdots\otimes a_k)$ is given by

$$\sum \pm sa_1 \otimes \cdots \otimes s(a_ia_j) \otimes \cdots \otimes sa_k + \sum \pm sa_1 \otimes \cdots \otimes s(d_A(a_i)) \otimes \cdots \otimes sa_k.$$

There is a twisting morphism $\tau: BA \to A$ given by projecting onto the k=1 part.

Free loop space homology and Hochschild cohomology

Remark

The set of twisting morphisms Tw(C,A) determines a bifunctor. It is representable in both arguments

$$Tw(C,A)\cong Hom_{dgAlg}(\Omega C,A)\cong Hom_{dgCoalg}(C,BA).$$

We call B and Ω the bar and cobar constructions respectively.

The bar contruction BA can be explicitly described as $\bigoplus_{k\geq 0} (sA)^{\otimes k}$ where s is raising the degree by 1. The comultiplication is given by a sum over all deconcatenations and $d_{BA}(sa_1\otimes\cdots\otimes a_k)$ is given by

$$\sum \pm sa_1 \otimes \cdots \otimes s(a_ia_j) \otimes \cdots \otimes sa_k + \sum \pm sa_1 \otimes \cdots \otimes s(d_A(a_i)) \otimes \cdots \otimes sa_k.$$

There is a twisting morphism $\tau: BA \to A$ given by projecting onto the k=1 part.

Definition

 $Hom^{\tau}(BA,A)$ is called the Hochschild (co)complex of the algebra A. The homology $HH^*(A)$ of this complex is called the Hochschild cohomology of A (with coefficients in itself).

Theorem (Berglund-B.)

Put $C := H_*(X)$ and $A := H_*(\Omega X)$. If a space X is formal and coformal over a field k there are isomorphisms

$$H_*(LX; \mathbb{k}) \cong HH^*(A) \cong H_*(\mathrm{Hom}^{\tau}(C, A)).$$

Theorem (Berglund-B.)

Put $C := H_*(X)$ and $A := H_*(\Omega X)$. If a space X is formal and coformal over a field k there are isomorphisms

$$H_*(LX; \mathbb{k}) \cong HH^*(A) \cong H_*(\mathrm{Hom}^{\tau}(C, A)).$$

Proof idea.

It is well known that $H_*(LX) \cong HH^*(C_*(\Omega X))$. Hochschild cohomology respects weak equivalences:

$$HH^*(C_*(\Omega X)) \cong HH^*(A) = H_*(\operatorname{Hom}^{\tau}(BA, A))$$

Since C and A are Koszul dual we have a deformation retract

$$h \longrightarrow BA \xrightarrow{g} C$$

which yield the following deformation retract after taking $\operatorname{Hom}(-,A)$ and twisting.

$$h' \longrightarrow \operatorname{Hom}^{\tau}(BA, A) \xrightarrow{f'} \operatorname{Hom}^{\tau}(C, A)$$
.

Applications

Theorem (Berglund-B.)

Let $n \geq 2$ and suppose that M is an (n-1)-connected closed manifold of dimension $d \leq 3n-2$ such that $\dim H^*(M) > 4$. Choose a basis x_1, \ldots, x_r for the indecomposables of $H^*(M)$ and let $c_{ij} = \langle x_i x_j, [M] \rangle$. The homology of the based loop space $H_*(\Omega M)$ is freely generated as an associative algebra by classes u_1, \ldots, u_r , with $|u_i| = |x_i| - 1$, modulo the single quadratic relation

$$\sum_{i,j} (-1)^{|x_i|} c_{ji} u_i u_j = 0.$$

There is a Koszul twisting morphism $H_*(M) \to H_*(\Omega M)$ given by $x_i^* \mapsto u_i$. There is an explicit complex computing $H_*(LM)$ given by

$$H^0(M) \otimes H_*(\Omega M) \xrightarrow{[\tau,-]} H^{0 < i < d}(M) \otimes H_*(\Omega M) \xrightarrow{[\tau,-]} H^d(M) \otimes H_*(\Omega M),$$

where $[\tau, -]$ is the commutator with $\tau := \sum_i x_i \otimes u_i$.

Corollary

Let k be any field and let M be an (n-1)-connected closed manifold of dimension at most 3n-2 $(n \geq 2)$ with dim $H^*(M; k) > 4$. Then the sequence dim $(H_n(LM; k))$ grows exponentially.

Corollary

For a generic metric on M, the number of geometrically distinct closed geodesics of length $\leq T$ grows exponentially in T.

Thank you for listening!