
Young Topologists' Meeting

EPF Lausanne 6-10 July 2015

Organizers:
Rachel JEITZINER
Martina ROVELLI
Kay WERNDLI
Dimitri ZAGANIDIS

NSF principal investigator:
Joseph Hirsch

with the support of

Contents

Schedule
Lectures
Monday morning, room CO1
Monday morning, room CO2
Monday afternoon, room CO1
Monday afternoon, room CO2
Tuesday morning, room CO1
Tuesday morning, room CO2
Tuesday afternoon, room CO1
Tuesday afternoon, room CO2
Wednesday morning, room CO1
Wednesday morning, room CO2
Wednesday afternoon, room CO1
Wednesday afternoon, room INF3
Wednesday afternoon, room CO2
Thursday morning, room CO1
Thursday morning, room $CO2$
Friday morning, CO1
Friday morning, room CO2
Map of campus
Excursions
Hike: Lavaux
Olympic Museum 25 The Door 25
Restaurants
Italian food
Asian food
Vegan food
Swiss restaurants
Contact, Wifi
List of Participants

SCHEDULE

Time	Monday CO1	CO2
8:15 – 8:45	Registration	
8:45 - 9:00	Welcome	
9:00 - 10:00	Professor Gunnar Carlsson Lecture 1	
<u></u>	Coffee break, ROOM CO122	
10:30 - 11:00	Gabrovšek Boštjan Skein modules	Wierstra Felix Applications of Koszul duality in algebraic topology
11:15 – 11:45	Anghel Cristina Ana-Maria Renormalized quantum dimension and multivariable invariants for links	Börjeson Kaj Free loop spaces and Koszul duality
12:00 – 12:30	Damiani Celeste On the Alexander polynomial of a tangle	Maunder James The homotopy theory of differential graded coalgebras and marked curved Lie algebras
Lunch		
14:00 - 15:00	Professor Gunnar Carlsson Lecture 2	
₩	Coffee break, ROOM: CO122	
15:30 - 16:00	Kudryashov Alexei Topology and Combinatorics of Qu- asitoric Manifolds	Bello Hugo Splittings and products of topological abelian groups
16:15 – 16:45	D'Mello Shane Chord Diagrams and Generic Real Rational Planar Curves of Degree 4	Stephan Marc Finite group actions on two-dimensional complexes
17:00 – 17:30	Santander Egas Daniela Arc operads and the Moduli space of surfaces	Garaialde Oihana p-local finite groups and partial groups
17:45 – 18:15	Ward Benjamin Moduli space actions and cyclic operads	Egger Philip Spectral sequences and nilpotence

Time	Tuesday CO1	CO2	
9:00 – 10:00	Professor Gunnar Carlsson Lecture 3		
!	Coffee break, ROOM: CO122		
10:30 – 11:00	Grigoriev Ilya Characteristic classes of manifold bundles	Malkiewich Cary An introduction to cyclic sets and cyclotomic spectra	
11:15 – 11:45	West Michael Homotopy Decompositions of Gauge Groups over Klein Surfaces	Angelini-Knoll Gabriel THH of the connective cover of the $K(1)$ -local sphere	
12:00 – 12:30	Wassermann Thomas Spin TQFTs and Anyons	Ungheretti Massimiliano A dihedral version of the Jones isomorphism	
Lunch			
14:00 – 15:00	Professor Emily Riehl Lecture 1		
ili.	Coffee break, ROOM: CO122		
15:30 – 16:00	Penney Mark Homotopy Fixed Points and the Classification of 2D Topological Field Theories	Beardsley Jonathan Thom Spectra and Coalgebraic Structure	
16:15 – 16:45	Catanzaro Michael A generalization of the Boltzmann distribution and Hodge theory	Konter Johan Obstruction theory for logarithmic ring spectra	
17:00 – 17:30	Zeidler Rudolf Positive scalar curvature and secondary index theory	Heard Drew The E_2 -term of the $K(n)$ -local E_n Adams spectral sequence	
17:45 – 18:15	Rust Dan The Strange Topology of Aperiodic Tilings and Their Cohomology	Gallauer Martin Traces in monoidal derivators	
18:30 -	Conference dinner		

Time	Wednesday CO1	CO2
9:00 – 10:00	Professor Gunnar Carlsson Lecture 4	
<u></u>	Coffee break, ROOM: CO122	
10:30 - 11:00	Scolamiero Martina Multidimensional Persistence and Noise	Zielenkiewicz Magdalena Goresky-Kottwitz-MacPherson graphs and their applications in equivariant cohomology
11:15 – 11:45	Filakovsky Marek Deciding whether two equivariant maps are homotopic	Burfitt Matthew Free loop cohomology of complete flag manifolds
12:00 – 12:30	Balchin Scott Developments in Topological Data Analysis	Low Zhen Lin Cocycles in categories of fibrant objects
Lunch		
14:00 - 15:00	Professor Emily Riehl Lecture 2	
₩.	Coffee break, ROOM: CO122	
15:30 – 16:00	Nadareishvili George Subcategory lattice of noncommuta- tive spaces	Barma Abdoul Kader Yacouba Rational homotopy type of the space of immersions
16:15 – 16:45	Adams Henry (Room INF3) Exercises for Gunnar Carlsson's lecture	Yeakel Sarah New chain rule for the homotopy calculus of functors
17:00 – 17:30	Adams Henry (Room INF3) Exercises for Gunnar Carlsson's lecture	Tebbe Amelia Computing the Goodwillie-Taylor Tower for Atomic Discrete Modules
17:45 – 18:15	Adams Henry (Room INF3) Exercises for Gunnar Carlsson's lecture	Prasma Matan The Grothendieck Construction for Model Categories
18:30 -		

Time	Thursday CO1	CO2
9:00 – 10:00	Professor Emily Riehl Lecture 3	
1	Coffee break, ROOM: CO122	
10:30 – 11:00	Otter Nina The phylogenetic operad	Weighill Thomas A characterization of R1-spaces via a Mal'tsev condition
11:15 – 11:45	Kalisnik Verovsek Sara Parametrized homology and Parametrized Alexander Duality Theorem	Dungan Ivan 'n-Butterflies: Modeling Morphisms between Strict n-Groups
12:00 – 12:30	Belchi Francisco A-infinity structures and Persistent Homology	Schaeppi Daniel Tannaka duality and Adams Hopf alge- broids
Excursio	on	

Time	Friday CO1	CO2		
9:00 – 10:00	Professor Emily Riehl Lecture 4			
*	Coffee break, ROOM: CO122			
10:30 - 11:00	Reeh Sune Saturated fusion systems as stable retracts of groups	Le Grignou Brice From homotopy operads to infinity- operads		
11:15 – 11:45	Molinier Rémi Classifying spaces of saturated fu- sion systems and their cohomology	White David The Baez-Dolan Stabilization Hypothesis and Left Proper Model Structures on Operads		
12:00 – 12:30	Araujo Manuel Fusion categories and 3-dimensional topological field theories	Balzin Eduard Derived sections and categorical resolutions in homotopical context		

LECTURES

GUNNAR CARLSSON (STANFORD UNIVERSITY)

Methods of applied topology

There is a lot of discussion around the topic of "Big Data", which means the study of large and complex data sets. From a mathematical point of view, these data sets typically have the structure of finite metric spaces, sometimes in numerous ways. The problem of analyzing these data sets is a very important one in the sciences, engineering, and commerce. Any kind of organizing principle for them would be a major contribution to the solution of these problems. It turns out that topology is a very useful such principle, both via versions of complex constructions as well as homology. This course will discuss these ideas, with numerous examples, and will as provide instruction on the use of persistent homology software.

EMILY RIEHL (HARVARD UNIVERSITY)

Infinity category theory from scratch

We use the terms ∞ -categories and ∞ -functors to mean the objects and morphisms in an ∞ -cosmos: a simplicially enriched category satisfying a few axioms, reminiscent of an enriched category of "fibrant objects." Quasi-categories, Segal categories, complete Segal spaces, iterated complete Segal spaces, and fibered versions of each of these are all all ∞ -categories in this sense. In joint work with Dominic Verity, we show that the basic category theory of ∞ -categories and ∞ -functors can be developed only in reference to the axioms of an ∞ -cosmos; indeed, most of the work is internal to a strict 2-category of ∞ -categories, ∞ -functors, and natural transformations. In the ∞ -cosmos of quasi-categories, we recapture precisely the same category theory developed by Joyal and Lurie, although in most cases our definitions, which are 2-categorical rather than combinatorial in nature, present a new incarnation of the classical concept.

In the first lecture, we define an ∞ -cosmos and introduce its homotopy 2-category, the strict 2-category mentioned above. We illustrate the use of formal category theory to develop the basic theory of equivalences of and adjunctions between ∞ -categories. In the second lecture, we study limits and colimits of diagrams taking values in an ∞ -category and relate these concepts to adjunctions between ∞ -categories. In the third lecture, we define comma ∞ -categories, which satisfy a particular weak 2-dimensional universal property in the homotopy 2-category. We illustrate the use of comma ∞ -categories to encode the universal properties of (co)limits and adjointness. Because comma ∞ -categories are preserved by all functors of ∞ -cosmoi and reflected by certain weak equivalences of ∞ -cosmoi, these characterizations form the foundations for "model independence'" results. In the fourth lecture, we introduce (co)cartesian fibrations, a certain class of ∞ -functors, and their groupoidal variants. We then describe the calculus of modules, between ∞ -categories — comma ∞ -categories being the prototypical example — and use this framework to state and prove the Yoneda lemma and develop the theory of pointwise Kan extensions along ∞ -functors.

Monday Morning, Room CO1

Gabrovšek Boštjan

Skein modules

Take a commutative ring with identity R and a 3-manifold M and consider the free R-module over the isotopy classes of links in M modulo the submodule generated by properly chosen skein relations between these classes. What we are left with is an algebraic object associated to M which is called the skein module of M. Skein modules capture essential information about the geometry of the 3-manifold as they reflect the interaction between embedded 1-dimensional and 2-dimensional submanifolds. For example, the existence of an embedded non- separating closed surface in M produces torsion in the module. On the other hand, by varying the skein relation, we can use skein modules to derive generalizations of classical knot polynomials for knots in arbitrary 3- manifolds. We will give an exposition of the results for the Kauffman bracket skein module and present recent results of the calculation of the HOMFLY-PT skein module of lens spaces.

Anghel Cristina Ana-Maria

Renormalized quantum dimension and multivariable invariants for links

The aim of this talk is to present a class of multivariable link invariants constructed from a super Lie algebra of type I and their relations with Kashaev's invariants and the Volume Conjecture. In the first part of the talk, after a short introduction concerning the classical Reshetikhin-Turaev construction [5], we will describe the multivariable link invariants introduced by Geer and Patureau in [1]. The main idea is to use the "renormalized quantum dimension" of a module instead of the usual quantum dimension to adapt the classical Reshetikhin-Turaev method in the Lie super-algebras of type I situation. The second part will be devoted to the connection be- tween the multivariable link invariants and HOMFLY-PT and Kashaev's invariants. We will explain how the intersection between the multivariable invariants and the colored HOMFLY-PT polynomials contains the Kashaev's invariants [2].

- [1] N. Geer, B. Patureau-Mirand, Multivariable link invariants arising from Lie super algebras of type I, J. Knot Theory Ramifications 19, Issue 1 (2010) 93-115
- [2] N. Geer, B. Patureau-Mirand, On the Colored HOMFLY-PT, Multivariable and Kashaev Link Invariants, Commun. Contemp. Math. 10 (2008), no. 1 supp, 993-1011
- [3] R.M. Kashaev, A link invariant from quantum dilogarithm, Modern Phys. Lett. A 10 (1995), no. 19, 14091418.
- [4] H. Murakami, J. Murakami, The colored Jones polynomials and the simplicial volume of a knot, Acta Math. 186 (2001), no. 1, 85104
- [5] N. Reshetikhin, V. Turaev, Invariants of 3-manifolds via link polynomials and quantum groups, Invent. Math. 103 (1991), 547-598

Damiani Celeste

On the Alexander polynomial of a tangle

Ribbon 2-knotted objects are locally flat 2-dimensional submanifolds of \mathbb{R}^4 that bound immersed 3-manifolds with only ribbon singularities. They appear as topological realizations of welded knotted objects, where welded knot theory is a quotient of virtual knot theory. We construct a functorial extension of the Alexander polynomial to ribbon tangles. At a combinatorial level this gives rise to a generalization of the Alexander polynomial of links to welded tangles.

Monday Morning, Room CO2

Wierstra Felix

Applications of Koszul duality in algebraic topology

In this talk I will give an introduction to the theory of Koszul duality and sketch some of its applications to topology. Koszul duality is a special kind of duality for certain good algebras that makes these algebras easier to understand. It is for example very easy to find minimal free resolutions for Koszul algebras and to compute there Ext and Tor. In topology Koszul duality has many applications, for example for good spaces it can be used to compute the rational homology of the n-fold loop space. Another application is in rational homotopy theory where Koszul duality gives a duality between Sullivan's commutative differential graded model and Quillen's Lie model for a space.

BÖRJESON KAJ

Free loop spaces and Koszul duality

The notions of formality and coformality of spaces are closely linked to the algebraic notion of Koszul duality. I will explain what these concepts are and what the connection looks like. This machinery enables us to compute homologies of free loop spaces that may otherwise be quite tricky. I will describe how this applies to the free loop space of any (n-1)-connected manifold of dimension at most 3n-2.

Maunder James

The homotopy theory of differential graded coalgebras and marked curved Lie algebras

Differential graded coalgebras arise for example as representing objects for formal deformation functors and they also play a prominent role in rational homotopy theory. As such, cocommutative differential graded coalgebras (subject to some conditions such as requiring them to be conilpotent) have been placed in the framework of a closed model category. A particularly pleasant property possessed by some of these constructions is the so-called Koszul duality: the closed model category is Quillen equivalent to a certain closed model category of differential graded Lie algebras. Within this talk, some recent work regarding the generalization of this construction to the category of cocommutative differential graded coalgebras without any restrictions will be discussed. To tell this story it is necessary to introduce the Koszul dual category: the category of marked curved Lie algebras and their morphisms.

Monday Afternoon, Room CO1

KUDRYASHOV ALEXEI

Topology and Combinatorics of Quasitoric Manifolds

Motion group theory arose as a generalisation of Braid Group theory [1], [2]. The central idea is to understand possible motions of a (compact) submanifold within it's ambient manifold. In this talk, I will introduce the motion group Mot(n) of $n \in \mathbb{N}$ disjoint, unlinked, unknotted loops in \mathbb{R}^3 (see for example [3],[4]). I will also state a classification theorem of particular unitary representations of this group.

- [1] DM Dahm, A Generalization of Braid Theory, Ph.D. Thesis, Princeton University, 196
- [2] D.L. Goldsmith, The theory of motion groups, Michigan Math. J. 28 (1981), 3-17.
- [3] FWattenberg, Differentiable motions of unknotted, unlinked circles in 3space, Math. Scand 30 (1972) 107?135
- [4] RL Rubinsztein, On the group of motions of oriented, unlinked and unknotted circles in R3, I, Preprint (2002)

D'Mello Shane

Chord Diagrams and Generic Real Rational Planar Curves of Degree 4

We will give an elementary proof that the rigid isotopy classification of generic real rational curves of degree 4 in the plane can be reduced to the combinatorial classification of certain chord diagrams.

SANTANDER EGAS DANIELA

Arc operads and the Moduli space of surfaces

I will define systems of arcs in surfaces and describe the arc complex of a surface. Using these I will give a leisurely introduction to a model of the Moduli space of two dimensional cobordisms and a PROP structure on it. If time permits I will mention connections with other Models of the PROP of Moduli space of surfaces and compactifications of it.

Ward Benjamin

Moduli space actions and cyclic operads

I will describe a combinatorial dg model for the homology of the open moduli spaces of punctured Riemann spheres. This model acts (in the operadic sense) on chain complexes computing e.g. string topology, cyclic cohomology of a Frobenius algebra, or equivariant cohomology of an S^1 space. We thus find homology operations old and new, as well as a homotopy invariant description of the chain level structures which produce these operations.

Monday Afternoon, Room CO2

Bello Hugo

Splittings and products of topological abelian groups

Let H, X and G be topological abelian groups. A short exact sequence $0 \to H \xrightarrow{\imath} X \xrightarrow{\pi} G \to 0$ is called an extension of topological abelian groups if both \imath and π are continuous and open homomorphisms when considered as maps onto their images. The set $\operatorname{Ext}(G,H)$ of all extensions of topological abelian groups of the form $0 \to H \xrightarrow{\imath} X \xrightarrow{\pi} G \to 0$ turns out to be an (abstract) abelian group when we endow it with the Baer sum.

The main result of this talk states that $\operatorname{Ext}(G, \mathbb{T}^{\alpha} \times \mathbb{R}^{\beta}) = 0$ where α and β are arbitrary cardinal numbers and $G = \prod_{i \in I} G_i$ is a product of locally precompact abelian groups.

To prove this result we will start by obtaining several properties of the Ext group. We will show that $\operatorname{Ext}(G,\prod_{\alpha<\kappa}H_\alpha)\cong\prod_{\alpha<\kappa}\operatorname{Ext}(G,H_\alpha)$ where $\prod_{\alpha<\kappa}H_\alpha$ is a product of topological abelian groups, and that $\operatorname{Ext}(G,H)\cong\operatorname{Ext}(\varrho G,H)$ where ϱG is the Raĭkov completion of G and H is Čech-complete. Finally, we will use the notion of admissible subgroup and the previously mentioned properties to reduce the problem to the case of extensions of countable products of metrizable groups by $\mathbb R$ or $\mathbb T$.

STEPHAN MARC

Finite group actions on two-dimensional complexes

We provide an introduction to the following open question in equivariant topology: does every finite group action on a contractible two-dimensional complex have a fixed point?

GARAIALDE OIHANA

p-local finite groups and partial groups

We introduce some objects known as p-local finite groups, which have both an algebraic and topological side. The algebraic structure resembles the p- local structure of a group and their classifying spaces possess homotopic properties similar to that of the p-completion of classifying spaces of finite groups. The aim is to give an overview of this theory that links the p-local structure of a group with the homotopy type of its classifying space. Moreover, we present the notion of a partial group as a tool to answer a question in p-local theory.

EGGER PHILIP

Spectral sequences and nilpotence

One of the main problems in algebraic topology is computing the homotopy groups of spheres. We will introduce and give examples of the use of spectral sequences developed by Adams, and then May, to compute these in a significant range. To find groups beyond that range, one must rely on infinite-periodic families of elements, which can be obtained by considering the v_n self-maps of Devinatz-Hopkins-Smith. We will give examples of such families.

Tuesday morning, room CO1

GRIGORIEV ILYA

Characteristic classes of manifold bundles

Fix a smooth, closed manifold M. Loosely speaking, a manifold bundle with fiber M over a space X assigns a manifold diffeomorphic to M to every point of X. For example, any diffeomorphism of M gives rise to a manifold bundle with fiber M over a circle (Hint: Start with $M \times [0,1]$ and glue the ends). There is a space, called BDiff M, that gives rise to all manifold bundles with fiber M (surprisingly, it has a rather geometric description). The elements of the cohomology ring of BDiff M are called "characteristic classes", and are the most promising invariants for studying manifold bundles. This story is analogous to the classical story about vector bundles. However, while the characteristic classes of vector bundles are very well understood, the characteristic classes of manifold bundles are far more mysterious, even when $M = \sum_g$ is a surface of genus g. I will describe the Madsen-Weiss theorem and Harer stability theorem that allow us to compute all the characteristic classes of surface bundles, but only in cohomological degrees that are far smaller than g. I will then talk about what happens in higher degrees, and what little we know about bundles with higher-dimensional fibers.

West Michael

Homotopy Decompositions of Gauge Groups over Klein Surfaces

Let P be a principal G-bundle over a space X, then the gauge group of P is defined to be its (topological) group of automorphisms. A useful way to calculate some invariants of gauge groups is to decompose them, up to homotopy, as a product of other spaces usually involving G and X. In this talk we will discuss decompositions of gauge groups of principal G-bundles associated to Real vector bundles in the sense of Atiyah.

Wassermann Thomas

Spin TQFTs and Anyons

Spin topological quantum field theories are representations of a category of bordisms with spin structures in an appropriate symmetric monoidal (n-)category. I will explain how to build such theories and indicate the various connections they have to physics, in particular to anyonic theories, and other areas of maths such as conformal nets.

Tuesday morning, room CO2

Malkiewich Cary

An introduction to cyclic sets and cyclotomic spectra

I will give an overview of the theory of cyclic sets and cyclic spectra, and end by describing some very new developments. Cyclic sets are a combinatorial model for topological spaces with a circle action. I'll draw some pictures to help show how you can see the fixed points of this circle action directly. Then we'll introduce the cyclic bar construction, which takes each group G to a cyclic set whose realization is the space of maps of the circle into BG. This is an example of a "cyclotomic" space: for each finite subgroup of the circle, the fixed points of this space are actually homeomorphic to the original space. Finally, we'll describe how the same construction works in the category of orthogonal spectra, arriving at the new "norm" model for topological Hochschild homology (THH) described in the paper of Angeltveit et al. Hopefully there will be time for a few small, very explicit examples.

Angelini-Knoll Gabriel

THH of the connective cover of the K(1)-local sphere

In the 1980's, Waldhausen proposed a program for computing algebraic K-theory of chromatic localizations of the sphere spectrum. The map from the algebraic K-theory of the p-local sphere to the p-local integers factors through the algebraic K-theory of the connective E(n)-local spheres. To begin the ascension up the tower, we want to compute algebraic K-theory of the connective E(1)-local sphere. From the point of view of trace methods, the first step is to compute topological Hochschild homology. After p-completion, the E(1)-local sphere is homotopy equivalent to the K(1)-local sphere. We therefore compute V(1)-homotopy of the topological Hochschild homology of the connective K(1)-local sphere. We compute this using a May-type THH spectral sequence developed by Andrew Salch.

Ungheretti Massimiliano

A dihedral version of the Jones isomorphism

The Jones isomorphism relates Hochschild homology $HH_{-\bullet}(S^*X)$ and cohomology of the free loop space $H^{\bullet}(LX)$, for any simply connected space X. This and its S^1 -equivariant version, have provided algebraic models for string topology. In work in progress, we use sim- ilar simplicial methods to explore the O(2)-equivariant case and give an isomorphism $DH_{-\bullet}(S^*X) \cong H^{\bullet}_{O(2)}(LX)$, involving a avour of dihedral homology.

Tuesday afternoon, room CO1

PENNEY MARK

Homotopy Fixed Points and the Classification of 2D Topological Field Theories

In this talk I will discuss a question in homotopy theory which arises when classifying topological field theories via the Cobordism Hypothesis. Namely, topological field theories for manifolds with a framing are classified by a particular homotopy type X carrying a (homotopy) O(n)-action. Field theories for manifolds with arbitrary G-structure (where G is a Lie group with a map to O(n)) are classified by the homotopy fixed point space of the induced G-action on X. The plan for the talk is to introduce these ideas concretely by considering only two dimensional field theories. This has the advantage of minimising the use of higher category theory while still capturing the important features. Time permitting I will discuss the extension of these ideas to higher dimensions.

Catanzaro Michael

A generalization of the Boltzmann distribution and Hodge theory

In this talk, I'll discuss a generalized notion of the Boltzmann distribution. This arises naturally from the view point of physics when studying Langevin processes (Stochastic differential equations) on a manifold. Specifically, we study twisted Laplacians that are related to these dynamics, in much the same way that Witten used deformed Laplacians to study Morse theory. Taking the low noise (low temperature) limit, we arrive at a unique harmonic form for the twisted Laplacians, which naturally plays the role of the Boltzmann distribution. Studying such leads to an explicit formula for the Hodge decomposition of a cocycle, i.e. splitting a k-form into its exact, co-exact, and harmonic parts. I will provide background and motivation from a physics standpoint, and then prove this decomposition and discuss applications from a topological viewpoint.

ZEIDLER RUDOLF

Positive scalar curvature and secondary index theory

We will discuss secondary index invariants such as the higher ρ -invariant for a metric of positive scalar curvature (PSC) on a spin manifold. These have been used fruitfully in certain cases to distinguish PSC metrics up to concordance or bordism. We adopt the approach of Xie-Yu and use the K-theory of Yu's localization algebras as receptacles for secondary index invariants. In this setup, we will present a new construction of the higher ρ -invariant of a PSC metric using a certain description of K-theory for graded C^* -algebras due to Trout. This allows simple proofs of various product formulas (cf. arXiv:1412.0685). Product formulas will enable us to extend the reach of the higher ρ -invariant e.g. to non-compact manifolds via a secondary partitioned-manifold index theorem.

Rust Dan

The Strange Topology of Aperiodic Tilings and Their Cohomology

Aperiodic tilings have become an important object of study, related to the recently discovered quasicrystals. Instead of studying a tiling in isolation, we introduce the 'tiling space' associated to a particular aperiodic tiling - a moduli space which codes many of the combinatorial and dynamical properties of the tiling. We are lead to ask how we can use methods from algebraic topology to identify and distinguish these space. We'll outline a method for calculating the Cech cohomology of these spaces via the construction of an inverse limit and apply this method to a family of 'multi-substitution' tilings called the Mixed Chacon tilings. We present the outline of a recent proof that the set of all Mixed Chacon tiling spaces form an uncountable collection of topologically distinct spaces, each pair distinguished by their cohomology groups.

Tuesday afternoon, room CO2

BEARDSLEY JONATHAN

Thom Spectra and Coalgebraic Structure

We define E_n bialgebras, coalgebras and comodules in the infinity category of spectra and describe a theorem providing a large number of examples by way of Thom spectra. We indicate applications to homotopical descent theory, Tannakian realization problems, and a spectral sequence for computing the moduli space of torsors for a fixed spectral bialgebra.

Konter Johan

Obstruction theory for logarithmic ring spectra

The Goerss-Hopkins obstruction theory is a very sensitive tool for detecting whether a certain E_* -algebra can be realized as the E_* -homology of an E_{∞} -ring spectrum X. A classical application is the construction of the spectrum Tmf where it is crucial that the obstructions vanish for smooth algebras. We set up a logarithmic obstruction theory which is supposed to vanish for log smooth algebras. This would allow us to build $Tmf(\Gamma)$ with level structures in cleaner way than before with the added benefit of endowing these ring spectra with logarithmic structures as introduced by Rognes, Sagave and Schlichtkrull.

HEARD DREW

The E_2 -term of the K(n)-local E_n Adams spectral sequence

Chromatic homotopy theory implies that the stable homotopy groups of a p-local finite spectrum X can be reassembled from the homotopy groups of a certain sequence of localizations with respect to a generalized cohomology theory known as Morvava K-theory, K(n). To compute these homotopy groups Devinatz and Hopkins have introduced a spectral sequence known as the K(n)-local E_n Adams spectral sequence. Under certain restrictive conditions the E_2 -term of this spectral sequence can be given as continuous group cohomology. We generalize previous known results by working in a category of L-complete comodules, and identify conditions for when we can identify the E_2 -term as an Ext group in this category. We give conditions for when this Ext group can be identified with continuous group cohomology. This is joint work with Tobias Barthel.

Gallauer Martin

Traces in monoidal derivators

A theorem of May states that traces in stable monoidal homotopy categories are additive in distinguished triangles. But how do they behave under more general homotopical operations? In order to investigate this question we define traces in closed monoidal derivators and establish some of their properties. In the stable setting we derive an explicit formula for the trace of the homotopy colimit over finite categories in which every endomorphism is invertible.

Wednesday Morning, Room CO1

Scolamiero Martina

Multidimensional Persistence and Noise

Multidimensional persistence is a method in topological data analysis which allows to compare various measurements on a data set. Within this method a dataset is represented by a functor from the poset of r-tuples of non negative real numbers to the category of vector spaces. Such functors are well behaved and we call them tame and compact. In this talk I will explain a way of comparing tame and compact functors based on the notion of a noise. This approach is based on the idea that in multidimensional persistence it is possible not only to choose properties of a dataset we want to study, for example by using filter functions, but also what should be neglected. I will also introduce an invariant for tame and compact functors we call the basic barcode. Finally, stability properties of the basic barcode and computational aspects will be addressed. (Joint work with W.Chachólski, A.Lundman, S. Öberg, R.Ramanujam)

FILAKOVSKY MAREK

Deciding whether two equivariant maps are homotopic

We will show how the methods of computational algebra, algebraic topology and computer science can be combined to give algorithmic solutions to a classical problems such as to decide whether two equivariant maps f, g between finite simplicial complexes X, Y with an action of a finite group G are homotopic.

Further, we will discuss applications of the results of computational equivariant algorithmic methods in computational topology related e.g. to Tverberg-type problems.

BALCHIN SCOTT

Developments in Topological Data Analysis

Topological data analysis is traditionally used to study large data sets to infer structure from it. This data set is endowed with a metric of some description which gives a notion of distance which allows us to build the Rips complex. However, what about in the situation where we do not have a symmetric distance on our data, as you would in a directed graph with respect to the shortest path. In this talk we will suggest a way to deal with such problems. We will also consider how one could use orbifolds to analyse clustering methods on a set of data. This is based on an ongoing joint research project with Etienne Pillin.

Wednesday morning, room CO2

Zielenkiewicz Magdalena

Goresky-Kottwitz-MacPherson graphs and their applications in equivariant cohomology

Goresky-Kottwitz-MacPherson graphs provide a combinatorial tool to describe the T-equivariant cohmology ring for a class of spaces satisfying certain conditions (GKM manifolds). The description via GKM graphs involves only the 0- and 1-dimensional orbits of the action. I will briefly introduce the concept of the GKM graph and describe it's relation to the Borel model of equivariant cohomology, concentrating on examples (projective spaces, grassmannians, flag varieties). I will also sketch relations with symplectic geometry and moment maps for torus actions and show examples of computations which can be done using GKM graphs.

Burfitt Matthew

Free loop cohomology of complete flag manifolds

We will discusses the calculation of the cohomology of the free loops space of complete flag manifolds. To demonstrate this we will focus on the case of the complete flag of the special unitary group, as our primary example.

Low Zhen Lin

Cocycles in categories of fibrant objects

Jardine introduced a very general notion of cocycle in categories with weak equivalences: very simply, a cocycle is a span where one of the legs is a weak equivalence. I will try to explain how to show that, for a category of fibrant objects (in the sense of Brown), Jardine's cocycle categories functorially compute the homotopy type of the hom-spaces in the simplicial localisation. This can be interpreted as a non-abelian version of Verdier's hypercovering theorem.

Wednesday afternoon, room CO1

George Nadareishvili

Subcategory lattice of noncommutative spaces

We will briefly describe the triangulated category of C*-algebras with the action of a topological space and how this amounts to a filtration of C*-algebras, in case of finite space with Alexandrov topology.

After, using rather intuitive generalization of K-theory and the universal coefficient theorem for it, we will classify the lattices of all localizing subcategories of such triangulated categories.

Wednesday afternoon, room INF3

Adams Henry

Exercises for Gunnar Carlsson's lecture

This exercise session will be a hands-on introduction to persistent homology in topological data analysis. We will use the Javaplex software package (http://appliedtopology.github.io/javaplex), which comes equipped with a tutorial with examples, exercises, and solutions. Two of the real datasets included in the tutorial are the three-circle model for optical image patches, and the conformation space of the cyclo-octane molecule (which is a Klein bottle glued to a sphere along two circles of singularities).

Wednesday afternoon, room CO2

BARMA ABDOUL KADER YACOUBA

Rational homotopy type of the space of immersions

Let M be a simply connected and compact m dimensional manifold and k an integer. In this talk we will show that the Betti numbers of each component of the space of immersions of M in \mathbb{R}^{m+k} have polynomial growth. The main tool of the proof is the construction of an explicit model of the components of space of immersions. We will prove that each component has the rational homotopy type of the product of Eilenberg Maclane space.

YEAKEL SARAH

New chain rule for the homotopy calculus of functors

In the homotopy calculus of functors, Goodwillie defined a way of assigning a Taylor tower of polynomial functors to a homotopy functor and identified the homogeneous pieces as being classified by certain spectra, called the derivatives of the functor. Arone and Ching showed that the derivatives of the identity functor of spaces form an operad, and developed a chain rule for composable functors. We will review this theory and these results and show that through a slight modification to the definition of derivative, we can find a more straight forward chain rule for endofunctors of spaces.

Tebbe Amelia

Computing the Goodwillie-Taylor Tower for Atomic Discrete Modules

Atomic discrete modules are functors from finite sets to chain complexes of R-modules that are completely determined by their value at a particular set. Robinson gave an explicit bicomplex for computing the stable homology of a general discrete module, i.e. functor from finite sets to chain complexes of R-modules. For a discrete module, there is a filtration by atomic discrete modules constructed from left Kan extensions. The rows of Robinson's bicomplex are the stable homology of these associated atomic discrete modules.

Prasma Matan

The Grothendieck Construction for Model Categories

The stable homology of a functor is the homology of the Goodwillie derivative of the functor. This fact inspires us to extend Robinson's bicomplex to one for computing the higher order polynomial approximations produced by Goodwillie's calculus of functors. To this end, we give an explicit bicomplex for atomic functors such that truncation by rows allow us to compute the Goodwillie polynomial approximations. The Grothendieck construction is a classical correspondence between diagrams of categories and coCartesian fibrations over the indexing category. In this paper we consider the analogous correspondence in the setting of model categories. As a main result, we establish an equivalence between suitable diagrams of model categories indexed by \mathcal{M} and a new notion of **model fibrations** over \mathcal{M} . When \mathcal{M} is a model category, our construction endows the Grothendieck construction with a model structure which gives a presentation of Lurie's ∞ -categorical Grothendieck construction and enjoys several good formal properties. We apply our construction to various examples, yielding model structures on strict and weak group actions and on modules over algebra objects in suitable monoidal model categories.

Thursday morning, room CO1

OTTER NINA

The phylogenetic operad

We construct an operad Phyl whose operations are the edge-labelled trees used in phylogenetics. This operad is the coproduct of Com, the operad for commutative semigroups, and $[0,\infty)$, the operad with unary operations corresponding to nonnegative real numbers, where composition is addition. We show that the Markov models used to reconstruct phylogenetic trees from genome data give coalgebras of Phyl. These always extend to coalgebras of the larger operad Com+ $[0,\infty]$, since Markov processes on finite sets converge to an equilibrium as time approaches infinity. We show that for any operad O, its coproduct with $[0,\infty]$ contains the Boardman-Vogt operad W(O). (Joint work with John Baez)

Kalisnik Verovsek Sara

Parametrized homology and Parametrized Alexander Duality Theorem

An important problem with sensor networks is that they do not provide information about the regions that are not covered by their sensors. If the sensors in a network are static, then the Alexander Duality Theorem from classic algebraic topology is sufficient to determine the coverage of a network. However, in many networks the nodes change position over time. In the case of dynamic sensor networks, we consider the covered and uncovered regions as parametrized spaces with respect to time. I will discuss parametrized homology, a variant of zigzag persistent homology, which measures how the homology of the level sets of a space changes as the parameter varies. I will show also how we can extend the Alexander Duality theorem to the setting of parametrized homology. This approach sheds light on the practical problem of 'wandering' loss of coverage within dynamic sensor networks.

Belchi Francisco

A-infinity structures and Persistent Homology

I will try to mix the spirit of this year's two minicourses by giving some ideas on how to combine A-infinity structures with Persistent Homology.

THURSDAY MORNING, ROOM CO2

WEIGHILL THOMAS

A characterisation of R_1 -spaces via a Mal'tsev condition

In this talk we describe a connection between the notion of a Mal'tsev category [1] from categorical algebra and a separation axiom from topology. A Mal'tsev category can be defined as a category C such that for every object S in \mathbb{C} , the functor Hom(S, -) maps every internal relation in \mathbb{C} to a difunctional relation. Regular Mal'tsev categories provide an important axiomatic context for the study of groups and group-like structures for example, every semi-abelian category [3] is such. It is well known that the category **Top** is not regular, but that its dual, \mathbf{Top}^{op} , is. However, \mathbf{Top}^{op} is not a Mal'tsev category. In this talk, we first show that every regular category with binary coproducts (of which \mathbf{Top}^{op} is an example) contains a largest full subcategory M which is Mal'tsev and closed under colimits and regular quotients. We then show that in the case of \mathbf{Top}^{op} , M turns out to be the full subcategory of R_1 -spaces in the sense of Davis [2], i.e. spaces in which topologically distinguishable points are separated by neighbourhoods (also known in the literature as preregular spaces).

- [1] A. Carboni, J. Lambek, and M. C. Pedicchio, Diagram chasing in Mal'cev categories, J. Pure Appl. Algebra 69, 1990, 271-284.
- [2] A. S. Davis, Indexed Systems of Neighborhoods for General Topological Spaces, The American Mathematical Monthly 68, 1961, 886-893.
- [3] G. Janelidze, L. Márki and W. Tholen, Semi-abelian categories, J. Pure Appl. Algebra 168, 2002, 367-386.

Dungan Ivan

'n-Butterflies: Modeling Morphisms between Strict n-Groups

2-Groups can be modeled by algebraic objects known as crossed modules; however, homotopy theory must be applied to model the morphisms of 2-groups by the morphisms of crossed modules. Behrang Noohi defined purely algebraic objects called butterflies which model morphisms of 2-groups while avoiding the topological techniques. Reduced n-crossed complexes are algebraic objects which generalize crossed modules and model strict n-groups. We will discuss a generalization of butterflies to reduced n-crossed complexes.

Schaeppi Daniel

Tannaka duality and Adams Hopf algebroids

Classical Tannaka duality is a duality between groups and their categories of representations. It answers two basic questions: can we recover the group from its category of representations, and can we characterize categories of representations abstractly? These are often called the reconstruction problem and the recognition problem. In the context of affine group schemes over a field, the recognition problem was solved by Saavedra and Deligne using the notion of a (neutral) Tannakian category.

This can be generalized to the context of Adams Hopf algebroids and their categories of comodules. Using the language of stacks, this generalization gives a duality between Adams stacks and their categories of quasi-coherent sheaves. I will start with an overview of classical Tannaka duality and its generalization, and I will conclude my talk with an outline how this duality can be used to interpret various geometric constructions involving Adams stacks in terms of their associated categories.

Friday Morning, CO1

REEH SUNE

Saturated fusion systems as stable retracts of groups

A saturated fusion system associated to a finite group G encodes the p-structure of the group as the Sylow p-subgroup enriched with additional conjugation. The fusion system contains just the right amount of algebraic information to for instance reconstruct the p-completion of BG, but not BG itself. Abstract saturated fusion systems F without ambient groups exist, and these have (p-completed) classifying spaces BF as well. In spectra, the suspension spectrum of BF becomes a retract of the suspension spectrum of BS, for the Sylow p-subgroup S, so BF gets encoded as a characteristic idempotent in the double Burnside ring of S. This way of looking as fusion systems as stable retracts of their Sylow p-subgroups is a very useful tool for generalizing theorems from groups or p-groups to saturated fusion systems. In joint work with Tomer Schlank and Nat Stapleton, we use this retract approach to do Hopkins-Kuhn-Ravenel character theory for all saturated fusion systems by building on the theorems for finite p-groups.

Molinier Rémi

Classifying spaces of saturated fusion systems and their cohomology

A saturated fusion system is a small category which can, for example, encode how a finite group G acts on its p-subgroups by conjugation. We can then, as for a finite group, define a classifying space of a saturated fusion system and look at its cohomology. It is well known that the cohomology of the classifying space of a finite group is isomorphic to the cohomology of the group itself. Here we will see that this can be extended to the classifying space of a saturated fusion system.

ARAUJO MANUEL

Fusion categories and 3-dimensional topological field theories

I will give a general overview of the connection between fusion categories and 3d TFT, as described below. Given a spherical fusion category, one can build an invariant of oriented 3-manifolds, called the Turaev-Viro invariant. The constructions proceeds by labeling triangulations of the 3-manifold by objects and morphisms in the category and using the graphical calculus to extract numbers. Given a modular tensor category, there is another construction that produces an invariant of oriented 3-manifolds, called the Reshetikin-Turaev invariant. It is based on a presentation of the 3-manifold by surgery on a link in S^3 and again depends on the existence of a graphical calculus for modular tensor categories. The center Z(C) of a spherical fusion category C is a modular tensor category. Balsam and Kirilov proved that the Turaev-Viro invariant corresponding to C agrees with the Reshetikin-Turaev invariant corresponding to Z(C). A more recent perspective on this subject is given by the cobordism hypothesis, which is a statement about fully extended field theories. In our case, this means field theories defined on manifolds of dimensions 0, 1, 2 and 3. Using the cobordism hypothesis, one can prove that spherical fusion categories actually provide fully extended oriented field theories. So it's natural to ask whether the fully extended oriented field theory associated to a spherical fusion category via the cobordism hypothesis recovers the Turaev-Viro invariant.

Friday Morning, Room CO2

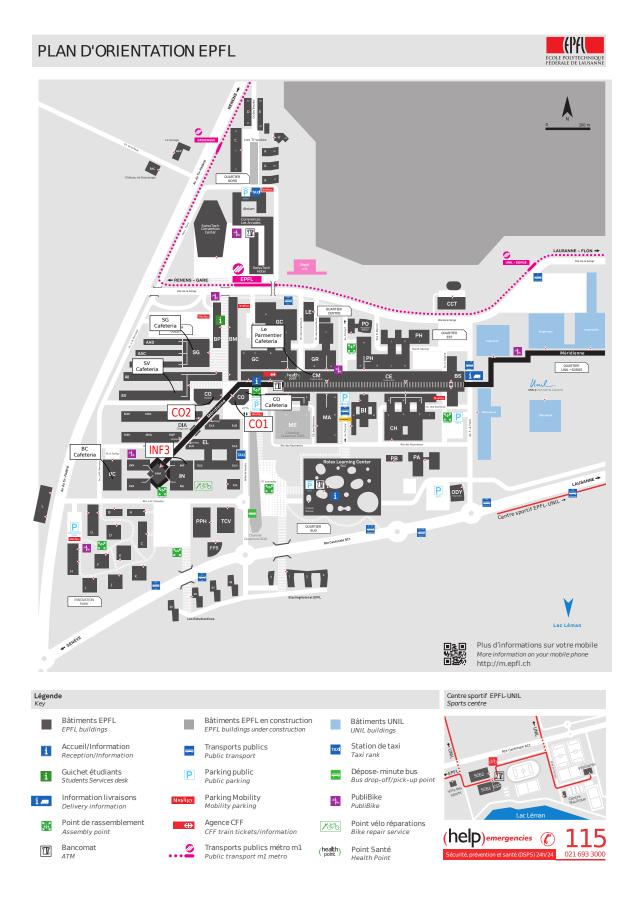
LE GRIGNOU BRICE

From homotopy operads to infinity-operads

The goal of the talk is to compare two notions of operads up to homotopy which appear in the literature. Namely, we construct a functor from the category of strict unital homotopy colored operads to the category of infinity-operads. The former notion, that we introduce, is the operadic generalization of the notion of A-infinity-categories and the latter notion was defined by Moerdijk-Weiss in order to generalize the simplicial notion of infinity-category of Joyal-Lurie. This functor extends in two directions the simplicial nerve of Faonte-Lurie for A-infinity-categories and the homotopy coherent nerve of Moerdijk-Weiss for dg operads. Finally we show that this functor has some good homotopical properties with respect to the Cisinski-Moerdijk model structure on dendroidal sets.

WHITE DAVID

The Baez-Dolan Stabilization Hypothesis and Left Proper Model Structures on Operads


We will begin with an overview of an old problem, due to Baez and Dolan, and discuss where in the solution of this problem model category theoretic considerations arise. This discussion will relate TQFTs, higher category theory, Rezk's Theta n spaces, model categories, and operads. The solution requires placing left proper model structures on algebras over certain colored operads, most notably on the category of non-reduced symmetric operads. We will discuss how this can be accomplished and why left properness is so essential.

Balzin Eduard

Derived sections and categorical resolutions in homotopical context (arXiv:1410.3387)

For triangulated categories, there is a fairly useful notion of a categorical resolution (of singularities, as defined by Kuznetsov and Luntz). One might ask if the principal aspects of this notion can be generalised to the setting of homotopical algebraic structures such as, for instance, categories of E_n -algebras and the like. If one describes algebraic structures using a Segal-inspired approach, the question can be then transferred to the setting of Grothendieck fibrations with a homotopical structure. We introduce our notion of a derived section of a homotopical Grothendieck fibration, which appears to be a meaningful piece of technology to consider in its own right, and then show that a selected class of base functors gives rise to categorical resolutions for homotopical categories of derived sections.

Map of campus

There are many options for having lunch on campus as listed on the map. You can check the menus online at http://restauration.epfl.ch.

EXCURSIONS

HIKE: LAVAUX

Indicative hiking time: 3 hours 30 minutes

Elevation gain: 414 m, Elevation loss: 414 m

Degree of difficulty: Easy

Total distance: 12.4km

To bring: Water (1.5 liters), lunch packet, sunscreen, rain jacket, shoes you are used to hiking

with.

Panoramic view: Great view on the Geneva lake, the montains and the vineyards.

A map can be found at

http://www.switzerland-hiking.ch/e/hiking-trail-switzerland/panoramic-hiking-switzerland.asp?codechemin = 552&codestation = 149

Olympic Museum

For those who prefer a more relaxed activity, join us to visit the **Olympic Museum**, hosting permanent and temporary exhibits about the Olympic games and their history.

The entrance fee is 18 Fr. but you can get a discount if you have a student card, or the Lausanne Transport card. If we are a group of at least 10 people, it will cost 10 Fr. per person.

The museum is open from 9am until 6pm every day and is located at *Quai d'Ouchy 1, 1006 Lausanne*. To get there, you can take the metro m2, get off at Jordils or Ouchy: the museum is 10 minutes far from either one. Please visit the website for more information: http://www.olympic.org/museum/visit/practical-information.

The Door

The Door is an escape room in the centre of Lausanne. A group of up to five people is locked in a room and has one hour to figure out a way to free themselves, solving riddles and following hints in the room. The perfect activity for those, looking for a sociable, fun (yet mentally challenging) afternoon.

Due to the maximum group size of five persons per session, the number of participants is limited to 15. The entrance fee is approximately 30 CHF per person (depending on the final group size).

RESTAURANTS

There are many places, where you can go for dinner. Tap water is usually free, ask for "une carafe d'eau". Here some options:

ITALIAN FOOD

- Gina Ristorante, on the EPFL campus, restaurant and pizzeria.
 EPFL Les Arcades Route Louis-Favre 8C
 +41 21 691 01 33
- \bullet Boccalino, in Ouchy, restaurant and pizzeria. Avenue d'Ouchy 76, 1006 Lausanne. $+41\ 21\ 616\ 35\ 39$
- le Milan, close to the Lausanne Guesthouse, restaurant and pizzeria. Boulevard de Grancy 54, 1006 Lausanne. +41 21 616 53 43

Asian food

- Chez Xu, close to the train station, Chinese restaurant. Rue du Petit-Chêne 27, 1003 Lausanne. +41 21 320 72 68.
- Chez Xu, at Riponne, Chinese restaurant. Rue du tunnel 10, 1005 Lausanne. +41 21 312 40 87
- le Dragon, next to the train station in Renens, Chinese and Thai restaurant.
 Avenue de la Gare 2, 1022 Chavannes-prés-Renens.
 +41 21 634 02 73.

Vegan food

• Chez Sait, a Middle Eastern fast food place, near Riponne two stops on the métro north of the train station. They have falafel, but you must ask for "pas de sauce blanche". There are many places like this in Lausanne, in fact there is one right across the street from this one. Just look for "Kebab" or even "Kebap".

Place du Tunnel 14, 1005 Lausanne +41 21 311 86 22.

• Brasserie Artisanale du Château, a brewery with homemade beer, also near Riponne. They have pizza which you can ask for "sans fromage" (without cheese), this trick will work at any restaurant with pizza, as there is usually a vegetarian pizza. Just make sure it doesn't have "thon" (tuna) on it, this is sometimes considered "végétarien".

Place du Tunnel 1, 1005 Lausanne

- $+41\ 21\ 312\ 60\ 11.$
- Holy Cow!, a fast food burger place, near Flon one stop on the métro north of the train station. They have multiple veggie burgers, to be vegan some must be ordered "sans fromage", and also "sans mayonaise" (they all come standard with mayo).

Rue des Terreaux 10, 1003 Lausanne

 $+41\ 21\ 323\ 11\ 66.$

• Lalibela, an Ethiopian restaurant, very good, there is another one across and down the street owned by the same people, both near Riponne.

Rue du Valentin 23, 1004 Lausanne +41 21 312 00 05.

SWISS RESTAURANTS

- Café de Grancy, south of the train station, café restaurant. Avenue du Rond-Point 1, 1006 Lausanne. +41 21 616-86 -66.
- Café des Bouchers, in Malley, café restaurant. Avenue du Chablais 21, 1008 Prilly. +41 21 624 08 08.
- la Chandeleur, close to the cathedral, crêperie. Rue Mercerie 9, 1003 Lausanne. +41 21 312 84 19.

Burgers

- le Brasseur, close to Flon, brasserie. Rue Centrale 4, 1003 Lausanne. +41 21 351 14 24.
- *Holy cow*, close to Bel-Air, gourmet burger. Rue des Terreaux 10, 1003 Lausanne. +41 21 329 03 23
- Great Escape, walk up the stairs at Riponne, bar restaurant. Rue Madeleine 18, 1003 Lausanne. +41 21 312 31 94

CONTACT, WIFI

For free Wifi on the campus, connect to public-epfl network, then write

Username: x-ytm2015

Password: dupglu57 (6 char. + 2 digits), which will be valid during the whole meeting.

Should you have any other question or problem during the conference, please send an email to ytm2015@epfl.ch.

LIST OF PARTICIPANTS

Adams Henry Duke University

Angelini-Knoll Gabriel Wayne State University

Anghel Cristina Ana-Maria Paris Diderot

Araujo Manuel University of Oxford

Atontsa Nguemo Miradain Université Catholique de Louvain

Backman Theo Stockholm University
Balchin Scott University of Leicester

Balzin Eduard Université de Nice / HSE Moscow

Bandklayder Lauren Northwestern University Barber Dean University of Sheffield Bauer David University of Bonn Beardsley Jonathan Johns Hopkins University Beaudouin Thomas Université de Nantes Belchi Francisco University of Malaga Bello Hugo J. Universidad de Navarra

Belmont Eva Massachusetts Institute of Technology Beshenov Alexey Institut de Mathématiques de Bordeaux

Bordg Anthony University of Nice

Borgeaud William EPFL

Börjeson Kaj Stockholm University
Boyd Rachael University of Aberdeen
Brix Kevin Aguyar University of Copenhagen

Bubenzer Paul WWU Münster

Burfitt Matthew University of Southampton

Camille Le Goff EPFL

Campagnolo Caterina University of Geneva Canlubo Clarisson Rizzie University of Copenhagen Catalano Marta University of Rome la Sapienza

Catanzaro Michael Wayne State University

Cavallin Mikael EPFL

Caviglia Giovanni Radboud University
Cesaro Andrea Université Lille 1
Chouingou Saloua University of Hassan II
Chu Hongyi Universität Osnabrück
Culver Dominic University of Notre Dame

D'Mello Shane Tata Institute of Fundamental Research, Mumbai

Dahl Eivind University of Oslo

Damiani Celeste Université de Caen Basse-Normandie

Daniel Schaeppi University of Sheffield
Data Matias Universidad de Buenos Aires
Dawson Peter University of Copenhagen
Ducoulombier Julien Université Paris 13
Dungan Ivan Gregory USMA, West Point

Dvirnas Albertas Kaunas University of Technology

Egas Santander Daniela MPIM
Egger Philip Northwestern
Erdal Mehmet Akif Bilkent University

Espic Hadrien EPFL

Fiallo Rodriguez Juan Camilo University of British Columbia

Filakovský Marek Masaryk University

Fischer Jean-Michel University Paris Diderot Fjellbo Vegard University of Oslo

Fossati Edoardo University of Bonn/University of Milan

Frankhuizen Robin University of Southampton Friedrich Nina University of Cambridge Gabrovšek Boštjan University of Ljubljana

Gagna Andrea Università degli Studi di Milano/Universiteit Leiden

Gallauer Martin University of Zurich

 $\begin{array}{ccc} {\rm Garaialde} & {\rm Oihana} & {\rm EHU/UPV} \\ {\rm Gery} & {\rm Zollinger} & {\rm Credit~Suisse} \end{array}$

Gheorghe Bogdan Wayne State University

Göppl Florian WWU Münster

Goyal Shuchita Indian Institute of Technology Bombay

Grigoriev Ilya University of Chicago Gunes Cisem Bilkent University Haugland Kim Alexander University of Bergen

Heard Drew Max Planck Institute for Mathematics

Hoekzema Renee University of Oxford

Holmberg-Péroux Maximilien EPFL

Horiuchi Ryo Nagoya University/University of Copenhagen

Husebø Anders University of Bergen Hutchinson Samuel University of Sheffield Idrissi Najib École Normale Supérieure

Ince Ozgur Middle East Technical University

Jacques Darné Université Paris 13

Jeitziner Rachel EPFL

Jeremy Mann University of Notre Dame

Juarez-OjedaRigel ApolonioUniversity of BonnKalisnik VerovsekSaraStanford UniversityKareemShadmanUniversity of SheffieldKastenholzThorbenUniversity of Bonn

Kedziorek Magdalena EPFL

Kharouf Aziz University of Haifa Klang Inbar Stanford University

Klimczak Mathieu Université des Sciences et Technologies de Lille Knopf Svenja Westfälische Wilhelms-Universität Münster

Kodjabachev Dimitar University of Sheffield

Konter Johan Northwestern Köse Feride Ceren Boğaziçi University Krasontovitsch Valentin University in Bergen

Kudryashov Alexei MPI for Mathematics in the Sciences

Laude Isabelle University of Copenhagen Le Grignou Brice Université de Nice

Leray Johan University of Angers LAREMA

Lewis Ryan Stanford

Li Tieqiang University College London Liang Spencer Northwestern University Lluvia Mikel Universitat de Barcelona López-Ávila Alejo Universitaet Osnabrueck

Louis Carlier Universitat Autònoma de Barcelona

Low Zhen Lin University of Cambridge Lu Xiaolei Peking University

Mahler Barbara Oxford

Malic Goran University of Manchester

Malkiewich Cary UIUC

Mamouni My Ismail CRMEF Rabat, Morocco

Marcone Adrien EPFL

Maruyama Takashi Nagoya University Maunder James Lancaster University Molinier Rémi Université Paris 13

Monzavi Mehrzad University of Texas at Arlington

Mota Francisco Cornell University

Muszynski Grzegorz Warsaw University of Technology

Mycroft William Sheffield

Nadareishvili George Goettingen University Nand-Lal Stephen University of Liverpool Nazem Soroosh Politecnico di Torino University of Regensburg Nguyen Kim Nogueira Joao Miguel University of Coimbra North Paige University of Cambridge

Nuiten Joost Radboud Universiteit Nijmegen Öberg Sebastian KTH Royal Institute of Technology

Orsanigo Federico University of Strahclyde Ørsnes Jansen Mikala Copenhagen University Osorio Juliana Universidad de Buenos Aires

Otter Nina University of Oxford

Owusu-Mensah Isaac University of Education, Winneba

Palmer Martin University of Münster Past Jaan-Eerik University of Edinburgh Penney Mark University of Oxford Pieters Hester University of Geneva Polanco Luis Universidad de Los Andes Prasma Matan Radboud University, Nijmegen

Pstragowski Piotr University of Sheffield

Raeder Truls Bakkejord Norwegian University of Science and Technology

Ranade Nissim Stony Brook Raynor Sophie Aberdeen

Reeh Sune Massachusetts Institute of Technology

Reinhold Jens Stanford University

Riihimäki Henri Tampere University of Technology

Rovelli Martina EPFL

Roy Chowdhury Soutrik Trinity College Dublin Rust Daniel University of Leicester Schrade Christoph University of Regensburg Schroedl Michael Universität Tübingen Schulz Julia University of Hamburg

Scolamiero Martina KTH

Senturk Berrin Bilkent University
Solberg Mirjam University of Bergen
Sommer Oliver WWU Muenster
Stafa Mentor Tulane University

Stahn Sven-Torben Bergische Universität Wuppertal

Stephan Marc University of Chicago Stonek Bruno Université Paris 13

Sutton Tom The University of Sheffield

Szucs Gergely Stanford University

Tan Josh New York University

Tebbe Amelia University of Illinois Urbana-Champaign

Ungheretti Massimiliano University of Copenhagen

van Woerden Koen Regensburg

Vandenburgh Jonathan University of Notre Dame

Villarreal Bernardo The University of British Columbia

Villeta-Garcia Juan University of Illinois at Urbana-Champaign

Wade Darryl Duke University

Ward Ben Simons Center for Geometry and Physics

Wasserman Thomas University of Oxford Weighill Thomas University of Tennessee

Werndli Kay EPFL

West Michael University of Southampton

White David Denison University
Wierstra Felix Stockholm University
Woo Calvin Indiana University

Xu Chenguang EPFL Yacouba Barma Abdoulkader UC Louvain

Yeakel Sarah University of Illinois, Urbana-Champaign

Zaganidis Dimitri EPFL

Zeidler Rudolf Georg-August-Universität Göttingen

Zemel Yoav EPFL

Zeng Mingcong University of Rochester Zielenkiewicz Magdalena University of Warsaw