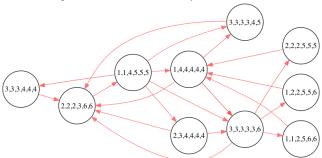
Introduction to Topological Data Analysis Non-Symmetric Topological Data Analysis Applications

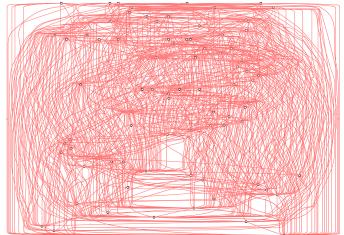
Topological Data Analysis on Data With Non-Symmetric Distances YTM 2015

Scott Balchin

How can we study the structure of a space such as the following:



What about when we move a single dimension up?



Is there a way to study these spaces and the relation between them using topological data analysis?

General Philosophy of Topological Data Analysis

General Philosophy of Topological Data Analysis

- Point cloud of data in \mathbb{R}^n .
- Convert this point cloud into a family of topological spaces.
- Tools such as persistent homology.

Vietoris-Rips Complex

Vietoris-Rips Complex

Definition (Vietoris-Rips Complex)

Given a finite collection of points $\{x_{\alpha}\}$ in \mathbb{R}^n endowed with some metric, the *Vietoris-Rips complex* \mathcal{R}_{ϵ} is the abstract simplicial complex whose k-simplices correspond to unordered (k+1)-tuples of points $\{x_{\alpha}\}_{\alpha}^{k}$ that are pairwise within distance ϵ .

Vietoris-Rips Complex

Definition (Vietoris-Rips Complex)

Given a finite collection of points $\{x_{\alpha}\}$ in \mathbb{R}^n endowed with some metric, the *Vietoris-Rips complex* \mathcal{R}_{ϵ} is the abstract simplicial complex whose k-simplices correspond to unordered (k+1)-tuples of points $\{x_{\alpha}\}_0^k$ that are pairwise within distance ϵ .

The Vietoris-Rips complex is a *flag complex*, this means that its structure is determined solely by its edge structure.

Persistent Homology

Persistent Homology

Note that for the Vietoris-Rips complexes constructed, we have inclusions $\mathcal{R}_{\epsilon} \subseteq \mathcal{R}_{\delta}$ for $\epsilon < \delta$.

Persistent Homology

Note that for the Vietoris-Rips complexes constructed, we have inclusions $\mathcal{R}_{\epsilon} \subseteq \mathcal{R}_{\delta}$ for $\epsilon < \delta$.

Definition (Persistent Homology)

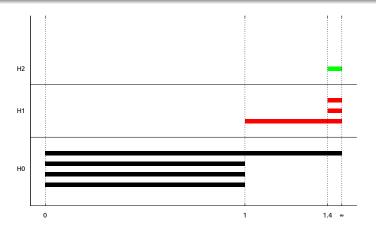
Denote by \mathcal{R} the full collection of Rips complexes constructed for a point cloud of data. For i < j, the (i,j)-persistent homology of \mathcal{R} is the image of the induced homomorphism in homology $H_*(\mathcal{R}^i) \to H_*(\mathcal{R}^j)$.

In short, persistent homology allows us to track when homology generators are born and die as we vary our parameter ϵ .

Barcodes

Barcodes

We can display the persistent homology data as a *persistence diagram* or *barcode* to visualise the results.



• There are interesting data sets which don't come in the form of point cloud data.

- There are interesting data sets which don't come in the form of point cloud data.
- Not all data comes equipped with some canonical metric.

- There are interesting data sets which don't come in the form of point cloud data.
- Not all data comes equipped with some canonical metric.
- Some data cannot be equipped with a metric without throwing away some sort of information.

- There are interesting data sets which don't come in the form of point cloud data.
- Not all data comes equipped with some canonical metric.
- Some data cannot be equipped with a metric without throwing away some sort of information.
- Main motivation : Directed graphs.

- There are interesting data sets which don't come in the form of point cloud data.
- Not all data comes equipped with some canonical metric.
- Some data cannot be equipped with a metric without throwing away some sort of information.
- Main motivation : Directed graphs.
- How to construct a simplicial complex from a data set with a non-symmetric distance, which captures this non-symmetric features? (Joint work with Etienne Pillin)

From now on we will assume that \mathcal{X} is a data set with some distance d between all points X and Y (possibly ∞). Without loss of generality assume

$$d_u(X, Y) = d(X, Y) \geqslant d(Y, X) = d_l(X, Y)$$

and let the disparity $\delta_{X,Y} = d_{\mu}(X,Y) - d_{\mu}(X,Y)$.

From now on we will assume that \mathcal{X} is a data set with some distance d between all points X and Y (possibly ∞). Without loss of generality assume

$$d_u(X,Y) = d(X,Y) \geqslant d(Y,X) = d_I(X,Y)$$

and let the disparity $\delta_{X,Y} = d_{\mu}(X,Y) - d_{I}(X,Y)$.

Let $F(a,b): \mathbb{R}^+ \times \mathbb{R}^+ \to \mathbb{R}^+$ be an increasing positive function in both variables, such that F(a,0)=0 for all a. For our purpose a will be the dimension of a simplex and b will take the values δ .

Definition (Non-Symmetric Complex With Respect To *F*)

The non-symmetric simplex of \mathcal{X} with respect to F of distance ϵ , $\mathcal{N}_{\epsilon}^{F}$, is constructed as follows:

Definition (Non-Symmetric Complex With Respect To F)

The non-symmetric simplex of \mathcal{X} with respect to F of distance ϵ , $\mathcal{N}_{\epsilon}^{F}$, is constructed as follows:

• We add a 1-simplex between points X_1 and X_2 if $d_l(X_1, X_2) \leq \epsilon$.

Definition (Non-Symmetric Complex With Respect To *F*)

The non-symmetric simplex of $\mathcal X$ with respect to F of distance ϵ , $\mathcal N^F_\epsilon$, is constructed as follows:

- We add a 1-simplex between points X_1 and X_2 if $d_I(X_1, X_2) \leq \epsilon$.
- We add a 2-simplex between points X_1 , X_2 and X_3 if all $d_u(X_i,X_j) \le \epsilon$.

Definition (Non-Symmetric Complex With Respect To F)

The non-symmetric simplex of $\mathcal X$ with respect to F of distance ϵ , $\mathcal N^F_\epsilon$, is constructed as follows:

- We add a 1-simplex between points X_1 and X_2 if $d_I(X_1, X_2) \leq \epsilon$.
- We add a 2-simplex between points X_1 , X_2 and X_3 if all $d_u(X_i, X_j) \le \epsilon$.
- We add a 3-simplex between points X_1, \ldots, X_4 if all $d_u(X_i, X_i) + F(1, \delta_{X_i, X_i}) \leq \epsilon$.

:

Definition (Non-Symmetric Complex With Respect To F)

The non-symmetric simplex of $\mathcal X$ with respect to F of distance ϵ , $\mathcal N^F_\epsilon$, is constructed as follows:

- We add a 1-simplex between points X_1 and X_2 if $d_I(X_1, X_2) \leq \epsilon$.
- We add a 2-simplex between points X_1 , X_2 and X_3 if all $d_u(X_i,X_j) \leqslant \epsilon$.
- We add a 3-simplex between points X_1, \ldots, X_4 if all $d_u(X_i, X_i) + F(1, \delta_{X_i, X_i}) \leq \epsilon$.

:

• We add an *i*-simplex between points X_1, \ldots, X_{i+1} if all $d_u(X_i, X_i) + F(i-2, \delta_{X_i, X_i}) \leq \epsilon$.

Properties of the Non-Symmetric Complex

Properties of the Non-Symmetric Complex

If d is symmetric, we will retrieve the classical Rips complex as we will have $\delta_{X,Y} = 0$ for all X and Y, and because we asked for F(a,0) = 0.

The complex is constructed so that if there is a large disparity $\delta_{X,Y}$, then the higher dimensional complexes involving the points X and Y will not be filled in until ϵ large. Can find near-symmetric nodes using this.

In the case that $\delta_{X,Y} = \infty$, then there will only ever be 1-simplicies whenever X and Y are involved.

We still get inclusions $\mathcal{N}^F_\epsilon \subset \mathcal{N}^F_\delta$ for $\epsilon < \delta$, which means we can do persistent homology.

Non-Symmetric Excess

Non-Symmetric Excess

- ullet In the Rips complex construction we finish when we reach ϵ being the maximum distance between two points.
- This is not the case in the non-symmetric complex.
- If all distances involved are finite then we will have an ϵ_{\max} which gives us a fully connected simplicial complex.

Non-Symmetric Excess

- ullet In the Rips complex construction we finish when we reach ϵ being the maximum distance between two points.
- This is not the case in the non-symmetric complex.
- If all distances involved are finite then we will have an ϵ_{\max} which gives us a fully connected simplicial complex.

Definition (Non-Symmetric Excess)

Let δ_{\max} be the maximum finite disparity between data points in \mathcal{X} . Then we define the *non-symmetric excess* \mathcal{E} on a non-symmetric complex with respect to F to be

$$\mathcal{E} = F(|\mathcal{X}| - 2, \delta_{\mathsf{max}})$$

Where $|\mathcal{X}|$ is the number of data points.

Computational Downfall

Computational Downfall

The complex that we construct is no longer a flag complex

Computational Downfall

The complex that we construct is no longer a flag complex

One way to overcome this would be truncating the construction, and allowing the higher dimensional simplicies be defined by the structure of the i simplicies. This would be an i-flag complex.

We set F(a, b) = ab, which is increasing in the domain of where we will be using it, and $F(a, 0) = a \cdot 0 = 0$, so is a valid such function.

We set F(a, b) = ab, which is increasing in the domain of where we will be using it, and $F(a, 0) = a \cdot 0 = 0$, so is a valid such function.

This means that the *i*-simplicies are formed between i+1-tuples of points where we have $d_u(X_i,X_i)+(i-2)\delta_{X_i,X_i} \leq \epsilon$ for all pairs.

We set F(a, b) = ab, which is increasing in the domain of where we will be using it, and $F(a, 0) = a \cdot 0 = 0$, so is a valid such function.

This means that the *i*-simplicies are formed between i+1-tuples of points where we have $d_u(X_i,X_j)+(i-2)\delta_{X_i,X_j} \leq \epsilon$ for all pairs.

Other possible *F* include:

- $F(a,b) = a^n b^m$ where $m, n \ge 1$
- $F(a, b) = b^a$
- $F(a, b) = a^b 1$

 "Social network analysis (SNA) is a strategy for investigating social structures through the use of network and graph theories."

- "Social network analysis (SNA) is a strategy for investigating social structures through the use of network and graph theories."
- It is a tool being adapted to sociology, anthropology, psychology, management, health, defence, etc.

- "Social network analysis (SNA) is a strategy for investigating social structures through the use of network and graph theories."
- It is a tool being adapted to sociology, anthropology, psychology, management, health, defence, etc.
- "It characterizes networked structures in terms of nodes (individual actors, people, or things within the network) and the ties or edges (relationships or interactions) that connect them."

Directed Graphs via Twitter

Directed Graphs via Twitter

- Twitter has a naturally non-symmetric relation built in with its follower feature.
- We can represent this as a directed graph.
- We then can consider the shortest directed path between two people and let the distance between them be the length of this path.
- If no such path exists then we say the distance between the two people is ∞ .

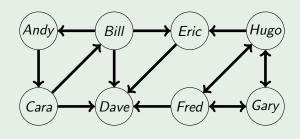
Twitter's API

Twitter's API

- Twitter has a very convenient and practical API (Application Program Interface).
- This means we can actually create the graphs that we described with real data.
- We can start from an initial seed person and build their network (with some truncation).

The following made-up example highlights some of the key features one might wish to identify in a social network.

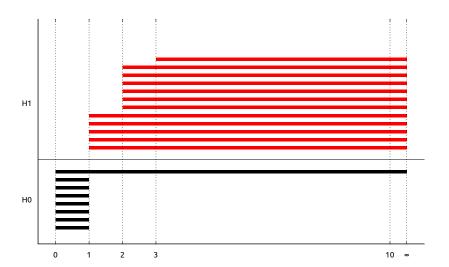
The following made-up example highlights some of the key features one might wish to identify in a social network.



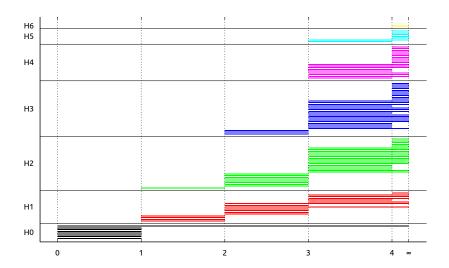
The distance matrix with respect to the shortest path for this directed graph reads as below, where the entry (i,j) is the distance from i to j.

The distance matrix with respect to the shortest path for this directed graph reads as below, where the entry (i,j) is the distance from i to j.

The only non-zero and non-infinite distance disparities are $\delta(A, B), \delta(B, C)$ and $\delta(A, C)$ which are all equal 1.



Compare this with the matrix we would get by disregarding the directions.



Definition (Non-Transitive Dice)

• An *n*-side dice is an *n*-tuple $X = [d_1, \ldots, d_n], d_i \in [1, n].$

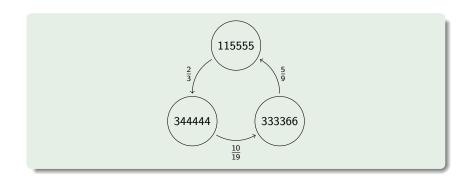
- An *n*-side dice is an *n*-tuple $X = [d_1, \ldots, d_n]$, $d_i \in [1, n]$.
- A dice X beats dice Y if $\mathbb{P}(X > Y) > \frac{1}{2}$, we denote this $X \gg Y$.

- An *n*-side dice is an *n*-tuple $X = [d_1, \ldots, d_n]$, $d_i \in [1, n]$.
- A dice X beats dice Y if $\mathbb{P}(X > Y) > \frac{1}{2}$, we denote this $X \gg Y$.
- A cycle of length r of non-transitive dice is an ordered collection of dice (X_1, \ldots, X_r) such that:

 - $2 X_r \gg X_1$

- An *n*-side dice is an *n*-tuple $X = [d_1, \ldots, d_n]$, $d_i \in [1, n]$.
- A dice X beats dice Y if $\mathbb{P}(X > Y) > \frac{1}{2}$, we denote this $X \gg Y$.
- A cycle of length r of non-transitive dice is an ordered collection of dice (X_1, \ldots, X_r) such that:

 - $X_r \gg X_1$
- A dice X is triangular if $d_1 + \cdots + d_n = T(n)$.

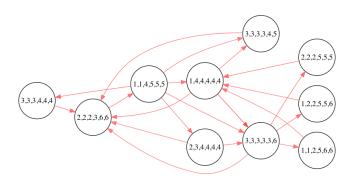


Directed Graphs from Dice

Directed Graphs from Dice

- Take some dice set \mathcal{D} .
- Consider all dice which appear in a non-transitive cycle.
- Plot with the dice being nodes, and the non-transitive relations being the directed edges.
- These graphs are always strongly connected.

Triangular 6-Sided Dice



Without Disregarding Distances

```
    (0
    3
    3
    4
    2
    4
    3
    1
    4

    3
    0
    3
    3
    4
    2
    4
    3
    1
    4

    3
    3
    0
    3
    1
    2
    1
    2
    1
    1
    1

    3
    3
    1
    0
    2
    2
    2
    3
    1
    2

    4
    2
    2
    4
    0
    3
    3
    1
    2
    3

    1
    1
    1
    1
    2
    0
    2
    1
    2
    2

    4
    2
    2
    4
    3
    3
    0
    1
    2
    3

    3
    1
    1
    3
    2
    2
    2
    0
    1
    2
    3

    3
    1
    1
    3
    2
    2
    2
    0
    1
    2
    3

    3
    1
    1
    3
    2
    2
    2
    0
    1
    2

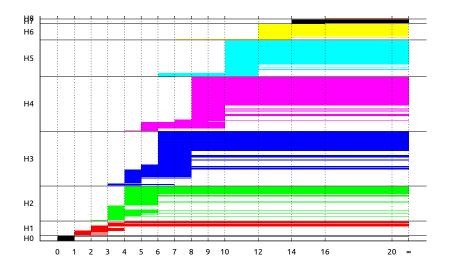
    4
    2
    2
    2
    3
    1
    3
    2
    0
    1
    2

    2
    2
    2
    2
    3
    1
    3
    3
    3
    1
    2
    0</
```

Without Disregarding Distances

- In this case we have no infinite distances.
- $\delta_{\text{max}} = 2$
- $\mathcal{E} = F(10-2,2) = 8 \times 2 = 16$
- Therefore we should expect $\epsilon_{\text{max}} = 4 + 16 = 20$

Without Disregarding Distances



• What can we ascertain from the results, what are they actually telling us?

- What can we ascertain from the results, what are they actually telling us?
- Is there a complex construction which approximates the non-symmetric one homotopically, but is easier to compute?

- What can we ascertain from the results, what are they actually telling us?
- Is there a complex construction which approximates the non-symmetric one homotopically, but is easier to compute?
- How does our choice of the function F affect the results?

- What can we ascertain from the results, what are they actually telling us?
- Is there a complex construction which approximates the non-symmetric one homotopically, but is easier to compute?
- How does our choice of the function F affect the results?
- Code improvements Bug squashing, parallelising.

- What can we ascertain from the results, what are they actually telling us?
- Is there a complex construction which approximates the non-symmetric one homotopically, but is easier to compute?
- How does our choice of the function F affect the results?
- Code improvements Bug squashing, parallelising.

