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Exponents for high-dimensional Gamma groups

Jéroéme Scherer

Abstract. The first purpose of this paper is to show the equivalence of the two classical definitions
of the Gamma groups which appear in the Whitehead exact sequence involving the Hurewicz
homomorphism: the Whitehead definition and that of Dold-Thom. Then we produce universal
exponents for high-dimensional Gamma groups: if X is an (m — 1)-connected CW-complex, the
product of the exponents of the i-th stable homotopy groups of spheres, for 1 < i < m, kills
ImnX if n < m — 2. Finally, we gencralize this result of the case where the groups m; X belong
to a certain Serre class of abelian torsion groups for 1 < i < m.
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0 Introduction

For any 1-connected CW-complex X, J.H.C. Whitehead introduced in [9] the groups

'™ x foralln > 2, which appear in acertain exact sequence involving the homotopy
groups of X and the integral homology groups of X:

h h
oy X TS Hp X — TVX — 1, X I% HyX —

!
— X — X L HX — 0 (%)

where the h, are the Hurewicz homomorphisms. Recall that IV X is defined as the
image of the homomorphism 7, X, _; — =, X,, induced by the inclusion of the
(n ~1)-skeleton X,,_; into X,,. Since X is 1-connected, it follows directly that the
group F2WX =0.

Another way to define such Gamma groups was given in [1] by A. Dold and
R. Thom: They proved that m,SP®°X = H, X where SP*X is the infinite
symmetric product of X. The inclusion X — SP%X has homotopy fiber I'X

and they set F,?TX = m,, I'X: the homotopy long exact sequence of the fibration
I'X — X — SP*X is then an exact sequence similar to (*).

What do we know about the Gamma groups? The answer is, not much! Let X
be an (m — 1)-connected CW-complex. If m > 2, then I'W X = 0, according
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to the Hurewicz theorem. If m > 3, 1" X = m X /27, X this result is due

to J.H.C. Whitehead (see [9], p. 291) and was shown in [8] for a special kind
of spaces; a complete proof can be found in [2] (see p. 116, Theorem 2.4). Let
us mention that G.W. Whitehead also proved the existence of an exact sequence
T2 X — HypoX — 1, X270, X — w1 X — Hpp X — 0 for any
(m — 1)-connected CW-complex X with m > 3 (see [7] or [6], p. 555).

The purpose of the present paper is to show the equivalence of the two definitions
of the Gamma groups given above and then the produce universal exponents for
higher dimensional Gamma groups, more precisely for the (m — 2) first interesting
Gamma groups for an (m — 1)-connected CW-complex. This generalizes the fact that
2.1 X =0ifm>3.

In order to do this, we need a third definition of the Gamma groups denoted by I, X
These Gamma groups should be seen as invariants of the space X which contain an
important part of the homotopical information of X.

Our main result is the following assertion:

Theorem. Let m and n be integers such that 1 5 n<m-—2If Xisan (m— 1)-
connected CW-complex, then (ITT-_;0;) - Iy, 4 n X =0, where o; denotes the exponent

S
i

of the i-th stable homotopy group of spheres w;

In the last part of the paper we extend this result of the case of more general spaces
X which do not need to be highly connected, but for which we assume that their
low-dimensional homotopy groups are torsion groups in a certain Serre class.

Theorem. Let m > 3 and let P be a set of prime numbers containing all primes
p < (m + 1)/2. Let € be the Serre class of abelian P-torsion groups and X a 1-
connected CW-complex such that ;X € C fori < m. Then

(i) I XeCfor3<k<2m-2

(i) hy 7 X — HpX is a C-isomorphism for3 < k <2m —2.

(ii) hypy,_1 X — Hy,,_1X is a C-epimorphisn.

The paper is organized as follows: The first section gives a new way of defining
the Gamma groups of a 1-connected CW-complex and describes how they are
involved in a Whitehead exact sequence (like (*)). Sections 2 and 3 shows that these
new Gamma groups are isomorphic to the Dold-Thom Gamma groups and to the
Whitehead Gamma groups. The main theorem s proved in Section 4. Finally Section
5 generalizes this result to the case of Serre clases of abelian groups as explained
above.

Remark. Throughout the paper all homology groups are taken with integer coeffi-
cients and denoted H,, X..
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1 A new definition of the Gamma groups

We first construct spaces X {n}, obtained from a 1-connected CW-complex X
by attaching cells of dimension < n + 1 in order to kill the homotopy groups
7I'2X, ey 7I'nX.

Let m be an integer > 2, X an (m — 1)-connected CW-complex; if J is a system of

generators for m,,, X and f: \/ Sg* — X amap such that f|g.n represents a, we
aeJ «
denote by Y* the mapping cone of f.

Lemma 1.1. (see [6], p. 556) Let m be an integer > 2 and X an (m — 1)-connected
CW-complex. Then

(i) X™ is an m-connected space,

(ii) the pair (X*, X) is m-connected.

Remark 1.2. The space X* is obtained from X by attaching (m + 1)-cells, say

{DPH1} e ;- Thus X* = XU \/ D?*! and we obtain by excision that H (X*, X) =
a€gJ
Hy_q( \E/J Sg') = 0forany g # m + 1. In particular, H,,, , ;X & H 13X
«

For a 1-connected CW-complex X, let us define X {1} = X and inductively, since
X{n} is n-connected by the above lemma, X {n+1} = X {n}* for all integers n > 2.

Remark 1.3. A choice of a system of generators occurs in the definition of X*, so
the spaces X {n} are not well-defined. However, we are only interested in a certain
quotient of ,, (X {n}, X) and we will prove that this is well-defined.

Definition 1.4. Let n be a positive integer, X a 1-connected CW-complex, let
hp42 denote the Hurewicz homomorphism n,, X {n} — H,, ,,X{n}, and let

Jn42 @ TpgaX{n} — m,2(X{n},X) be the homomorphism induced by the
inclusion j : (X{n},*) — (X{n}, X).

The define I, | X = mp (X {n}, X)/jni2(Ker by, ).

Proposition 1.5. I, |, X is well-defined for alln > 1, i.e. I',, | X does not depend on
the choice of the systems of generators for my X, w3 X {2}, ..., m, X {n - 1}.

Proof. Let X C --- C X{n}and X C X{2}/ c --- ¢ X{n} be two towers
constructed with possibly different systems of generators. They define respectively
Iy 11X and F;H_]X as in Definition 1.4. First we use obstruction theory to extend
the inclusion X < X {n}’ to the space X {n} and obtainamap ¢ : X {n} — X {n}".
This map induces a homomorphism ¢,, 5 : 7, (X{n},X) — m, H(X{n}, X)
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and since @, 5(Jpp2(Kerhy, 2)) C jj ,(Kerhy ,), we get a homomorphism
¢: [ X — I, X.

Consider the diagram below to prove that & is an isomorphism:

in+2
T2 X  —— 1r"+2X{n}

ju+2
hag2 hny2

ing2 bng2 intl
H, X — H“+2X{n} 7r"+2(X{n},X) —_— T X — 1r"+lX{'n.}
¢n+2
Pnt2 bni2 Pngl
ing2 , , LA g ,
HoX — H, X {n} Mg X {0} X) —— 7, X —— T X {n}

h"+ZI h;“T ,
i +2 In42
n
7\'"+2X — "n+2x{n}’

where the homomorphisms i, and i, are induced by inclusions and where 6, and
&, are the connecting homomorphisms of the appropriate homotopy sequences. In
homology, the isomorphisms i, , and 4}, 4 are isomorphisms by Remark 1.2. A
simple diagram-chase shows that, for every £ € m, (X {n}’, X), there exists an
element w € m, 1 (X{n}, X) such that ¢, . »(w) — € € j;, , y(Kerhy, ).

Moreover, if ( € m, (X {n},X) and ¢,,5(¢) € j; ,(Kerh; ), then ¢ €
Jny2(Kerh, ,5). So @ is an isomorphism. [

We prove now that, for any 1-connected CW-complex X and for all n > 1, our

Gamma groups I, X have the same property as the groups leX or I‘f_g; X:

Theorem 1.6. Let X be a 1-connected CW-complex. Then there is a long exact
sequence

hn+2 €n4-2
7"11+2X Hn+2x Pn+lx

Ont1 Rt En41
— T X — Hyp X —

€3 [:7) hy
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Proof. Let us define the homomorphisms ¢,, +2 and 8,, 4 for any integer n > 1 by
considering the commutative ladder below where the rows are exact:

int2 In42 bng2 intl

Tpg2 X —— T2 X {n} —  mo(X{n}, X) — Ty X — T X{n}
"n+21 hn+21 "n+21 hn+ll "n+1lE
Hy 42X __’;-—2 HppaX{n} —— H_(X{n},X) —— H, X — H_ X {n)
i —_— n+

=0

The homomorphism j,, ., induces j, 5 : m, 12X {n} — m, +2(Xns X) /inga
(Ker hy, 15) = I, 1 X, hence,there exists a homomorphism QApy  HpypX{n} —
Ihy1X suchthata, 15 0 hyp = 5,45

Wedefinee,, 15 = —a, 5 06,,;: Hy 12X — I, 11X Finally, 8, : g X —
Tn+1X is induced by 6,5 : m, (X {n}, X) — 41X . The result now follows
easily (observe that I3 X = 0). O

Proposition 1.7. A map f : X — Y between two l-connect CW-complexes
induces a homomorphism f, | : I, +1X — I, 1Y and the following diagram
is commutative for all n > 1:

L} En42 St Rt
TnpaX —— Ho X — ripyX — 7 X — Hp X
fn+21 fn+2l fn-HI fn+|l fn+11
Tny2Y —— Ho Y —— Fny¥ —— m )Y —— HopY
hnga En42 9n41 ing1

Proof. The n-connectivity of X {n} and Y {n} allows us to use obstruction theory to
extend ftoamap X{n} — Y{n}. O

2 Comparison with the Dold-Thom Gamma groups

Let SP*°X be the infinite symmetric product of a 1-connected space X, "X the
homotopy fiber of the inclusion p : X — SP*X and F7?+7;X = M4 L' X for all
n 2 1. In this section we prove that the homotopy exact sequence of the fibration

rx*.x ?,gpoyx,

P
e a0 X e 7rn+ZSP°°X

d k
~ +2 +1
2 HppoX =5 m IX =5 et X — oo,
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isexactly the same as the sequence given by Theorem 1.6. In order to compare X
with I'PT X, it is sufficient to construct a suitable homomorphism I, X —

DT
rorx.

!
Lemma 2.1. Let n be an integer > 2, and let F —» E-25B and F' — E'-2.B
be two fibrations such that F C F', E C E' and B C B'. If this last inclusion
induces an epimorphism m,, 1B — 7, +1B', an isomorphism 7, B = n,B and a

monomorphism 7, _B — w,_B' then

7, (F',F) = n,(EE).

Proof. This is simply a standard diagram-chase. 0

Corollary 2.2. Let X be a 1-connected CW-complex. Then the map k : I'X — X
induces an isomorphism for alln > 1

kn+2 : 7rn+2(F(X{n})vFX) — 7rn+2(X{n}7X)
Proof. This is a direct application of Lemma 2.1 for the fibrations:

rx — X — SP>®X
] N ]
r(x{n}) —k» X{n} —p» SP*®(X{n}).

Theorem 2.3. If X is a 1-connected CW-complex, then I', 1 X = FnD_Z;X for all
n>1.

Proof. Consider the commutative diagram

Tp42S PP (X{n}) T X
s g
Jn42 Snt2
7rn.+ZX{n} — 7rn+2(X{n},X) — 7r'n.+1X

Ikn—f-l EI’WH—Z Ikn+l

T2 (X{n})  —— mp(PX{n},TX) —— TI2hX
in+2 Sn42
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where the rows and the left column are exact and = is the projection given by the
definition of I, 1 X

Define ¢, | = 6,410 kn+2 or—1: X — F X It is easy to check that
Yp41 is a well-defined homomorphism and, moreover, an isomorphism (its inverse

i8S Py —7rokn+206n+2) O

Theorem 2.4. Let X be a I-connected CW-complex. Then there is a commutative

diagram:
hnt2 €nt2 Inp
—_— 7r"+2X _ Hn+2X —_— n_HX —_— 7r"+1X _—
II tnaa =[vnn |
—— X ——  m, ,SP®X reix  — r X —

Pni2 Any2 Kl

where I, ., is the Dold-Thont isomorphism for alln > 1.

Proof. The difficult point is to check the commutativity of the middle square.
Remember that the isomorphism l,, ,, : H, , X — m,,,SP®X is natural ([1]

p. 274) and consider the situation in the — apparently — more complicated diagram:

T2 X {1} B T 2(X {0}, X)

Tsa(X{n}, F(X{R}) e moo(X{n}, FX) Tny2(P(X{n}), I X)
/ \ l5n+2
n12(X, [ X) rphx
dn+2

where j,, 15,51, 32,% 91,42, kpy2, Ky, kp are induced by the obvious inclusions and
81421 @py2, A are connecting homomorphisms. Each triangle is commutative and
the three sequences having m,,,(X{n},I"X) as central group are exact. Define

a=d, 0 i~loj,and f = Opya0 k;lz 0 jpt2. We will prove that a = —.

SetI =ijoi~loiy, K = kjok;|,0kyand J = I+K.Soa = Aolojy, f = AoKoj,
anda+f=~AoJoj.
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But ky o J = k, and J o4, = i;. Hence Im(J — Id) C Kerk, = Imi; and
J o (J —1d) = J - Id. Finally, because J? = J,wehave J =1d,ie.a+ 3 =0.
We will use this last equality to prove that ¢,, 4 1 0, 9 = dpp 291y 2. Butlet us first

look at the following commutative diagram, which enables us fully to understand
the homomorphism €, ;.

ing2 “n42 "
H, X — H, X {n} —_— o X — (X {n}, X)

ln-I-ZlE El Ijn+2 Ij,,+z

72X, T'X) —Q nn+2(x{n},r(X(n})).—J_‘z—— nn_’_ZX{n}/Ker'lﬂ+2H—’—- 72X {n}

L3

Here the maps j, are induced by j, on the quotient m,, ;X {n}/Kerh, , and 7

1

and 7' are the obvious projections. Recall that 9,1 = 6,49 © k;lz o7~ and

€42 = —Gp 42 Oin 4o (see the proof of Theorem 1.6 for the definition of a,, ;7).

~ ~_1 .
Thus €, 49 = ~jp4203, ©i0l,,7and

-1 -1 ~ ~_1 .
Y41 0€ng2 = —(bpq 0k 1y 0m )0 (Jnqa0dy  oi0lnys)
—_———
-7.'n+2°7rl_l

= —ﬂoﬂ*/_l °j2_ oioln+2
e —’
g
_ —1 .
=qoj, ozoln+2
=dn+2°ln+2' ]

Remark 2.5. The strange “—" sign in the definition of €, ,, is necessary for the
commutativity of the diagram given by Theorem 2.4. The unexpected bonus is that
the same definition also works in Section 3, in which we compare I, .1 X with

w
Fn+1X’

Remark 2.6. The isomorphism ¢, 1 : I}, 1 X = 1"7?+711X is natural.
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3 Comparison with the Whitehead Gamma groups

Let X be a 1-connected CW-complex and for all positive integers n, let X,, denote

the n-skeleton of X. The inclusion g : X,, — Xn+1 induces a homomorphism
Int1 ¢ Tny1Xn — 741Xy qq. Then the Whitehead Gamma group F}:‘_’,_IX is
defined as Im g,, , ; and the Whitehead exact sequence is the sequence (*) given in
the introduction.

We obtain in this section the same results for FXE’HX as for FT?_E;X in Section 2.

First, let us prove the next simple lemma to show how the skeleta of a CW-complex
and the {n}-construction are related.

Lemma 3.1. Let X be a I-connected CW-complex, n an integer > 1 and k an integer
2 n+ 1 Then X{n}; = X {n}.

Remark 3.2. The spaces X {n} and X, {n} are not well-defined. The meaning of the
equality above is the following: We can construct two particular {n}-spacessuch that
the equality holds.

Proof. Since, by induction overn,m, X{n—1} 27, X{n—1}, = T, X {n—1}for
k > n+1, we can choose the same system of generators J to build X {n}and X {n}.
So X{n} = Xj {n}, because we simply attach the same (n + 1)-cells to both spaces.
]

Lemma 3.3. Let X be a I-connected CW-complex and n > 1. Then there is an
isomorphistn gy 12 : T 42(Xp41{n}, Xp 1) =5 1y 42(X {2}, X).

Proof. This follows from Lemma 3.1 and the Blakers-Massey theorem (cf [6], p. 366)
for the triad (X {n}; X, X {n},, ).

Lemma 3.4. Let X be a 1-connected CW-complex. Then L1 Xy ® Iy X for
alln > 1.

Proof. Consider the commutative diagram

hn+2 jn+2
0=H, 13X {n}us T X {n}ayy ——  moa(X{n), ), Xog1)

l 9n+21 9n+ZIE

"n+2 jn+2
Hn+2X{n} — 1rn+2X{n} e 1rn+2(X{n},X)

Then F11+1Xn+1 = 7r11.+2(Xn+1 {n}, Xn+1)/jn+2(Ker hn+2) = 7rn+2(Xn+] {n}’
Xn+1) /Inljn+2 = 7rn+2(X{n}1X)/Im(jn+2 o gn+2) = 7rn+2(X{n}iX)/
Jn+2(Kerhy, 5) = I, 11 X, since one can check that Img,, 2 Kerh, . O
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Theorem 3.5. Let X be a 1-connected CW-complex. Then F){‘_’HX Iy X forall
n>1

Proof. Because of Lemma 3.4, it is sufficient to establish to isomorphism I'] +1X =
I n+1 Xn+1'
The commutative square

jn—f—l
7"n+1Xn+1 — T4l (Xn+1a Xn)

- |-

I-I'n.—HXn-f-l ;—_:] I{n+l(x{n}'xn)
n

Thus the group FKHX = Img,, = Kerj,y; = Kerly ) = Im(3,, 41

i Xpp — M1 Xnt1) = Dnpg1 Xy since H, X,y =0.The isomorphism
o
I ,‘:‘J’HX — v 1 isthengiven by the composition I} +1X — M1 Xnt1 fias, Tpi

X1 — Dpga X O

Remark 3.6. Lemma 3.4 could be seen as a direct application of Theorem 3.5,
because, by definition, I' +1Xn+1 = 1"n+1

The same argument as in the proof of Theorem 2.4 yields the following:

Theorem 3.7. Let X be a I-connected CW-complex and n > 1. Then we have a
commutative diagram:

h'n+2
- 7"n+2‘¥ _— Hn+2X — mlx = 7rn+IX —

| | | N

—— X —— HyppX —— X —— mp X ——
hni2 En42 On+1

Remark 3.8. The isomorphism I, .1 X = ' X is natural.

n+1

As corollary of Sections 2 and 3, we obtain this interesting result:

Corollary 3.9. Let X be a 1-connected CW-complex. Then FD TX
n>1 0O

" +1X forall
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Remark 3.10. This corollary implies in particular that m,, I'X & 7, (X, 41)
for every 1-connected CW-complex and all integers n > 1.

4  Exponents for the Gamma groups

This section is devoted to the proof of the main theorem of the present paper. First,
we need two results about certain homotopy groups of highly connected spaces.

Lemma 4.1. Let m and n be positive integers such that n < m — 2 and let X be an
(m—1)-connected CW-complex. If o, denotes the exponent of the k-th stable homotopy

group of spheres w3, then the group Tmtnel (X{m+n—k}L, X{m+n-k—1})is
killed by g, forall1 <k <n.

Proof. Recall that a space X {m + n — k} is obtained from X{m +n — k — 1} by
attaching (m+n—k-+1)-cells. More precisely, if r,,, , ,, X {m+n—k—1} isgenerated

by J, then X{m + n — k} is the mapping cone of amap f : \/ S+n—k
acJ
X{m+n — k — 1}, such that flgm+n— represents a.

We call the new cells D+ —k+1 for o ¢ J.

By the Blakers-Massey theorem ([6] p. 366) for the triad (X {m + n — k}; X {m +
n—k—1}, \J Dptn—k+l)

acJ
Ttn+1(X{m+n -k}, X{m+n—k-1})

iV 2241, )

aced aed
~ min—k \ ~ m+n—k ~ S
= 7Tm+n( V Sa ) = @ 7rm+nsa = @ﬂk
acJ acd

since m +n — k > k + 2 by hypothesis. O
By induction over k we now deduce:

Corollary 4.2. Let m and n be positive integers such that n < m — 2 and let X
be an (m — 1)-connected CW-complex. If k < n, then m, (X {m +n — 1},

k
X{m+n —k —1}) is killed by the product [] ¢;; O

i=1

With these preparations we can now state the main theorem.




466 Jérdme Scherer

Theorem 4.3. Let m and n be positive integers such that n < m — 2. If X is an
(m — 1)-connected CW-complex, then

"
[Tei MnynX =0
i=1

where p; denotes the exponent of gf .

Proof. Since X is (m — 1)-connected, we can choose X{m — 1} = X. By Corollary

n
4.2, T1 o; kills 7y 1 (X {m +n — 1}, X {m — 1}). The result now follows easily,
i=l
since I, . X is a quotient of this group. {1

n
Remark 4.4. A prime number p divides the product [] g; ifand onlyifp < (n+3)/2
i=1

([5] p. 285). This fact will be used in the generalization to Serre classes (Section 5).

Remark 4.5. Ifwesetn = 1and m > 3, we obtain the well-known result that I, 1 X
is killed by g = 2.

Corollary 4.6. Let X be an (m~1)-connected CW-complex withm > 3. The Hurewicz
homomorphism h, ., : T o X — Hpp o X satisfies:

n
(i) TII e; - Kerhy,,, =0 forany integern < m —2.
=1

n—1
() I o;-Cokerh,, ., =0foranyintegern <m—1. 0O

1=1

5  Generalization to Serre classes

Serre introduced in [5] the notion of a Serre class of abelian groups. His goal was to
generalize classical theorems, for example, the Hurewicz theorem:

Let € be a Serre class and X a 1-connected space such m; X € Cforalli <n -1
Then the Hurewicz homomorphism h,, : m, X — H,X is a C-isomorphism, i.e.
Ker h,, and Coker h,, are both in C.

In this section we generalize Theorem 4.3 to the case of spaces X whose low-
dimensional homotopy groups, say up to dimension m — 1, belong to a certain Serre
classe of abelian torsion groups (instead of being trivial).
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Theorem 5.1. Let m > 2 and let P be a set of prime numbers containing all primes
p < (m+1)/2. Let Cbethe Serreclass of abelian P-torsion groupsand X a 1-connected
CW-complex such that n; X € € fori < m. Then

(i) I XeCfor2<k<2m-2.

(i) hy:mX — HpX is a C-isomorphism for2 < k < 2m — 2.

()  hypyy : M1 X — Hy,,_1 X is a C-epimorphism.

Proof. Let us build X the (m — 1)-connected cover of X, i.e. the fiber of the
(m — 1)-st Postnikov section of X, and consider the commutative diagram where

the homomorphism j, are induced by the inclusion j : X < X.

~  hrgy ~ Skl — ;I — hy =
7|'k+]X e Hk_HX i FkX e 7l'kX — HkX

wl ol

Trk+|X — I{’C+|X Em— FkX — TrkX —_— HkX
P Chk+1 O hy

Since jj, : T, X — 7, X is a C-isomorphism for all integers k > 2, we can use
the C-version of the Whitehead theorem ([5] Théoréme 3, p. 276) and deduce that

Je  H j)~( — H}. X is also a C-isomorphism for all integers k > 2. By the C-version
of the five lemma, j;, : I3 X — X isa C-isomorphism for all integers k > 2.

n ~
We deduce now from Theorem 4.3 that the product [] g; kills the group X

i=1

~ n
ifn <m -2 Hence I}, ,X and I}, X € €,since a prime p divides [] o; if and
i=]
onlyif p < (n+3)/2 < (m +1)/2 (cf Remark 4.4). Assertions (ii) and (iii) are easy
consequences of (i). O

Remark 5.2. The same statement is true if C is the Serre class of abelian groups of
finite exponent.

To show how strong this theorem is, we state an example.

Example 5.3. Consider the 1-connected space BSLZ1 obtained by performing the
plus construction on the classifying space of the infinite special linear group over the
integers, and let € be the Serre class of 2 and 3-torsion groups. It is known that K7
and K3Z € C and that K4Z = 0 (see [3] and [4]).
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The previous theorem (with m = 5) implies:

hy : K,Z — H,(SLZ) is a C-isomorphism for all2 <n < 8.
hg : K4Z —> Ho(SLZ) is a C-epimorphism.

Acknowledgement. The tesults in this paper are part of my Ph.D. thesis. It is a pleasure to thank my
advisor, Professor D. Arlettaz, for his support during my work on it.
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