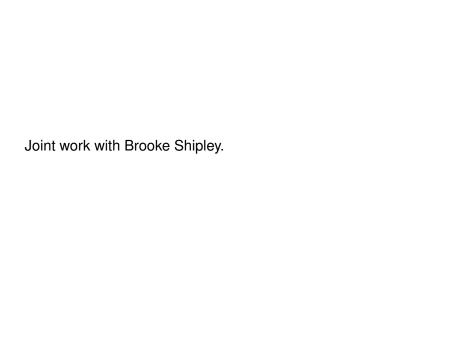
WALDHAUSEN K-THEORY VIA COMODULES

Kathryn Hess

MATHGEOM Ecole Polytechnique Fédérale de Lausanne

Manifolds, K-theory, and related topics
Dubrovnik
23 June 2014



OUTLINE

- OVERVIEW
- 2 COMODULES AND RETRACTIVE SPACES
- **3** Model category structures
- **4** Consequences for *K*-theory

OVERVIEW

BACKGROUND

Let K denote the functor from Waldhausen categories to spectra.

Let $R_X^{\rm hf}$ denote the category of homotopically finite retractive spaces over a simplicial set X.

- A(X) is the K-theory spectrum of the Waldhausen category R_X^{hf}, with cofibrations and weak equivalences created in the underlying category of simplicial sets.
- It is well known that

$$A(X)\simeq Kig(\mathsf{Mod}^{\mathrm{hf}}_{\Sigma^\infty(\Omega X)_+}ig).$$

• [Blumberg-Mandell, 2010] If X is simply connected, then

$$A(X) \simeq K(\mathsf{Mod}^{\mathsf{th}}_{DX}(\mathbf{S})).$$

THE MAIN THEOREM

A sort of Koszul dual of the module description of K(X) on the previous slide...

THEOREM (H.-SHIPLEY, 2014)

For any connected simplicial set X, the categories

$$\mathsf{Comod}^{\mathsf{hf}}_{X_+}$$
 and $\mathsf{Comod}^{\mathsf{hf}}_{\Sigma^\infty X_+}$

of homotopically finite X_+ -comodules and $\Sigma^\infty X_+$ -comodules admit Waldhausen category structures such that there are natural weak equivalences of K-theory spectra

$$A(X)\simeq Kig(\mathsf{Comod}^{\mathrm{hf}}_{X_+}ig)\simeq Kig(\mathsf{Comod}^{\mathrm{hf}}_{\Sigma^\infty X_+}ig).$$

PROOF STRATEGY

Establish existence of Quillen equivalence

$$(R_X)_{\mathcal{E}} \xrightarrow{\perp} (Comod_{X_+})_{\mathcal{E}}$$
,

giving rise, via a result of Dugger and Shipley, to

$$K((\mathsf{R}_X)^{\mathrm{hf}}_{\mathcal{E}}) \simeq K((\mathsf{Comod}_{X_+})^{\mathrm{hf}}_{\mathcal{E}}).$$

3 Apply Hovey's stabilization machine to $(\mathsf{Comod}_{X_+})_{\mathcal{E}}$, obtaining a model category structure $(\mathsf{Comod}_{\Sigma^{\infty}X_+})_{\mathcal{E}}$ such that

$$Kig((\mathsf{Comod}_{X_+})^{\mathrm{hf}}_{\mathcal{E}}ig)\simeq Kig((\mathsf{Comod}_{\Sigma^{\infty}X_+})^{\mathrm{hf}}_{\mathcal{E}}ig).$$

POTENTIAL APPLICATIONS

Work in progres...

· A new description of the splitting of

$$A(X \times S^1) \simeq A(X) \times BA(X) \times (\text{nil terms}).$$

A new description of the assembly map

$$A(*) \wedge X_+ \rightarrow A(X)$$
.

CONVENTIONS

- X is an unpointed simplicial set.
- \mathcal{E}_* is a generalized, reduced homology theory.
- (sSet*) $_{\mathcal{E}}$ is the category of pointed simplicial sets endowed with the model category structure such that the weak equivalences are the \mathcal{E}_* -homology isomorphisms, while the cofibrations are the levelwise injections. The classes of weak equivalences, fibrations and cofibrations in (sSet*) $_{\mathcal{E}}$ are denoted

$$W_{\mathcal{E}}, \mathcal{F}_{\mathcal{E}}, \text{ and } \mathcal{C}_{\mathcal{E}},$$

respectively.

COMODULES AND RETRACTIVE SPACES

X_{+} -COMODULES

 $\mathsf{Comod}_{X_+} = \mathsf{category} \ \mathsf{of} \ \mathsf{right} \ X_+ \mathsf{-comodules} \ \mathsf{in} \ (\mathsf{sSet}_*, \wedge, \mathcal{S}^0)$

- Objects: pairs (Y, ρ) , where $\rho : Y \to Y \land X_+$ is coassociative and counital.
- Comod_{X+} is complete and cocomplete, as well as tensored, cotensored, and enriched over sSet_{*}.
- There is an sSet_{*}-adjunction

$$\mathsf{Comod}_{X_+} \xrightarrow{U \atop \longleftarrow F_{X_+}} \mathsf{sSet}_* \; ,$$

where $F_{X_+}(Y) = (Y \wedge X_+, Y \wedge (\Delta_X)_+)$ for all Y, and U is the forgetful functor.

X_{+} -COMODULES

 For any simplicial map a: X' → X, there is a pushforward functor

$$a_*: \mathsf{Comod}_{X'_+} \to \mathsf{Comod}_{X_+},$$

specified on objects by

$$a_*(Y,\rho) = (Y,(Y \wedge a_+)\rho),$$

and which admits a right adjoint

$$a^*:\mathsf{Comod}_{X_+} o \mathsf{Comod}_{X'_+}$$

that commutes with colimits.

• If (X, μ, x_0) is a simplicial monoid, then the monoidal structure (sSet_{*}, \wedge , S^0) lifts to a monoidal structure

$$(\mathsf{Comod}_{X_+}, \otimes, (S^0, \rho_u)),$$

which is symmetric if μ is commutative.

RETRACTIVE SPACES OVER X

R_X = category of retractive objects over X

- Objects: $X \xrightarrow{i} Z \xrightarrow{r} X$ such that $ri = \operatorname{Id}_X$.
- There is an adjunction

$$R_X \xrightarrow{V} sSet_*$$
,

where

$$\mathsf{Ret}_X(Y, y_0) = X \xrightarrow[x \mapsto (y_0, x)]{i_{y_0}} Y \times X \xrightarrow{\mathsf{proj}_2} X$$

and

$$V(X \xrightarrow{i} Z \xrightarrow{r} X) = (Z/i(X), i(X)).$$

RETRACTIVE SPACES OVER X

• For any generalized reduced homology theory \mathcal{E}_* and any $X \stackrel{i}{\to} Z \stackrel{r}{\to} X$, and any choice of basepoint in X,

$$\mathcal{E}_*(Z) \cong \mathcal{E}_*(Z/i(X)) \oplus \mathcal{E}_*(X).$$

• For any simplicial map $a: X' \to X$, there is an adjunction

$$R_{X'} \xrightarrow{a_*} R_X,$$

given by pushout and pullback along a.

THE KEY ADJUNCTION

THEOREM (H.-SHIPLEY, 2014)

There is an adjoint pair of functors, natural in X,

$$\mathsf{R}_X \xrightarrow[-\star X]{-/X} \mathsf{Comod}_{X_+} \; ,$$

preserving \mathcal{E}_* -equivalences and such that the counit map is a natural isomorphism and the unit map a natural \mathcal{E}_* -equivalence, for every generalized reduced homology theory \mathcal{E}_* .

REMARK

When X=*, this is an equivalence of categories: R_* and Comod_{S0} are equivalent to sSet_{*}, and -/* and -* induce the identity functors. It is not an equivalence if $X \neq *$.

The $-\star X$ functor

$$-\star X : \mathsf{Comod}_{X_+} o \mathsf{R}_X : (Y, \rho) \mapsto (Y \star X, i_\rho, r_\rho)$$

where

$$\begin{array}{ccc}
Y \star X & \longrightarrow & Y \times X \\
\downarrow & & \downarrow & \\
\downarrow & & \downarrow \\
Y & \stackrel{\rho}{\longrightarrow} & Y \wedge X_{+}
\end{array}$$

is a pullback in sSet, and

$$i_{\rho}:X
ightarrow Y \star X: x \mapsto (y_0,x) \quad ext{ and } \quad r_{\rho}:Y \star X
ightarrow X: (y,x) \mapsto x.$$

EXAMPLE

$$F_{X_+}(Y) \star X = \operatorname{Ret}_X(Y).$$

THE -/X FUNCTOR

$$-/X: \mathsf{R}_X \to \mathsf{Comod}_{X_+}: (Z,i,r) \mapsto \big(Z/i(X),\rho_{(i,r)}\big),$$

where

$$\rho_{(i,r)}: Z/i(X) \to (Z/i(X)) \land X_{+}$$

is the unique pointed simplicial map such that

$$Z \xrightarrow{(\rho_i \times r)\Delta_Z} (Z/i(X)) \times X \xrightarrow{\rho_{(i,r)}} (Z/i(X)) \wedge X_+$$

commutes, where $p_i: Z \to Z/i(X)$ is the quotient map.

MODEL CATEGORY STRUCTURES

THE UNSTABLE CASE

THEOREM (H.-SHIPLEY, 2014)

There are cofibrantly generated, left proper, simplicial model category structures $(R_X)_{\mathcal{E}}$ and $(Comod_{X_+})_{\mathcal{E}}$ such that

$$(\mathsf{R}_X)_{\mathcal{E}} \xrightarrow{-/X} (\mathsf{Comod}_{X_+})_{\mathcal{E}}$$

is a Quillen equivalence and

- $WE_{Comod_{X_+}} = U^{-1}(WE_{\varepsilon})$, $Cof_{Comod_{X_+}} = U^{-1}(Cof_{\varepsilon})$, and
- $\mathsf{WE}_{\mathsf{R}_X} = V^{-1}(\mathsf{WE}_{\mathcal{E}})$, $\mathsf{Cof}_{\mathsf{R}_X} = V^{-1}(\mathsf{Cof}_{\mathcal{E}})$.

The existence of $(R_X)_{\mathcal{E}}$ is standard (see below); we prove the existence of $(\mathsf{Comod}_{X_+})_{\mathcal{E}}$ in two complementary ways, by right-and left-induction.

REMARKS

- By a standard "slice" argument, R_X inherits a left proper, cofibrantly generated, simplicial model category structure from (sSet) $_{\mathcal{E}}$ such that $f:(Z,i,r)\to (Z',i',r')$ is a fibration (respectively, cofibration or weak equivalence) if and only if the underlying morphism of simplicial sets $f:Z\to Z'$ is of the same type.
- If $a: X' \to X$ is a simplicial map, then

$$(\mathsf{R}_{X'})_{\mathcal{E}} \xrightarrow{a_*} (\mathsf{R}_X)_{\mathcal{E}},$$

and

$$(\mathsf{Comod}_{X'})_{\mathcal{E}} \xrightarrow{a_*} (\mathsf{Comod}_{X_+})_{\mathcal{E}},$$

are Quillen pairs that are Quillen equivalences if a is an \mathcal{E}_* -equivalence.

PROOF BY RIGHT-INDUCTION

Apply standard transfer of cofibrantly generated model category structure to

$$R_X \xrightarrow[-\star X]{-\star X} Comod_{X_+}$$
,

where R_X is equipped with the model category structure inherited from (sSet) $_{\varepsilon}$.

Advantage: know sets of generating (acyclic) cofibrations for the model category structure on Comod_{X_+}

USEFUL NOTATION

NOTATION

Let f and g be morphisms in a category C. If for every commutative diagram in C

the dotted lift c exists, then we write $f \bowtie g$.

If X is a class of morphisms C, then

$$\mathfrak{X}^{\boxtimes} = \{ f \in \mathsf{Mor}\, C \mid x \boxtimes f \quad \forall x \in \mathfrak{X} \}.$$

DEFINITION OF LEFT-INDUCED STRUCTURES

DEFINITION

Let C \xrightarrow{U} M be an adjoint pair of functors, where

 $(M, \mathfrak{F}, \mathfrak{C}, \mathcal{W})$ is a model category, and C is a bicomplete category. If the triple of classes of morphisms in C

$$\left(\left(U^{-1}(\mathfrak{C}\cap\mathcal{W})\right)^{\boxtimes},U^{-1}(\mathfrak{C}),U^{-1}(\mathcal{W})\right)$$

satisfies the axioms of a model category, then it is a left-induced model structure on C.

EXISTENCE OF LEFT-INDUCED STRUCTURES

THEOREM (BAYEH-H.-KARPOVA-KEDZIOREK-RIEHL-SHIPLEY, 2014)

Let
$$C \xrightarrow{U} M$$
 be an adjoint pair of functors, where C

is locally presentable, and $(M, \mathfrak{F}, \mathfrak{C}, \mathcal{W})$ is a combinatorial model category.

lf

$$(U^{-1}\mathfrak{C})^{\square} \subset U^{-1}\mathfrak{W},$$

then the left-induced model structure on C exists and is cofibrantly generated.

APPLICATION TO $Comod_{X_{\perp}}$

Applying the existence theorem from the previous slide, we get...

THEOREM (H.-SHIPLEY, 2014)

There is a model category structure (Comod $_{X_+}$) $_{\mathcal{E}}$ left-induced from (sSet $_*$) $_{\mathcal{E}}$ by the adjunction

$$\mathsf{Comod}_{X_+} \xrightarrow[]{U} \\ \underbrace{\bot}_{F_{X_+}} \mathsf{sSet}_*.$$

Moreover if (X, μ, x_0) is a simplicial monoid, then

$$((\mathsf{Comod}_{X_+})_{\mathcal{E}}, \otimes, (\mathcal{S}^0, \rho_u))$$

is a monoidal model category satisfying the monoid axiom.

Advantages to this approach become clear when we stabilize.

THE NON SIMPLY CONNECTED CASE

THEOREM

Let $q: \widetilde{X} \to X$ be a universal cover. The adjunctions

$$\mathsf{R}_{\widetilde{X}} \xrightarrow{q_*} \xrightarrow{q_*} \mathsf{R}_{X} \;,\; \mathsf{Comod}_{\widetilde{X}_+} \xrightarrow{q_*} \xrightarrow{q_*} \mathsf{Comod}_{X_+}$$

right-induce left proper, cofibrantly generated model category structures $(R_X)_{\mathcal{H}q^*}$ and $(\mathsf{Comod}_{X_+})_{\mathcal{H}q^*}$ from $(R_{\widetilde{X}})_{\mathcal{H}\mathbb{Z}}$ and $(\mathsf{Comod}_{\widetilde{X}})_{\mathcal{H}\mathbb{Z}}$. In particular, the adjunction

$$(\mathsf{R}_X)_{\mathfrak{H}q^*} \xrightarrow{-/X} (\mathsf{Comod}_{X_+})_{\mathfrak{H}q^*}$$

is a Quillen equivalence.

KOSZUL DUALITY

THEOREM

If X is a reduced simplicial set, and $\mathcal E$ is any generalized homology theory, then there is a Quillen equivalence

$$(\mathsf{Mod}_{\mathbb{G}X})_{\mathcal{E}} \xrightarrow{-\wedge_{(\mathbb{G}X)_{+}}(\mathbb{P}X)_{+}} (\mathsf{Comod}_{X_{+}})_{\mathcal{E}}.$$

THE STABLE CASE

THEOREM (H.-SHIPLEY, 2014)

There are combinatorial, left proper, spectral model category structures

$$\mathsf{Sp}_{\mathcal{E}}, \quad (\mathsf{Comod}_{\Sigma^{\infty}X_{+}})^{\mathsf{st}}_{\mathcal{E}}, \quad \textit{ and } \quad (\mathsf{Comod}_{\Sigma^{\infty}X_{+}})^{\mathsf{left}}_{\mathcal{E}},$$

where the first two are stabilized from ($sSet_*$) $_{\mathcal{E}}$ and ($Comod_{X_+}$) $_{\mathcal{E}}$, and the third is left-induced from the first. In particular, the functors

$$(\mathsf{Comod}_{\Sigma^{\infty}X_{+}})^{\text{st}}_{\mathcal{E}} \xrightarrow{\quad \mathsf{Id} \quad} (\mathsf{Comod}_{\Sigma^{\infty}X_{+}})^{\text{left}}_{\mathcal{E}} \xrightarrow{\quad \mathcal{U} \quad} \mathsf{Sp}_{\mathcal{E}}$$

are left Quillen, and weak equivalences and fibrations in $(\mathsf{Comod}_{\Sigma^\infty X_+})^{\mathrm{left}}_{\mathcal{E}}$ are created by U.

REMARKS

- The description of $(\mathsf{Comod}_{X_+})_{\mathcal{E}}$ as a left-induced structure is crucial for this proof.
- $\bullet \ (\mathsf{Comod}_{\Sigma^{\infty}X_{+}})^{?}_{\mathcal{H}\mathbb{Z}} = (\mathsf{Comod}_{\Sigma^{\infty}X_{+}})^{?}_{\pi^{s}_{*}} \ \mathsf{for} \ ? = \mathsf{st} \ \mathsf{or} \ \mathsf{left}$
- If X is a simplicial monoid, then $(\mathsf{Comod}_{\Sigma^{\infty}X_+})^{\mathsf{left}}_{\mathcal{E}}$ admits a monoidal structure satisfying the monoid axiom.
- Koszul duality stabilizes: if X is a reduced simplicial set and $\mathcal E$ any generalized homology theory, then there is a Quillen equivalence

$$(\mathsf{Mod}_{\Sigma^\infty(\mathbb{G}X)_+})^{st}_{\epsilon} \xrightarrow{\qquad } (\mathsf{Comod}_{\Sigma^\infty X_+})^{st}_{\epsilon} \; ,$$

ALGEBRAIC HOMOTOPY OF COMODULES

If H is a simplicial monoid, then

$$\mathsf{Alg}_{\Sigma^\infty H_+} = \mathsf{the} \ \mathsf{category} \ \mathsf{of} \ \mathsf{monoids} \ \mathsf{in} \ \mathsf{Comod}_{\Sigma^\infty H_+}.$$

Objects: symmetric ring spectra ${\bf R}$ endowed with a coassociative, counital morphism

$$\rho: \mathbf{R} \to \mathbf{R} \wedge \Sigma^{\infty} H_+$$

of symmetric ring spectra.

COROLLARY

There is a cofibrantly generated model category structure $(Alg_{\Sigma^{\infty}H_+})_{\mathcal{E}}$ with respect to which the forgetful/cofree adjunction

$$(\mathsf{Alg}_{\Sigma^{\infty}H_{+}})_{\mathcal{E}} \xrightarrow{U} (\mathsf{Alg})_{\mathcal{E}}$$

is a Quillen pair.

CONSEQUENCE FOR HOPF-GALOIS THEORY

Can now formulate rigorously the notion of the homotopy coinvariants of the $\Sigma^{\infty}H_{+}$ -coaction on an object (\mathbf{R},ρ) in $\mathrm{Alg}_{\Sigma^{\infty}H_{+}}$, which is essential in the definition of a homotopic Hopf-Galois extension [Rognes].

DEFINITION

A model for the homotopy coinvariants of (\mathbf{R}, ρ) is the equalizer in $\mathrm{Alg}_{\Sigma^{\infty}H_{+}}$

$$(\mathbf{R}, \rho)^{hco \Sigma^{\infty} H_{+}} = \operatorname{equal} \big(\mathbf{R}^{f} \overset{\rho^{f}}{\underset{\mathbf{R}^{f} \wedge \eta}{\Longrightarrow}} \mathbf{R}^{f} \wedge \Sigma^{\infty} H_{+} \big),$$

where (\mathbf{R}^f, ρ^f) is a fibrant replacement for (\mathbf{R}, ρ) in $\mathrm{Alg}_{\Sigma^\infty H_+}$, and $\eta: \mathbf{S} \to \Sigma^\infty H_+$ is the unit of the ring spectrum $\Sigma^\infty H_+$.

Consequences for *K*-theory

From comodules to K-theory

NOTATION

 $A(X; \mathcal{E}_*)$ denotes the K-theory of $\mathsf{R}_X^{\mathrm{hf}}$ with the usual cofibrations, but with \mathcal{E}_* -equivalences as weak equivalences.

THEOREM (H.-SHIPLEY, 2014)

For any simplicial set X and any generalized reduced homology theory \mathcal{E}_* , $(\mathsf{Comod}_{X_+})^{\mathrm{hf}}_{\mathcal{E}}$ is a Waldhausen category, and there are natural weak equivalences of K-theory spectra

$$\textit{A}(\textit{X};\textit{E}_*) \xrightarrow{\simeq} \textit{K}\big((\mathsf{Comod}_{\textit{X}_+})^{\mathsf{hf}}_{\textit{E}}\big) \xleftarrow{\simeq} \textit{K}\big((\mathsf{Mod}_{\Omega \textit{X}})^{\mathsf{hf}}_{\textit{E}}\big).$$

THE NON SIMPLY CONNECTED CASE

Let $q: \widetilde{X} \to X$ be a universal cover. Recall $(R_X)_{\mathcal{H}q^*}$ and $(\mathsf{Comod}_{X_+})_{\mathcal{H}q^*}$. Note that $\mathcal{H}q^* = \mathcal{H}\mathbb{Z}_*$ if X is simply connected.

LEMMA

 $A(X) \xrightarrow{\cong} A(X; \mathcal{H}q^*)$ is a weak equivalence for every connected simplicial set X.

COROLLARY

There is a natural weak equivalence of K-theory spectra

$$A(X) \xrightarrow{\simeq} K((\mathsf{Comod}_{X_+})^{\mathrm{hf}}_{\mathcal{H}q^*}).$$

In particular, if X is simply connected, then

$$A(X) \xrightarrow{\cong} K((\mathsf{Comod}_{X_+})^{\mathrm{hf}}_{\mathcal{H}\mathbb{Z}}).$$

THE STABLE VERSION

COROLLARY

There is a natural weak equivalence of K-theory spectra

$$A(X) \xrightarrow{\simeq} K((\mathsf{Comod}_{\Sigma^{\infty}X_{+}})^{\mathrm{hf}}),$$

where $(\mathsf{Comod}_{\Sigma^{\infty}X_+})^{\mathrm{hf}}$ denotes the category of homotopically finite comodules over $\Sigma^{\infty}X_+$, with cofibrations and weak equivalences inherited from the stabilization of the model structure on $(\mathsf{Comod}_{X_+})_{\mathfrak{H}q^*}$.

Happy Birthday, Tom!