Homotopical algebra Exercise Set 6

26.03.2018

Exercise 2 is to be handed in on 09.04.2018.

- 1. Let $L \dashv R$ be a pair of adjoint functors, where $L : \mathsf{C} \to \mathsf{D}$ and $R : \mathsf{D} \to \mathsf{C}$. Let $\eta : \mathrm{Id}_{\mathsf{C}} \to RL$ and $\varepsilon : LR \to \mathrm{Id}_{\mathsf{D}}$ be the unit and counit of the adjunctions. Prove that η and ε satisfy the *triangle identities*, i.e.,
 - (a) $\operatorname{Id}_{L(C)} = \varepsilon_{L(C)} \circ L(\eta_C)$ for all $C \in \operatorname{Ob} \mathsf{C}$, and
 - (b) $\operatorname{Id}_{R(D)} = R(\varepsilon_D) \circ \eta_{R(C)}$ for all $D \in \operatorname{Ob} \mathsf{D}$.
- 2. Let C be a cocomplete category.
 - (a) Let J be any small category. Prove that C^{J} is cocomplete and that, in particular, *colimits are created objectwise*, i.e., for all small categories I and all I-shaped diagrams $\Phi : I \to C^{J}$ the functor $\operatorname{colim}_{I} \Phi : J \to C$ satisfies $(\operatorname{colim}_{I} \Phi)(j) = \operatorname{colim}_{I} (\Phi(-)(j))$.
 - (b) Let $F : J \to K$ be a functor between small categories. Prove that the "precomposition with F" functor $F^* : C^K \to C^J$ admits a left adjoint. (Hint: Consider special cases first, such as when J is the category with one object and one morphism or the category with two objects and one non-identity morphism. The general formula can be expressed in terms of colimits of functors with domains that have as objects morphisms in K of the form $F(j) \to k$ for a fixed $k \in Ob K$.)
 - (c) Let $F_{!}: \mathsf{C}^{\mathsf{J}} \to \mathsf{C}^{\mathsf{K}}$ denote the left adjoint to F^{*} . For any $\Phi \in \operatorname{Ob} \mathsf{C}^{\mathsf{J}}$, the functor $F_{!}(\Phi): \mathsf{K} \to \mathsf{C}$ is called the *left Kan extension of* Φ *along* F. Show that the diagram of functors

"commutes up to a natural transformation", i.e., there is a natural transformation $\eta: \Phi \to F_{!}(\Phi) \circ F$.

- (d) Let N denote the category with Ob N = N, the set of natural numbers, and only identity morphisms. Let $S : N \times N \to N$ denote functor specified by S(m, n) = m + n. A functor $\Phi : N \times N \to Ab$ corresponds to a bigraded abelian group, i.e., a set $\{A_{m,n} \mid m, n \in \mathbb{N}\} \subset Ob Ab$. Compute $S_!(\Phi)$.
- 3. Dualize the exercise above in the case where C is complete, leading to a right adjoint $F_* : C^J \to C^K$ to F^* and then to the definition of a right Kan extension.
- 4. Let C be a bicomplete category, and let J be any small category. Recall the functors colim_J : $C^J \rightarrow C$ and $\lim_J : C^J \rightarrow C$ of Exercise 6 in Exercise set 5.
 - (a) Show that colim_J and lim_J are left and right adjoints to the functor $\Delta : \mathsf{C} \to \mathsf{C}^{\mathsf{J}}$ that takes an object C to the constant diagram Δ_C and a morphism $f : C \to D$ to the "constant at f" natural transformation $\Delta_f : \Delta_C \to \Delta_D$.
 - (b) Let I be another small category.
 - i. Prove that are isomorphisms of categories $(\mathsf{C}^{\mathsf{I}})^{\mathsf{J}} \xleftarrow{\Phi} \mathsf{C}^{\mathsf{I} \times \mathsf{J}} \xrightarrow{\Psi} (\mathsf{C}^{\mathsf{J}})^{\mathsf{I}}$.
 - ii. Prove Fubini's Theorem (categorical version): For all $F \in Ob C^{I \times J}$,

 $\operatorname{colim}_{\mathsf{I}}(\operatorname{colim}_{\mathsf{J}}\Phi(F)) \cong \operatorname{colim}_{\mathsf{I}}(\operatorname{colim}_{\mathsf{I}}\Psi(F)) \cong \operatorname{colim}_{\mathsf{I}\times\mathsf{J}}F$

and

$$\lim_{I} \left(\lim_{J} \Phi(F) \right) \cong \lim_{J} \left(\lim_{I} \Psi(F) \right) \cong \lim_{I \times J} F.$$

(c) Prove that if $f: Z \to X$ and $g: Z \to Y$ are morphisms in GSet, then

$$(X \coprod_Z Y)_G \cong (X_G) \coprod_{Z_G} (Y_G),$$

where the pushout is computed on the left in GSet and on the right in Set, and $(-)_G$ denotes the G-orbits functor. Similarly, prove that if $f: X \to Z$ and $g: Y \to Z$ are morphisms in GSet, then

$$(X \times_Z Y)^G \cong (X^G) \times_{Z^G} (Y^G),$$

where the pullback is computed on the left in GSet and on the right in Set, and $(-)^G$ denotes the G-fixed points functor.

- 5. Let J be a small category, and let C be any category. The functor category $C^{J^{op}}$ is the category of C-valued presheaves on J. (Set-valued presheaves are often simply called *presheaves*.)
 - (a) Show that there is a functor $Y : \mathsf{J} \to \mathsf{Set}^{\mathsf{J}^{op}}$ defined on objects by $Y(j) = \mathsf{J}(-, j) : \mathsf{J}^{op} \to \mathsf{Set}$. The presheaf Y(j) is said to be *representable*, represented by $j \in \mathsf{Ob} \mathsf{J}$.

(b) Prove the Yoneda Lemma: For every $j \in Ob J$ and every presheaf $\Phi \in Ob \operatorname{Set}^{J^{op}}$, there is an isomorphism

$$\Phi(j) \cong \mathsf{Set}^{\mathsf{J}^{op}}(Y(j), \Phi)$$

that is natural in j, More formally, there is a natural isomorphism between Φ and the functor $\mathsf{Set}^{\mathsf{J}^{op}}(Y(-), \Phi) : \mathsf{J}^{op} \to \mathsf{Set}$.

(c) Explain why the Yoneda Lemma implies that the functor Y is full (i.e., every morphism $Y(j) \to Y(j')$ is of the form Y(f) for some $f \in \mathsf{J}(j,j')$) and faithful (i.e., if $f,g \in \mathrm{Mor}\,\mathsf{J}$ and Y(f) = Y(g), then f = g.), so that

$$\operatorname{Set}^{\mathsf{J}}(Y(j), Y(j')) \cong \mathsf{J}(j, j').$$

(d) Let $j, j' \in \text{Ob J}$. Prove that if $Y(j) \cong Y(j')$, then $j \cong j'$.