Homotopical algebra Exercise Set 6

26.03.2018

Exercise 2 is to be handed in on 09.04.2018.

1. Let $L \dashv R$ be a pair of adjoint functors, where $L: \mathrm{C} \rightarrow \mathrm{D}$ and $R: \mathrm{D} \rightarrow \mathrm{C}$. Let $\eta: \mathrm{Id}_{\mathrm{C}} \rightarrow R L$ and $\varepsilon: L R \rightarrow \mathrm{Id}_{\mathrm{D}}$ be the unit and counit of the adjunctions. Prove that η and ε satisfy the triangle identities, i.e.,
(a) $\operatorname{Id}_{L(C)}=\varepsilon_{L(C)} \circ L\left(\eta_{C}\right)$ for all $C \in \mathrm{ObC}$, and
(b) $\operatorname{Id}_{R(D)}=R\left(\varepsilon_{D}\right) \circ \eta_{R(C)}$ for all $D \in \mathrm{ObD}$.
2. Let C be a cocomplete category.
(a) Let J be any small category. Prove that C^{J} is cocomplete and that, in particular, colimits are created objectwise, i.e., for all small categories I and all I-shaped diagrams $\Phi: I \rightarrow C^{J}$ the functor $\operatorname{colim}_{I} \Phi: J \rightarrow C$ satisfies $\left(\operatorname{colim}_{I} \Phi\right)(j)=\operatorname{colim}_{I}(\Phi(-)(j))$.
(b) Let $F: \mathrm{J} \rightarrow \mathrm{K}$ be a functor between small categories. Prove that the "precomposition with F " functor $F^{*}: C^{K} \rightarrow C^{J}$ admits a left adjoint. (Hint: Consider special cases first, such as when J is the category with one object and one morphism or the category with two objects and one non-identity morphism. The general formula can be expressed in terms of colimits of functors with domains that have as objects morphisms in K of the form $F(j) \rightarrow k$ for a fixed $k \in \mathrm{ObK}$.)
(c) Let $F_{!}: \mathrm{C}^{J} \rightarrow \mathrm{C}^{\mathrm{K}}$ denote the left adjoint to F^{*}. For any $\Phi \in \mathrm{ObC}^{J}$, the functor $F_{!}(\Phi): \mathrm{K} \rightarrow \mathrm{C}$ is called the left Kan extension of Φ along F. Show that the diagram of functors

"commutes up to a natural transformation", i.e., there is a natural transformation $\eta: \Phi \rightarrow F_{!}(\Phi) \circ F$.
(d) Let N denote the category with $\mathrm{Ob} \mathrm{N}=\mathbb{N}$, the set of natural numbers, and only identity morphisms. Let $S: \mathrm{N} \times \mathrm{N} \rightarrow \mathrm{N}$ denote functor specified by $S(m, n)=m+n$. A functor $\Phi: \mathrm{N} \times \mathrm{N} \rightarrow \mathrm{Ab}$ corresponds to a bigraded abelian group, i.e., a set $\left\{A_{m, n}, \mid m, n \in \mathbb{N}\right\} \subset \mathrm{Ob} \mathrm{Ab}$. Compute $S_{!}(\Phi)$.
3. Dualize the exercise above in the case where C is complete, leading to a right adjoint $F_{*}: \mathrm{C}^{J} \rightarrow \mathrm{C}^{\mathrm{K}}$ to F^{*} and then to the definition of a right Kan extension.
4. Let C be a bicomplete category, and let J be any small category. Recall the functors colim $: C^{J} \rightarrow C$ and $\lim _{\jmath}: C^{J} \rightarrow C$ of Exercise 6 in Exercise set 5 .
(a) Show that colimJ and limJ are left and right adjoints to the functor $\Delta: \mathrm{C} \rightarrow \mathrm{C}^{J}$ that takes an object C to the constant diagram Δ_{C} and a morphism $f: C \rightarrow D$ to the "constant at f " natural transformation $\Delta_{f}: \Delta_{C} \rightarrow \Delta_{D}$.
(b) Let I be another small category.
i. Prove that are isomorphisms of categories $\left(C^{1}\right)^{J} \stackrel{\Phi}{\leftarrow} C^{1 \times J} \xrightarrow{\Psi}\left(C^{J}\right)^{1}$.
ii. Prove Fubini's Theorem (categorical version): For all $F \in \mathrm{Ob}^{\mathrm{I} \times \mathrm{J}}$,

$$
\operatorname{colim}_{\perp}\left(\operatorname{colim}_{\jmath} \Phi(F)\right) \cong \operatorname{colim}_{\jmath}\left(\operatorname{colim}_{\perp} \Psi(F)\right) \cong \operatorname{colim}_{\perp \times \jmath} F
$$

and

$$
\lim _{\mathrm{I}}\left(\lim _{\jmath} \Phi(F)\right) \cong \lim _{\jmath}\left(\lim _{\mathrm{I}} \Psi(F)\right) \cong \lim _{\mathrm{I} \times \mathrm{J}} F
$$

(c) Prove that if $f: Z \rightarrow X$ and $g: Z \rightarrow Y$ are morphisms in G Set, then

$$
\left(X \coprod_{Z} Y\right)_{G} \cong\left(X_{G}\right) \coprod_{Z_{G}}\left(Y_{G}\right),
$$

where the pushout is computed on the left in G Set and on the right in Set, and $(-)_{G}$ denotes the G-orbits functor. Similarly, prove that if $f: X \rightarrow Z$ and $g: Y \rightarrow Z$ are morphisms in G Set, then

$$
\left(X \times_{Z} Y\right)^{G} \cong\left(X^{G}\right) \times_{Z^{G}}\left(Y^{G}\right)
$$

where the pullback is computed on the left in G Set and on the right in Set, and $(-)^{G}$ denotes the G-fixed points functor.
5. Let J be a small category, and let C be any category. The functor category $\mathrm{C}^{\mathrm{J}^{o p}}$ is the category of C-valued presheaves on J. (Set-valued presheaves are often simply called presheaves.)
(a) Show that there is a functor $Y: \mathrm{J} \rightarrow$ Set $^{{ }^{\mathrm{Jp}}}$ defined on objects by $Y(j)=\mathrm{J}(-, j): \mathrm{J}^{o p} \rightarrow$ Set. The presheaf $Y(j)$ is said to be representable, represented by $j \in \mathrm{Ob} \mathrm{J}$.
(b) Prove the Yoneda Lemma: For every $j \in \operatorname{ObJ}$ and every presheaf $\Phi \in \mathrm{ObSet}{ }^{\mathrm{J}^{o p}}$, there is an isomorphism

$$
\Phi(j) \cong \operatorname{Set}^{J^{o p}}(Y(j), \Phi)
$$

that is natural in j, More formally, there is a natural isomorphism between Φ and the functor $\operatorname{Set}^{J^{o p}}(Y(-), \Phi): J^{o p} \rightarrow$ Set.
(c) Explain why the Yoneda Lemma implies that the functor Y is full (i.e., every morphism $Y(j) \rightarrow Y\left(j^{\prime}\right)$ is of the form $Y(f)$ for some $\left.f \in \mathrm{~J}\left(j, j^{\prime}\right)\right)$ and faithful (i.e., if $f, g \in$ Mor J and $Y(f)=Y(g)$, then $f=g$.), so that

$$
\operatorname{Set}^{J}\left(Y(j), Y\left(j^{\prime}\right)\right) \cong \mathrm{J}\left(j, j^{\prime}\right)
$$

(d) Let $j, j^{\prime} \in \mathrm{Ob} J$. Prove that if $Y(j) \cong Y\left(j^{\prime}\right)$, then $j \cong j^{\prime}$.

