Homotopy Exponents for Large H-Spaces

Wojciech Chachólski¹, Wolfgang Pitsch², Jérôme Scherer², and Don Stanley³

¹The Royal Institute of Technology, Matematik, S-10044 Stockholm, Sweden, ²Universitat Autònoma de Barcelona, Departament de Matemàtiques, E-08193 Bellaterra, Spain, and ³Department of Mathematics and Statistics, University of Regina, College West 307.14, Regina, Saskatchewan S4S 0A2, Canada

Correspondence to be sent to: pitsch@mat.uab.cat

We show that H-spaces with finitely generated cohomology, as an algebra or as an algebra over the Steenrod algebra, have homotopy exponents at all primes. This provides a positive answer to a question of Stanley.

Introduction

Moore's conjecture, see for example [9], predicts that elliptic complexes have an exponent at any prime p, meaning that there is a bound on the p-torsion in the graded group of all homotopy groups. Relying on results by James [6] and Toda [11] about the homotopy groups of spheres, the fourth author (re)proved in [10] Long's result that finite H-spaces have an exponent at any prime [7]. He proved in fact the result for H-spaces for which the mod p cohomology is finite and also asked whether this would hold for finitely generated cohomology rings. The aim of this note is to give a positive answer to this question and to provide a way larger class of H-spaces that have homotopy exponents.

Received April 22, 2008; Revised April 22, 2008; Accepted May 14, 2008

© The Author 2008. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oxfordjournals.org.

Theorem 1.2. Let X be a connected and p-complete H-space such that $H^*(X; \mathbb{F}_p)$ is finitely generated as an algebra over the Steenrod algebra. Then X has an exponent at p.

This class of H-spaces is optimal in the sense that H-spaces with a larger mod p cohomology, such as an infinite product of Eilenberg–Mac Lane spaces $K(\mathbb{Z}/p^n,n)$, will not have in general an exponent at p. The theorem should be compared with the computations done by Clément and the third author of homological exponents, [4]. Whereas such H-spaces always have homotopy exponents, they almost never have homological exponents. The only H-spaces for which the 2-torsion in $H_*(X;\mathbb{Z})$ has a bound are products of copies of the circle, classifying spaces of cyclic groups, the infinite complex projective space and $K(\mathbb{Z},3)$. As a corollary, we obtain the desired result. In fact, we obtain the following global theorem.

Theorem 1.4. Let X be a connected H-space such that $H^*(X; \mathbb{Z})$ is finitely generated as an algebra. Then X has an exponent at each prime p.

The methods we use are based on the deconstruction techniques of Castellana, Crespo, and Scherer [3].

1 Homotopy Exponents

Our starting point is the fact that mod p finite H-spaces always have homotopy exponents. The following is a variant of Stanley [10, Corollary 2.9]. Whereas he focused on spaces localized at a prime, we will stick to p-completion in the sense of Bousfield and Kan [2].

Proposition 1.1 Stanley. Let p be a prime and X be a p-complete and a connected H-space such that $H^*(X; \mathbb{F}_p)$ is finite. Then X has an exponent at p.

We will not repeat the proof, but let us sketch the main steps. Let us consider a decomposition of X by p-complete cells, i.e. X is obtained by attaching cones along maps from $(S^n)_p^\wedge$. The natural map $X \to \Omega \Sigma X$ factors then through the loop spaces on a wedge W of a finite number of such p-completed spheres, up to multiplying by some integer N: the composite $X \to \Omega \Sigma X \xrightarrow{N} \Omega \Sigma X$ is homotopic to $X \to \Omega W \to \Omega \Sigma X$. The proof goes by induction on the number of p-complete cells and the key ingredient here is Hilton's description of the loop space on a wedge of spheres [5]. Note that the suspension of a

map between spheres is torsion except for the multiples of the identity. This idea to "split off" all the cells of X up to multiplication by some integer is dual to Arlettaz' way to split off Eilenberg-Mac Lane spaces in H-spaces with finite-order k-invariants, [1, Section 7]. The final step relies on the classical results by James [6] and Toda [11], that spheres do have homotopy exponents at all primes.

Theorem 1.2. Let X be a connected and p-complete H-space such that $H^*(X; \mathbb{F}_p)$ is finitely generated as an algebra over the Steenrod algebra. Then X has an exponent at p.

Proof. A connected *H*-space such that $H^*(X; \mathbb{F}_p)$ is finitely generated as an algebra over the Steenrod algebra can always be seen as the total space of an *H*-fibration $F \to X \to Y$, where Y is an H-space with finite mod p cohomology and F is a p-torsion Postnikov piece whose homotopy groups are finite direct sums of copies of cyclic groups \mathbb{Z}/p^r and Prüfer groups $\mathbb{Z}_{p^{\infty}}$ [3, Theorem 7.3]. This is a fibration of H-spaces and H-maps, so that we obtain another fibration $F_p^\wedge \to X \to Y_p^\wedge$ by p-completing it. The base space Y_p^\wedge now satisfies the assumptions of Proposition 1.1. It therefore has an exponent at p. The homotopy groups of the fiber F_p^{\wedge} are finite direct sums of cyclic groups \mathbb{Z}/p^n and copies of the p-adic integers \mathbb{Z}_p^{\wedge} . Thus, F_p^{\wedge} has an exponent at p as well. The homotopy long exact sequence of the fibration allows us to conclude.

We see here how the p-completeness assumption plays an important role. The space $K(\mathbb{Z}_{p^{\infty}},1)$, for example, has obviously no exponent at p, but its p-completion is $K(\mathbb{Z}_p^{\wedge},2)=(\mathbb{C}P^{\infty})_p^{\wedge}$, which is a torsion-free space. The following corollary is the answer to Stanley's question.

Corollary 1.3. Let X be a connected and p-complete H-space such that $H^*(X; \mathbb{F}_p)$ is finitely generated as an algebra. Then X has an exponent at p.

In fact, when the mod p cohomology is finitely generated, the fiber F in the fibration described in the proof of Theorem 1.2 is a single Eilenberg-Mac Lane space K(P, 1). Thus, the typical example of an H-space with finitely generated mod p cohomology is the 3-connected cover of a simply connected finite H-space (P is $\mathbb{Z}_{p^{\infty}}$ in this case). Likewise, the typical example in Theorem 1.2 are highly connected covers of finite H-spaces. This explains why such spaces have homotopy exponents!

If one does not wish to work at one prime at a time and prefers to find a global condition which permits to conclude that a certain class of spaces have exponents at all primes, one must replace mod *p* cohomology by integral cohomology.

Theorem 1.4. Let X be a connected H-space such that $H^*(X; \mathbb{Z})$ is finitely generated as an algebra. Then X has an exponent at each prime p.

Proof. Since the integral cohomology groups are finitely generated, it follows from the universal coefficient exact sequence (see [8]) that the integral homology groups are also finitely generated. Since X is an H-space, we may use a standard Serre class argument to conclude that so are the homotopy groups. Therefore, the p-completion map $X \to X_p^{\wedge}$ induces an isomorphim on the p-torsion at the level of homotopy groups. The theorem is now a direct consequence of the next lemma.

Lemma 1.5. Let X be a connected space. If $H^*(X; \mathbb{Z})$ is finitely generated as an algebra, then so is $H^*(X; \mathbb{F}_p)$.

Proof. Let u_1, \ldots, u_r generate $H^*(X; \mathbb{Z})$ as an algebra. Consider the universal coefficients short exact sequences

$$0 \to H^n(X; \mathbb{Z}) \otimes \mathbb{Z}/p \longrightarrow H^n(X; \mathbb{F}_p) \stackrel{\partial}{\to} \operatorname{Tor}(H^{n+1}(X; \mathbb{Z}); \mathbb{Z}/p) \to 0.$$

Since $H^*(X;\mathbb{Z})$ is finitely generated as an algebra, it is degreewise finitely generated as a group, and therefore $\mathrm{Tor}(H^*(X;\mathbb{Z});\mathbb{Z}/p)$ can be identified with the ideal of elements of order p in $H^*(X;\mathbb{Z})$. This ideal must be finitely generated, since $H^*(X;\mathbb{Z})$ is Noetherian. Choose generators a_1,\ldots,a_s . Each a_i corresponds to a pair $\alpha_i,\beta\alpha_i$ in $H^*(X;\mathbb{F}_p)$, where β denotes the Bockstein.

We claim that the elements α_1,\ldots,α_s together with the mod p reduction of the algebra generators, denoted by $\bar{u}_1,\ldots,\bar{u}_r$, generate $H^*(X;\mathbb{F}_p)$ as an algebra. Let $x\in H^*(X;\mathbb{F}_p)$ and write its image $\partial(x)=\sum\lambda_ja_j$ with $\lambda_j=\lambda_j(u)$ a polynomial in the u_i 's. Define now $\bar{\lambda}_j=\lambda_j(\bar{u})\in H^*(X;\mathbb{F}_p)$ to be the corresponding polynomial in the \bar{u}_i 's. As the action of $H^*(X;\mathbb{Z})$ on the ideal $\mathrm{Tor}(H^*(X;\mathbb{Z});\mathbb{Z}/p)$ factors through the mod p reduction map $H^*(X;\mathbb{Z})\to H^*(X;\mathbb{F}_p)$, the element $x-\sum\bar{\lambda}_j\alpha_j$ belongs to the kernel of ∂ , i.e. it lives in the image of the mod p reduction. It can be written therefore as a polynomial $\bar{\mu}$ in the \bar{u}_i 's. Thus $x=\bar{\mu}+\sum\bar{\lambda}_j\alpha_j$.

Acknowledgments

This project originated during a workshop at the Centre de Recerca Matemàtica, Barcelona, held in the years with emphasis on algebraic topology (2007-2008). We would like to thank the organizers for making it possible to meet in such a pleasant atmosphere. The first author is supported in part by National Science Foundation grant DMS-0296117, Vetenskapsrådet grant 2001-4296, and Göran Gustafssons Stiftelse. The second and third authors are partially supported by FEDER/MEC grant MTM2007-121967. The second author is supported by the program Ramón y Cajal, Ministry of Education and Science, Spain.

References

- [1] Arlettaz, D. "Algebraic K-theory of rings from a topological viewpoint." Publicacions Matematiques 44, no. 1 (2000): 3-84.
- [2] Bousfield, A. K., and D. M. Kan. Homotopy Limits, Completions and Localizations. Lecture Notes in Mathematics 304. Berlin: Springer, 1972.
- [3] Castellana, N., J. A. Crespo, and J. Scherer. "Deconstructing Hopf spaces." Inventiones Mathematicae 167, no. 1 (2007): 1-18.
- [4] Clément, A., and J. Scherer. "Homology exponents for H-spaces." Revista Matemática Iberoamericana (forthcoming).
- [5] Hilton, P. J. "On the homotopy groups of the union of spheres." Journal of the London Mathematical Society 30 (1955): 154-72.
- [6] James, I. M. "The suspension triad of a sphere." Annals of Mathematics 63, no. 2 (1956): 407-29.
- [7] Long, J. Two Contributions to the Homotopy Theory of H-Spaces. PhD thesis, Princeton University, 1978.
- [8] Mitchell, W. J. R. "Dual modules." Mathematical Proceedings of the Cambridge Philosophical Society 84, no. 1 (1978): 21-4.
- [9] Selick, P. "Moore conjectures." In Algebraic Topology—Rational Homotopy, 219-27. Lecture Notes in Mathematics 1318. Berlin: Springer, 1988.
- Stanley, D. "Exponents and suspension." Mathematical Proceedings of the Cambridge Philo-[10] sophical Society 133, no. 1 (2002): 109-16.
- [11] Toda, H. "On the double suspension E2." Journal of the Institute of Polytechnics Series A. 7 (1956): 103-45.