
Training a customizable language model for affect
text generation

Francis Ikpe Ogar Damachi
Lab of Human-computer Interaction, EPFL Lausanne, Switzerland

Abstract—This paper explains the process when implementing
the baseline and affect language model. We are interested in
training an affect language model that can generate sentences in a
specific affect category. These sentences should be grammatically
and semantically correct. Furthermore, we want to see if the
affect language model achieves lower perplexity scores compared
to the baseline model. For that reason, we train both models and
compare their scores. When training the affect language model,
we use the LIWC api to generate a vector in order to represent
if a word is emotionally colorful or not. In fact, this api is crucial
in training the affect LM.

I. INTRODUCTION

Language modelling is an essential part of Natural Lan-
guage Processing (NLP) which involves predicting the prob-
ability of the next word after having observed the previous
words[?]. This technique can be used for various tasks such
as correcting spelling errors, word completion, bot response
generation etc. Specifically the use case of a language model
that we are interesting in, is not only basic text generation
but a model which is capable of generating emotional text
based on an affect category proposed by a user. The word
affect is defined in the dictionary as an ‘expression of emotion
or feelings displayed to others through facial expressions,
hand gestures, voice tone, and other emotional signs such as
laughter or tears’[?].

In order to generate emotional text in this project, we
will follow the same steps as were accomplished in the
proposed solution illustrated in the research paper: Affect-
LM: A Neural Language Model for Customizable Affective
Text Generation by Sayan Ghosh1, Mathieu Chollet1, Eugene
Laksana1, Louis-Philippe Morency2 and Stefan Scherer1. We
will focus on training both a baseline language model and an
affect language model in order to compare the effect of the
affect property in a language model. Furthermore, the affect
language model will be trained to generate text of 5 affect
categories. These are: ANXIETY, POSITIVE, NEGATIVE,
ANGER, and SADNESS. Although we closely follow the
research paper, we go into much detail in what was actually
done.

This paper will first explain the choice of the data-set and
the various pre-processing steps that we will carry out in
the DATA section. Afterwards, it will thoroughly explain the
baseline and affect language model with the details of how it
we implement it in the ‘MODEL AND METHODS’ section.
In the RESULTS section, the paper will display and comment
on the results achieved by both language models. Eventually,
the DISCUSSION section will go through an array of obstacles

encountered during its implementation and also how some of
them were overcame. This will greatly help the reader to pay
attention to several intricacies during the training of language
models. Finally the paper will finish up with a conclusion
summarizing the project as well as giving possibilities of
future work that can be done.

II. DATA

One of hardest things in machine learning isn’t necessarily
the implementation of the algorithm but rather possessing
and choosing a reasonable data-set for the task. We train the
language model in 2 steps: for the first part of the training
process, the Cornell data-set is used in training the baseline
and affect language model. Later, the IMDB reviews data-set
is used for fine tuning the affect-language model.

A. Cornell Data-set

This data-set is composed of 220,579 movie conversations
exchanges between a pair of movie characters. Furthermore,
it contains 304,713 utterances. The reason for choosing this
data-set is due to its richness. Moreover, the data-set has over
30’000 words which suggests that this large vocabulary size
implies that the data-set is quite diverse. Another aspect it
offers is the amount of emotional colored words it possesses.
For each affect category (anxiety, positive, negative, sadness,
anger,) the data-set possesses a substantial amount of words
that capture it. This can be shown in figure 1

Fig. 1. Plot displaying the number of distinct words in each affect category

B. IMDB reviews

The IMDB reviews data-set, retrieved through Kaggle plat-
form is used for fine tuning. This data-set is considerably
less rich and smaller compared to the Cornell data-set. It is
composed of two categories of user reviews of movies which
are positive and negative reviews. In addition, each category
has a range of review scores: positive reviews range from 6-10
while negative reviews are from 0-4. If a score in the positive
category is high, the more we hope that the certain review
will posses emotionally colorful words capturing the category.
We only focus on the positive reviews for the second part
of the training process. The decision is purely by preference.
Also we choose the IMDB data-set because when a user
is satisfied/unsatisfied with something, it is normal for the
person to use emotionally colored words to emphasize their
satisfaction. Finally, there could be no better place to acquire
this other than in user reviews.

C. LIWC

The LIWC is an API which we use to identify if a
word/sentence belongs to an affect category. Given a sentence,
the API is used to generate a vector of five dimensions, where
each dimension has value of either 0 or 1. This vector simply
states the presence of the affect category in the sentence. For
example, the sentence : ‘I am sad while you are happy’ yields
a vector:
{ anx : 0, pos : 1, neg : 1, sad : 1, anger : 0 }. As one can
see the API does not take into account the syntax nor the
semantics of the sentence. It simply analyzes word per word
without context and finally checks if this certain word has an
affect connotation. More details will be explained of how we
build this vector using this API.

D. Google-news

We use a pre-trained word embedding to initialize the
weights in the embedding layer of both the baseline and
affect language model. The Google-news word embedding is
extremely useful because it was trained on 3 billion running
words.[?] Therefore, the semantics of a given word is well
grasped in the vector.

E. Pre-processing

Before feeding the phrases to the model, there are several
pre-processing steps we have to effectuate illustrated in Figure
2.

Fig. 2. Schema showing the text pre-processing steps

First of all, we perform utterance segmentation which will
make each utterance be a data point. In order to process the
words later, we apply word tokenization to each utterance.
However, we don’t apply basic lemmatization, stop word
removal, nor stemming even though these operations will
greatly reduce our vocabulary size. This is due to the fact that it
defeats the purpose of text generation. In fact these operations
will mostly make our sentences syntactically and semantically
incorrect. Moreover stemming reduces the variability of our
vocabulary which leads to our sentences becoming less rich.
Since the training time of the language model will greatly
depend on the vocabulary size, we have to try to reduce it as
much as possible. We do this by filtering out words that do not
occur more than 5 times in the whole corpus. The value 5 as
a threshold appears to be a sweet spot which effectively filters
words that don’t occur quite often and also it does not destroy
the meaning of the sentences. Moreover it greatly solves the
huge vocabulary size due to spelling mistakes occurring in
the corpus. In fact, this operation makes our vocabulary size
go from over 30000 to just 15720. Finally, we transform the
words into unique indices.

III. MODEL AND METHODS

Before training the affect language model and to see if it
works correctly, we first have to train the basic Language
model or the baseline.

A. Baseline Language model

In order to train the baseline model, we use the definition
of n-grams[?] This is shown in this equation 1.

P (wn
1) = P (w1)P (w2 | w1)P (w3 | w2

1)..P (wn | wn−1
1)

=

n∏
i=1

P (wk | wk−1
1)

Where (wn
1) is a sequence of n words. In this equation,

we try to calculate the probability of a certain sequence.
Basically this value is calculated by conditioning each word
with the previously already observed words. In code, each
term in the product is estimated by applying the softmax
function shown in equation 2.

P (wt = i | wt−1
1) =

exp(WT
i f(w

t−1
1) + bi)∑V

i=1 exp(W
T
i f(w

t−1
1) + bi)

f(wt−1
i) is the output of the LSTM network which takes the

words i to t − 1. t simply corresponds to the position where
the word appears in the utterance. This is then multiplied with
a weight matrix W . The bi represents a bias term. Finally V
stands for the vocabulary size. Vectorizing this equation yields
a vector b and a matrix W having these dimensions :

W = <V×h

b = <1×V

f(wt−1
i) = <h×1

h : numberofhiddenneurons

We make use of a sub-type of a Recurrent Neural Network
(RNN) called Long short term memory (LSTM). The reason
we use LSTM rather than the basic RNN is because the RNN
suffers from the vanishing gradient problem[?]

The vanishing gradient problem is a phenomena which oc-
curs during back-propagation. When the error is derived with
respect to parameters of the weight matrix, these quantities
tend to get smaller as we traverse backwards in the network.
This results in the event in which the model is unable to learn
long term dependencies as we go closer to the input.[?] The
inability to learn long term dependencies defeats the purpose
of a recurrent neural network. Fortunately an LSTM solves
the issue.[?]

1) Implementation Details: We train the basic language
model using KERAS tensor flow. Luckily, this library provides
all the functions necessary. In KERAS, one can easily stack
network layers together when building the architecture of the
network. Therefore, the first thing we must do is to apply the
pre-processing steps as explained in DATA section. We add
an embedding layer to the architecture which will be initial-
ized with the pre-trained weights of the Google news word
embedding. Of course we have to make sure the dimensions
of the embedding layer be the same as the Google news word
embedding. Initializing the weights with Google news word
embedding and training the word embedding when training
the language model will help have more more specialized
embeddings for our corpus. We then stack the embedding
layer with x LSTM layers. Each LSTM cell will have h1
hidden neurons. Also we keep the number of time-steps to
be variable due to the utterances having variable lengths. For
that reason, we don’t pad the sequences with zeroes. After, we
take the output of the LSTM layer to be the input of a Dense
KERAS layer. The Dense layer is a basic neural network with
1 hidden layer that contains n neurons. We let the reader try
out different values for the number of hidden neurons. Finally
we insert the output of the Dense layer into the softmax
function shown in equation 2. An illustration in figure 3 will
help clarify the architecture of the baseline model.

B. Affect Language Model

As stated in the introduction, we don’t really deviate from
the idea used in research paper. In order to represent affect in
the language model, we replace equation 2 by this one.

P (wt = i | wt−1
1 , et−1

1)

=

exp(WT
i f(w

t−1
1) + βET

i g(e
t−1
1) + bi)∑V

i=1 exp(W
T
i f(w

t−1
1) + βET

i g(e
t−1
1) + bi)

The WT
i corresponds to the weights of the Dense layer in

figure 3 and f(wt−1
1) is once again the output of the LSTM

layer. What fundamentally changes is the addition of an energy

Fig. 3. schema of the baseline model

term β which is a constant but bounded between 0-5 for
our case. It determines how emotionally colorful the type of
text we want to generate. As β tends grow larger, the more
emotionally colorful the text the model will learn. Notice that
when β is zero equation 3 is exactly the same as the baseline
equation 2 meaning the absence of affect.

The g(et−1
1) is the output of a single hidden layer neural

network. This perceptron takes as input et−1
1 which is a vector

corresponding to the emotional content of the text of length
t− 1. ET

i is a vector which is represented by a dense layer in
KERAS. Finally bi is once again the bias term. Vectorizing
this equation yields vector and matrix sizes having these
dimensions :

• W = <V×h

• E = <V×h1

• b = <V×1

• e = <5×1

• f = <h×1

• g = <h1×1

h1 : the number of hidden neurons in the emotional neural
network part.
h : the number of hidden neurons in the basic neural network
part.

1) Implementation details: The pre-processing of the text
is done similarly to the baseline model. However we have to
build the emotional vector. We do this using the LIWC API.
For each word in our vocabulary, the LIWC gives the value of
the affect term we are interested in. Therefore, we extract the
affect categories such as anxiety, positive emotion, negative
emotion, sadness, and anger to generate a vector of truth or

false values. A true value signifies the presence of the affect
term whereas a false value means its absence. Eventually,
we build the emotional vector by combining the OR logic
operator with all the vectors of the words in the utterance.
Finally we transform the Boolean values to yield the final
vector to 0 and 1.

We need to feed the data in mini-batches since our data-
set is quite large when training. This means the training
parameters will be updated after seeing a subset of the data-
set rather than the whole data-set. For that reason, a batch
generator will generate batches of utterances combined with
the emotional counter parts. Please refer to the code to see
how we implement this technically.

Since we have to generate a prediction at each time-step, we
make use of the KERAS Timedistributed layer. This special
layer makes it possible to replicate the product ET

i g(e
t−1
1)

across all time-steps. Once again a detailed implementation is
available in this link[?] The affect language model structure
is illustrated in figure 4.

Fig. 4. Schema showing the text pre-processing steps

IV. RESULTS

A. Training parameters setting

1) Baseline: These are the parameters we set for training
the baseline architecture network.

• Epochs = 40
• # of neurons in the Dense layer = 200
• # of hidden units in LSTM cell = 300
• # of LSTM layers = 2

• Activation of Dense layer = softmax
• Optimizer = Rmsprop

2) Affect language model:
• Epochs = 40
• # of neurons in the Dense layer = 200
• # of hidden units in LSTM cell = 300
• # of LSTM layers = 2
• Activation of Dense layer = softmax
• Activation of perceptron g = sigmoid
• Optimizer = Adam
• β: 1,2,3,4
Both baseline and affect language use the categorical cross

entropy as the loss function, also they use the perplexity
as a measure. In KERAS, the perplexity measurement isn’t
implemented, so we apply this equation 3 to calculate at each
iteration the perplexity.

2−
∑

x
p(x)log2(p(x))

For the baseline and affect language model, we split our
data into training, validation and test set based on this ratio.
0.75 : 0.15 : 0.10.
Table 1 shows the scores on the training and validation per-
plexities we achieved for the baseline and the affect language
model. We can see that the Cornell data-set achieved a lower
perplexity for both and the affect Language model. This
is most likely due to the fact that we were training on a
bigger data-set. Which suggest that a bigger data-set had more
diversity. In fact the vocabulary size is larger than the IMDB
reviews. In addition, if we measure the difference between
both techniques used to train the language, the affect language
model produced on average lower perplexity measurements.

We also visualized the word embeddings of the matrix
weights U and V in equation 2. We used the tool in Ten-
sorboard projector to plot the word embeddings in a 3D space
using Principle Component Analysis (PCA).

The word embedding U appeared to capture the meaning of
a word. Words of similar meaning tended to be clustered to-
gether. We noticed that the model tried learning an embedding
V which captured the emotion of the word. For example in
figure 6, words that where in the same affect category tended
to be clustered together. The blue labels represent the positive
emotions whereas the red labels represent the angry words.
We could see that there was a segregation between these 2
categories. Although it is far from being perfect, as we selected
neighbouring words next to a certain emotion,we saw similar
emotions in its neighbourhood.

We finally reach the moment where we wanted to generate
text. The way it was done was that we sampled a text
beginning from the data-set for instance : i feel. Then we ap-
plied the pre-processing steps that were explained previously.
Afterwards, we freely chose the affect type of sentence we
wished to generate by creating the emotion vector. Finally we
fed the 2 vectors into the trained model. The prediction of
the model generated a vector of size V . Each value of the
vector is the probability of the word with index i of being

Fig. 5. Schema showing the learned emotion word embedding V

selected as the next word. However, we didn’t choose the most
probable word directly as the next word. The reason is that if
the most probable word wasn’t good enough, we didn’t want
the model to be restricted on the bad choice it had made.
For that reason, we sampled from a distribution where most
of the time the word with the highest probability would get
chosen but sometimes, the model was allowed to explore other
possibilities. In that way the model could be more creative.
We generated a few sentences per affect category for a given
sentence beginning. This is illustrated in Table 2.

Fig. 6. Table showing the generated senteces

As we can see, the model was able to generate grammatical
correct sentences. Also some sentences corresponded to the
correct affect category. Unfortunately for some sentences,
despite being grammatically correct, they weren’t able to
capture the affect category. Even though we changed the
sentence beginnings, it wasn’t able to produce sentences of
the correct affect category. This suggested that the model was
far from being perfect and major improvements needed to be
made.

Perplexity scores of models trained on both data-sets
Dataset Baseline Affect LM
Cornell 64.23 55.35
IMDB reviews 69.27 67.04

V. DISCUSSION

A. Grasping concepts

Before starting to code both language models, it required
a detailed understanding of how vanilla recurrent neural
worked and its mathematical concepts such as backpropagation
through time (bptt). Understanding at first these concepts,
made the whole LSTM structure easier to grasp. Also it further
reinforced why vanilla recurrent neural network wasn’t used
instead but rather the LSTM.

B. Debugging

There is a famous saying that writing code takes 10% of the
time whereas 90% of time will be spent on debugging. This
was exactly what happened.

1) Wrong input: One of the first mistakes was feeding
the model sequences of the same lengths. Meaning that we
combined all the utterances into one large text. Afterwards,
we gave the model as input phrases of length 20 by splitting it
to equal lengths of 20. This was quite problematic because the
model would most likely not see normal sentence beginnings.
Afterwards when we wanted to generate text, upon sampling
a sentence beginning from the original data-set such as The,
the model had probably never seen a sentence beginning with
this specific word, so it would generate quite gibberish text. To
overcome this minor bug, we proceeded in feeding the model
utterances instead to solve the nonsensical text generation.

2) Padding sequences: As explained in the model section,
we trained the model on batches of utterances. Since the
utterances had different sizes, we had to make the utterances
have the same size within a batch. In fact, in KERAS Tensor-
flow, the library doesn’t know how to deal with batches of
different lengths. At first, we proceeded in 0 padding the
utterances so that they may have the same lengths within a
batch. Unfortunately, this solution wasn’t really good because,
the zero padding vectors were participating in the calculation
of the loss function. The effect of this zero padding was that
the loss and accuracy during training had outstanding values,
whereas the model would generate extremely short sequences
of max length 3. This meant that the model was considering
the zero padding as a legitimate input and it was favoring
its generation. Instead, we changed our approach and didn’t
specify a fixed number of unrolled time-steps for the model.
We grouped the utterances of the same lengths into bins. For
example, a bin k contains utterances of length k. Afterwards
when we were about to generate a batch, we generated a ran-
dom number between [0, k]. That number would be determine
which bin we retrieve the batches. This solution was one of
the turning points in the debugging phase. First of all, we
were able to train in batches which sped the training process.
Secondly the zeroes weren’t participating in the loss function,

since we omitted the padding. Finally the model started to
generate sentences with longer and meaningful text.

3) Optimizer: The choice of the activation played a key
role in the training process. This helped yield lower perplexity
scores. At first we were using RMSProp optimizer which
is an optimizer normally used in training Language models.
[?] Due to time constraints, we did not go into detail in
understanding the way it worked. Simply in KERAS, we just
had to specify it as a key word. The result of using this
optimizer was that at the beginning of each epoch, the loss and
perplexity would always increase by a factor of 3. Then it will
gradually decrease during the epoch. However the decrease
wasn’t too substantial, meaning that difference between the
loss and perplexity between 2 epochs wasn’t too significantly
different. To solve this we switched to the ADAM optimizer.
This drastically changed the training process of the language
models, that is,the loss and perplexity decreased between
epochs. The model was learning better thanks to the ADAM
optimizer.

C. Choice of Preprocessing

Data pre-processing was the one of the most time consum-
ing tasks of the project. It involved thorough data exploration,
which would decide the words we would filter from our data-
set. For example, we had to decide how we wanted to remove
the punctuation. In the corpus, we noticed that there were
many words that were built with the dash(-) symbol such as
fruit-loop, hedge-pig, prison-movie, full-on. These are known
as compound words. We had to decide how to treat these
kinds of words by either replacing the dash(-) symbol by
a space which would yield 2 separate words or keep the
dash symbol to make a compound word, hence increasing
our vocabulary size. Another problem we noticed was that an
utterance like: No more. Or I call another lawyer. This is the
biggest case of your life. Don’t try to negotiate. Thirty percent.
Say yes or no. which had full stop marks within the utterance
was quite problematic. Removing the full stops from this
utterance for example, would yield a sentence which wasn’t
too meaningful. Fortunately, there weren’t too many utterances
that were like this, therefore we proceeded in removing them.
We simple took into account that the model might observe
some utterances which weren’t too syntactically correct.

D. Training time

Since the data-set and the vocabulary size was quite big, it
greatly affected the number of trainable parameters. In fact the
model had over 17 million parameters to train. So we needed
to train the model with a GPU. Luckily for us, Google colab
offered free GPU and CPU time. This helped a lot because
we could write code in a Jupyter notebook within Google
colab. It made writing code quite interactive, hence it helped
alleviate the pains of debugging. For example, we didn’t need
to run the complete code to figure out that a matrix had a
certain dimension, rather we could simply run the desired code
portion. Unfortunately Google colab didn’t provide unlimited
computing time. In addition their CPU and GPU wasn’t really

as powerful as expected. This suggested that we needed to use
a much more powerful CPU and GPU for the training. Thanks
to the efforts of our supervisor:(Dr Pearl PU) and the teaching
assistant (Mr. Yubo Xie), we were able to rent CPU and GPU
instances from the IC EPFL cluster. This helped speed up the
training process by a factor of 1.5.

Despite having these powerful tools, it was still difficult
to maximize the computation power of the GPU’s through
parallel programming. Parallelism means splitting the data into
independent portions and making each thread work on each
separate data-set portions. However, in an LSTM architecture,
the weights are shared in the entire architecture. So it makes
it quite difficult to parallelize. This does not mean that it
cannot be achieved. But it required a lot of time, work and
understanding of parallel programming.

E. Alternate implementation

This method as shown in figure 6 did not contain the
Timedistributed layer rather we basically represented all n-
grams of a given utterance. Instead of feeding the model this
utterance I don’t feel good for example and predicting at each
time-step using the Timedistributed layer, we fed to the model:

[I,I don’t, I don’t feel, I don’t feel good]

with targets as

[don’t, feel, good, eos]

This meant that we predicted only 1 word for each n-
gram. Although this way of representing the language model
corresponded to equation 2, the time we took to train the
whole data increased exponentially, since we were increasing
the size of the data-set with the n-gram generation. Therefore
this solution wasn’t quite feasible.

VI. FUTURE WORK/CONCLUSION

Finally we conclude this research paper with a quick
summary of the steps that were taken in training the affect
language. We explain and illustrate the pre-processing steps
presented in the Data set section. In the models section we
explain in detail the baseline and the affect language model.
We also show the techniques with an intuitive schema. Later
we display the results that were achieved by showing the
perplexity scores of the baseline and the affect LM, the learned
emotional embedding V and some generated sentences by the
model where some of them weren’t too successful in capturing
the affect category. In the discussion section, we discuss the
obstacles encountered and also the pains during the project.
These are the time spent in debugging and training the model.
Even though the alternative solution remains mathematically
correct but unfeasible, we explain it to give the reader more
insight. Finally we explain the choices one has to take when
applying some NLP pre-processing techniques.

Fig. 7. schema of the baseline model

1) Future work: As shown, the generated sentences are far
from perfect. For that reason, we can try to train the model
with larger betas to see if the model will eventually start
capture bettering the emotional category. Moreover, perhaps
having a more powerful GPU will speed up of the training
process. What can also be done to debug further the model
is to train the model to generate only 2 sentiments which are
positive or negative. Another approach is, we can train the
model on another data-set that is as large and as diverse as
the Cornell data-set and compare the generated sentences.

ACKNOWLEDGEMENTS

I would like to thank my supervisor Dr. Pearl Pu and the
teaching assistant Mr.Yubo Xie for having the time to help me
overcome various obstacles encountered during the project. In
fact, this project would not have been able to be done without
their conscious efforts. It required hard work and perseverance.

	Introduction
	Data
	Cornell Data-set
	IMDB reviews
	LIWC
	Google-news
	Pre-processing

	Model and Methods
	Baseline Language model
	Implementation Details

	Affect Language Model
	Implementation details

	Results
	Training parameters setting
	Baseline
	Affect language model

	Discussion
	Grasping concepts
	Debugging
	Wrong input
	Padding sequences
	Optimizer

	Choice of Preprocessing
	Training time
	Alternate implementation

	Future work/Conclusion
	Future work

