
Semester Project

Emotion dialog management
system through a Chatbot

transaction

Author:
Oussama Abouzaid

Supervisor:
Dr. Pearl Pu Faltings

Yubo Xie

June 6, 2019

Contents

1 Introduction 2

2 DialogFlow 3
2.1 Agent . 3
2.2 Intents . 3
2.3 Entities . 5
2.4 Response . 5

3 Emotion dialog 6
3.1 Training phrases . 7
3.2 Generating responses to emotions 8
3.3 Jokes . 9
3.4 Small talk . 9

4 Communication protocol with external APIs 10
4.1 OpenWeatherMap API . 12
4.2 Wikipedia . 12

5 Full transaction 13

6 Conclusion & Future Work 16

1

Abstract

When developing chatbots, the customer experience should always
be the important thing. That is why it is important to ensure a
seamless collaboration between people and technology. In this project,
we introduce a transactional chatbot that helps a user order beer,
while keeping the conversation as human as possible, by introducing
emotions and small talk.

1 Introduction

A chatbot is an artificial intelligence software that can simulate a conversation
(or a chat) with a user in natural language through messaging applications,
websites, mobile apps. etc... It has nowadays a lot of application domains in
daily life, and it helps the user accomplish specific tasks. For example, Ap-
ple’s Siri and Amazon’s Alexa are great examples of AI-based chatbots. They
can answer questions, make recommendations, set an alarm or a reminder,
and much more. But most of time, chatbots (including Siri and Alexa) don’t
detect emotions in the user’s utterances.

In this project, we build a transactional chatbot that manages a dialog
and supports emotions. The bot walks the user through a beer order, and
uses slot-filling to extract all the required information, such as the number of
beers, the type and the size. Eventually, the chatbot concludes the transac-
tion when the user pays using a valid credit card, after it has been validated.
Besides the transaction, the other focus of this project is showing the ability
of the bot the handle some emotional utterances of the user, which can in-
clude sadness, anger, or even respond to small talk.

Firstly, present the components used to build the bot as well as its ar-
chitecture. Secondly, we will explain the methodology behind building the
emotional part of the bot. Thirdly, we will go through the external third-
party APIs used by the bot to complete some of its tasks. And lastly, we
will show a demonstration of a full transaction, include some emotional in-
teractions between the bot and the user.

2

2 DialogFlow

The main part of the chatbot has been developed on Dialogflow, which is a
Google-owned developer of human–computer interaction technologies based
on natural language conversations. One of its most amazing features is its
strong capacity to expand its learning and understanding of the user’s intents,
after a few training sentences only.
Let us explain more in detail the components and features used to build this
chatbot.

2.1 Agent

An agent (chatbot) is responsible for classifying the user utterances into
intents. These intents can be seen as states that are triggered in such a way
to maximize the likelihood of the user matching his actual intention, based
on previous training phrases fed to the agent.

2.2 Intents

The agent is trained to recognize many intents. From the transactional point
of view, it is capable of welcoming back the user, asking for beer order (type
and size), giving recommendations about beer, and finally and confirm the
transaction by verifying the validity of the credit card entered, and hence
completing the transaction. Besides this, the agent is able to tell jokes,
comfort the user when they are sad or angry, talk about the weather, handle
some small talk, and also crawl Wikipedia for additional information for
extended knowledge. Intents of the agent are shown in Figure 1.

3

Figure 1: Diagram showing the agent’s intents, with the possible transitions

4

2.3 Entities

While intents allow the agent to understand the motivation behind a par-
ticular user input, entities are used to extract specific pieces of information
that the user mentions. This is known as slot-filling.

Example: In the Order intent, when the user is ordering a beer, 3 dif-
ferent entities are extracted: the number of beers, the types of beers (blond,
white, IPA, etc.) and the quantity (large or small).

Figure 2: Entities extraction by the agent

2.4 Response

Each intent defines a response that is returned to the user. There are two
primary ways a response is returns to the user:

• A pre-defined static response: set of pre-defined sentences for each
intent, usually helpful to handle part of small talk or static information
that does not include any emotions.

• A response generated from a webhook: when the response to a user
utterance needs to be dynamic (e.g. asking about the weather), the
user can write customized code called fulfillment, that sends HTTP

5

Figure 3: Example of a pre-defined static response

requests from Dialogflow external APIs, once the intent has been deter-
mined by the agent, and the entities extracted (if any). The response is
typically in JSON format, which is manually parsed to return a proper
response to the user. Figure 4 shows an example of a response from a
webhook, and Figure5 shows the raw JSON response.

Figure 4: Webhook response: Weather at Urbana, IL

Figure 5: Raw JSON response from the webhook [1]

3 Emotion dialog

As stated earlier in the introduction, the main focus of building this chatbot is
to go beyond achieving a single transaction with the user. That is, to further
be able to recognize some emotions (and reply accordingly), and conduct
small talk. In this section we will explain how the emotion part of the bot
was designed, with some illustrative examples.

6

3.1 Training phrases

In order to train the bot to recognize emotions such as sadness and anger,
some expressive training phrases have been fed to the bot. These phrases are
chosen as the most common and used in daily life, in an informal way.

Figure 6: Example of training phrases for sadness

Figure 7: Example of training phrases for anger

An important point to highlight here is that the words expressing the
sadness (déprimé, triste, dommage) or anger (pas du tout satisfait, plus en-
tendre) are defined in two separate entities called ”tristesse” and ”colère”,
respectively. They can be thought of as lexical fields of words. A powerful
feature in Dialogflow allows for automatic expansion of this lexical fields,
that is, the bot is able to classify words that are semantically close to the
ones defined in the entities, even if it is not trained using such words.

In Figure 8, the word ”mélancolique” appears nowhere in the training
examples, however, the bot successfully classifies it as a sadness example,
and responds accordingly (with some irony!).

7

Figure 8: Example of reaction to sadness

3.2 Generating responses to emotions

For generating a response to a user’s utterance that involves emotions, the
bot tries as much as possible to be the least generic as possible by stating
the emotion the user has just expressed, in the response. This is a tricky
problem, since it is important to know whether the expression was expressed
using a noun, verb, adverb, adjective, etc — which is known as part-of-speech
tagging[2]. For this matter, we used SpaCy[?], which is an open-source
software library for advanced Natural Language Processing. Part-of-speech
tagging is one of the main features on SpaCy; an example of how it runs is
depicted in Figure 9.

Figure 9: Part-of-speech tagging

Now that we are able to tag the speech it becomes easier to reply in
an appropriate way. Figure 10 shows an alternative way of expressing the
sadness expressed in Figure 8, but using a noun (”mélancolie”) instead.

8

Figure 10: Alternative way of reaction to sadness

3.3 Jokes

One of the coolest features of the bot is telling jokes! A user can ask the bot
either explicitly (e.g.: ”Raconte-moi une blague”) or implicitly (e.g.: ”Fais
moi rire”) and the bot will randomly chose a joke from the ones predefined.
A potential extensive work would be to link the ”Joke” intent into an API
that returns random jokes that defined in a large number, to make the bot
less repetitive. Figure 11 is a good example of a user requesting a joke.

Figure 11: Bot reaction to a joke request

3.4 Small talk

Being able to conduct small talk is a very good feature that every chatbot
should possess. It adds a ”human-like” behavior that makes the conversation
closer between the 2 parties, and almost forget that you are conversing with
a machine. In order to cover up the ”Small Talk” intent, various examples
for daily life has been added to the training phrases. These include:

• Some information about the bot, so it knows who it is. (Name, age,
etc.)

• Courtesy phrases, to respond the user (Hello, goodbye, thanks, etc.)

• Response to an ambiguous utterance, i.e. a one that could not be
classified in any of the previously defined intents

9

Here is some small talk in a conversation with the bot.

Figure 12: Example of small talk in a conversation

4 Communication protocol with external APIs

When the a webhook is used to generate a response, the fulfillment code is
called, and according to the respective intent, an HTTP request is sent to
the correct external API. In a nutshell, the agent parses the user’s utterance,

10

matches it to the correct intent and call the fulfillment code that connects
to the external API.

Figure 13: Webhook: Communication protocol

Step (3) in Figure 13 is managed through Flask, which is a micro web
framework written in Python. It is extremely flexible, simple and use and
easily extendable. Figure 14 shows an example of how Flask chooses the
correct API based the intent.

Figure 14: Flask abstract code for communication with external APIs

The external APIs that the chabot communicates with are OpenWeath-

11

erMap and Wikipedia.

4.1 OpenWeatherMap API

If a user queries the weather in a particular city in the world, the city name
is extracted as an entity for slot-filling, and an HTTP request is sent to
https://openweathermap.org/ provided the user owns a valid API key.

Figure 15: OpenWeatherMap query

4.2 Wikipedia

When the user’s utterance is not matched to any of the explicitly defined
intents, such as ordering, asking for recommendation, ”colère” (anger) or
”tristesse” (sadness), it queries the Wikipedia API with the most significant
keyword in the utterance. The number of sentences is limited to 2, to keep
the answers short realistic, as if the bot was conversing with the user.

Figure 16: Example of external API call

We can see that the most significant look-up keyword is ”Coldplay”, so
this keyword is searched using the Wikipedia library, available on Python.

12

https://openweathermap.org/

Figure 17: Wikipedia query

5 Full transaction

Now that all the components and the capabilities of the chatbot are intro-
duced, we present below an example of a full transaction, from greeting the
chatbot to the beer ordering.

13

14

Figure 18: Full transaction example

15

6 Conclusion & Future Work

When designed well, chatbots can be extremely effective and helpful. Nonethe-
less, one of the most challenging difficulties is training the bot on emotions.
A corpus containing emotional dialogues and reactions could be used in the
future to strengthen the bot’s ability to recognize more emotions. Conse-
quently, more entities and intents could be defined, and a good NLP model
could be implemented for response generation, and result in a more genuine
human-computer interaction.

16

References

[1] OpenWeatherMap API Docs. https://openweathermap.org/appid

[2] Part-of-speech tagging, Spacy’s website. https://spacy.io/usage/

linguistic-features#pos-tagging

[3] Industrial-Strength Natural Language Processing, Spacy’s GitHub repos-
itory. https://github.com/explosion/spaCy

17

https://openweathermap.org/appid
https://spacy.io/usage/linguistic-features#pos-tagging
https://spacy.io/usage/linguistic-features#pos-tagging
https://github.com/explosion/spaCy

	Introduction
	DialogFlow
	Agent
	Intents
	Entities
	Response

	Emotion dialog
	Training phrases
	Generating responses to emotions
	Jokes
	Small talk

	Communication protocol with external APIs
	OpenWeatherMap API
	Wikipedia

	Full transaction
	Conclusion & Future Work

