
Dueling Chinese Couplets using Sequence to
Sequence Model

Zou Xiaoyan

Human Computer Interaction

School of Computer and Communication Sciences, EPFL, Switzerland

Abstract—Chinese couplet is a special type of Chinese poems
aiming to be both concise and meaningful. There are lots of
constraints for couplets, such as couplet length, Chinese tone
pattern, lexical category. Due to these strict rules, dueling Chinese
couplets is considered as a difficult pastime. In this paper, we
aim to encode a machine that duels well Chinese couplets using
Sequence to Sequence (Seq2Seq) model. More precisely, our
model used bidirectional Gated Recurrent Units (GRU) for both
encoder and decoder along with the attention mechanism. Divers
constraints are incorporated into the model during either the
training process or the evaluation process. Our model finally
achieved the BLEU score 14.15.1

I. INTRODUCTION

Chinese couplet consists of two lines of Chinese poetry where
the classical Chinese is used. In spite of its shortness, a
pair of couplet should be concise and meaningful. Moreover,
couplet rules make dueling couplets harder and harder. An-
cient Chinese had often dueling couplet game to show their
rich knowledge and their proficiency in Chinese, whereas
nowadays people feel much more pain to duel couplets. This
project aims to encode a machine that outputs automatically
the second line of the couplet when the first line is provided.

Sequence to sequence networks are chosen to do such a
project. Consisting of an encoder and a decoder, sequence
to sequence model is built using Recurrent Neural Network
(RNN). It is about training models to convert sequences from
one domain to sequences of another domain. After introducing
gates into the network, the model is able to keep tracking the
past inputs, so call long term dependencies. Except simply
dialogue generation[1], the most popular application for se-
quence to sequence model is to perform machine translation.
The results can be quite satisfactory.

However, unlike translation, dueling couplets is not as
simple as a word mapping problem because of its various rules
which are the following:

• Two lines of couplets must have the same length.
• Two lines of couplets must have coherent and related

meanings.
• The lexical category of corresponding characters should

be the same.

1Master semester project done in Human Computer Interaction Lab
in EPFL, Switzerland. Codes and model archives can be found at:
https://github.com/zxyzz/Project

• The tone patterns (level tone and oblique tone) of corre-
sponding characters should be opposite.

• The first line of couplet should end with an oblique tone,
which implies that the second line should end with a level
tone.

The main difficulty of this project is that we need to integrate
these exigent rules into the model and make couplet answers
human-like at the same time.

Fig. 1. Several couplet results of our model. The first line of each couplet is
the input of the model. The second line is the couplet answer of our model.

II. RELATED WORK

As aforementioned, sequence to sequence is widely applied in
machine language translation domain. Sutskever et al.[2] used



two LSTMs to accomplish an English to French translation
task. The first LSTM was used to extract information from the
source sentence and to form a fixed length vector representing
the sentence. The latter was decoded by the second LSTM in
order to obtain the translation. They improved their models
by reversing the word order of the source sentence. The
word order of target sentence remained unchanged. Apparently
this action introduced many short term dependencies since
very first words are closer to their target words. Bahdanau et
al.[3] have also proposed a neural machine translation model.
Instead of encoding the source sentence into a fixed length
vector, which might deteriorate the performance of the model
when source sentence was long, only a subset of vectors that
were relevant to targets would be chosen and used in the
decoder. Such vectors were determined by the score of a soft
alignment model who tells how much the input around position
i is relevant to output around position j. Besides, they have
also used bidirectional RNNs so that the annotation of words
contained not only the information of preceding words but also
those of the following words.

Furthermore, sequence to sequence is used to generate
Chinese classical poems: quatrains (four-line poems). Similar
to couplets, poems demand various requirements such as
semantic correspondence, tone patterns and rhyme constraints.
Yi et al.[4] have proposed a RNN Encoder Decoder model
with gated units, aiming to generate a quatrain with a set of
keywords as model input indicating the content or the emotion
that the poem should cover. Keyword were used to generate
the first line of the poem. Then the obtained result was taken
into account to generate following lines of the poem and so
on and so forth. Their model jointly learned semantic meaning
and relevance among lines along with attention mechanism to
capture words associations proposed by Bahdanau et al.[3].
Tone and rhyme controllers were used to fulfill the poem rules.
To further improve the model, another neural language model
was added into their system to make poems more meaningful.
Different from Yi et al.[4], Zhang et al.[5] considered the
whole history produced so far by the model as the context
information to generate the next line of the poem.

Except these works on Chinese poems, several works were
done for dueling Chinese couplets. In addition to a basic
attention based sequence to sequence model, Yan et al.[6]
proposed an extra polishing schema based on Convolutional
Neural Network (CNN) which can extract patterns for suc-
cessive characters. The draft output was reused to polish
every character of the final output in order to refine semantic
coherence by one or more iterations. Zhang et al.[7] have
added two innovations to the usual attention based sequence to
sequence model. One was the additional local attention within
a limited window computed in the same way as the global
attention. The other innovation was the separate treatment of
entities such as person names and addresses since usually the
model could not deal well with special entities.

In this project, we likewise produced an attention based
sequence to sequence model using bidirectional GRU for the
encoder and the decoder to generate automatically Chinese

couplets. Couplets constraints were added into training or
evaluation processes depending on constraints.

III. MODEL

A. Sequence to sequence background
Sequence to sequence model consists of an encoder and a
decoder as shown in Fig. 2. The encoder is represented by red
cells and the decoder is represented by green cells. Cells are
constructed using RNN.

Suppose we need to translate the source sentence ABC into
A’B’C’, characters of the source sentence are entered one at
a time into the RNN cell of the encoder. Each cell produces
a hidden state served as the next input for the next cell. This
action is represented by horizontal arrows. In that way, all
hidden states are connected within the network. That gives to
the model the ability of capturing the long term dependencies.
At the end, the encoder will output a final encoder output and
an final hidden state. The latter is a fixed length representation
of the source sentence and is served as the initial hidden state
of the decoder. The decoder is in charge of mapping the source
sentence to the target sentence. SOS token indicating Start Of
Sequence is inserted to the beginning of each decoder input.
EOS token indicating End Of Sequence is appended to each
decoder output. Each cell of the decoder produces a temporary
output and a temporary hidden state. They are both fitted into
the next cell. If the cell outputs an EOS token, then the whole
process is terminated. Because the model judges that it has
achieved the end of the sentence, the translation process is
finished. The final target sentence is obtained by concatenating
all temporary outputs.

The whole mechanism of mapping is relied on the con-
ditional probability to figure out the best output matching
the source sentence. Namely, we want to find the target
sentence y, which maximizes the conditional probability of
y = (y1, ..., yTy

) given the source sentence x = (x1, ..., xTx
):

ŷ = argmaxPr(y|x)
y

(1)

This probability can be computed according to the chain rule.
Thus, we rewrite Pr(y|x) as the following:

Pr(y1, ..., yTy
|x1, ..., xTx

) =

Ty∏
i=1

Pr(yi|x1, ..., xTx
, y1, ..., yi−1)

(2)
where Tx is the length of the source sentence and Ty is
the length of the target sentence. They are not necessarily
equal in language translation. In the sequence to sequence
network, the source sentence x is not directly used to com-
pute such probability but v, the representation of the whole
sentence obtained in the encoder. Each conditional probability
Pr(yi|x1, ..., xTx , y1, ..., yi−1) is computed by the following
equation:

Pr(yi|x1, ..., xTx
, y1, ..., yi−1) = g(v, si−1, yi−1) (3)

where y1, ..., yi−1 are previously predicted words. si−1 is the
previous hidden state of the cell of the decoder, and g is non-
linear function that outputs the probability.

2



Fig. 2. This is a diagram of a basic sequence to sequence model. The left part with red cells represents the encoder and the right part with green cells
represents the decoder. This diagram maps the source sentence ABC to A’B’C’. h is the encoder output representing all information of source sentence ABC.
v is the final hidden state of the encoder. It is fitted into the decoder as one of its inputs.

RNN has various forms of networks. In this project, we
used GRU, a simplified version of Long Short Term Memory
(LSTM). Because GRU is faster than LSTM and it can have
more or less the same performance as LSTM.

B. Encoder

The input of encoder is the source sentence represented by
a sequence of vectors x = (x1, ..., xTx

). Each xi will go
through an embedding layer to form its embedded vector xei ,
i = 1, ..., Tx.

xei = E(xi) (4)

where E is an embedding function which is nonlinear. Note
that if xi corresponds to a PAD token, then it will be embedded
into an all-zero vector. Along with hidden states, the embedded
vectors are fitted into GRU afterwards, as described in Eq.5

hi, si = GRU(xei , si−1) (5)

This produces the temporary hidden state si and the tempo-
rary encoder output hi for the cell of ith iteration. Since a
bidirectional GRU is used in the network, all sis and his are
of the form forward pass value concatenating the backward
pass value. Namely,

si =

[−→si←−si
]

and

hi =

[−→
Hi←−
Hi

]

where, left arrows indicate the forward pass and right arrows
stand for the backward pass. The final encoder output h is
obtained by concatenating horizontally all his. Final hidden
state value is simply the last hidden state of both forward pass
and backward pass. Note that all padding tokens are ignored
by GRU.

h =

[−→
H1 · · ·

−−→
HTx←−

H1 · · ·
←−−
HTx

]

Fig. 3. The encoder of sequence to sequence model. Yellow cells are GRU
for the forward pass while blue cells are GRU for the backward pass. Inputs
are embedded into high dimensional vectors and fitted into GRU.

C. Decoder

For the training process, the input of the decoder is the desired
answer of the second line of the couplet, leading by a SOS
token. Different from the encoder, the ith output yi of the
decoder has to be one of the next inputs of itself in order to
compute the next output yi+1, as one can observe in the right
part of Fig.2. That is how the decoder figures out the whole
prediction, based on what has been produced so far according
to Eq.3. Since the final output is obtained by concatenating
temporary outputs together, we should model the decoder
in the way that it produces temporary outputs as similar as
desired answers. The model stops evaluating the next output
when EOS token is generated.

During the training process, same as the encoder, the
decoder begins with an embedding layer which projects input
characters yi into a higher dimension space to form an
embedded vector yei . Followed by a dropout layer, through
which each entry of embedded vector has some chance being
set to zero in order to avoid data over-fitting. The output
of the dropout layer is combined later with the attention-
applied encoder output, called also the context vector ci.
Thanks to attention scores αi, each character yi has a different
context vector with different focus on the source sentence.

3



The attention mechanism is further described in Section III-D.
After some linear combinations and the activation function
which introduces non linearity into the network, the result is
fitted into GRU model, exactly as what we do in the case
of the encoder described in Section III-B. The output yi of
GRU is a vector of length of the vocabulary, consisting of a
sequence of probabilities for each character in the vocabulary.
The final predicted word ŷi is the character that has the
maximal probability due to Eq. 1. Till Ty iterations, y1, ..., yTy

can be outputted.

Fig. 4. The concrete diagram of the decoder for ith iteration. Input yi enters
into the network at the right lower part of the figure. yei is the embedded vector
of yi. At the left lower part of the figure, the matrix h consisting of his is
the output of the encoder, which represents the whole source sequence. ci is
the context vector obtained by multiplying the encoder output and attention
weights αi. Together with si which represents the hidden state of the iteration
i, the model can generate next output yi+1.

D. Attention

Initially proposed by Bahdanau et al.[3], the attention is an
alignment model whose weight indicates how much the input
around position i is relevant to output around position j.

Namely the attention aims to capture words associations. For
each input character yi, we will go through the whole represen-
tation of the source sentence h = (h1, ..., hTx) and determine
on which subset of his the model should focus. This results
in attention weights αi, a normalized weight vector having
the length Tx. The greater the weight is, the more attention
the model will pay to the corresponding source characters xis
when decoding. There are many ways to compute the global
attention[8]: dot, general, concat and so on.

In this project, dot and general alternatives are both pre-
pared. But, we used the general approach of attention score
because it provides more hyperparameters. The weight αij is
computed as the following:

αij =
exp(eij)∑Tx

k=1 exp(eik)
(6)

with
eij = si−1hjW

T
e (7)

where WT
e is weight matrix determined by a linear layer.

After the computation, each eij corresponding to PAD token
is ignored in order to get rid of noise. Since padding tokens
do not contain any helpful information for decoding. Then the
remaining eijs are normalized by the softmax function in Eq.
6, resulted as weight coefficients. Finally, the context vector
ci is given by

ci =

Tx∑
j=1

αijhj (8)

As one can see, the value of his which are less important are
weakened by multiplying smaller weights compared to other
his associated with larger weights. This encourages the model
to focus on the key parts, instead of treating equally each input
character.

IV. DATASET AND TRAINING DETAILS

The couplet dataset we used can be found online.2. It contains
four text files. in.txt contains the first line of each pair of
couplets and out.txt contains the corresponding desired second
line. test in.txt contains couplet inputs for the evaluating
process. test out.txt contains desired couplet outputs for the
evaluating process.

A. Data preparation

Couplets were cleaned by removing useless symbols such as
empty space. After the data cleaning, there remained 770 560
pairs of couplets prepared for the training process and 3 930
pairs prepared for the evaluating process, resulted in files of
size 44.8 MB and 229 kB respectively. The vocabulary was
created from in total 774 490 pairs of couplets, all characters
were ordered by their frequency of occurrence. In addition,
PAD, SOS, EOS and UNK (stands for UNKNOWN) were
inserted at the beginning of the vocabulary.

2Dataset source: https://github.com/wb14123/couplet-dataset

4



B. Data tokenization

Couplets needed be translated into integers so that the com-
putation could be launched. Since the vocabulary contains all
words in the couplet dataset, each character can be represented
by its corresponding index in the vocabulary list. In such a
way, all couplets were tokenized by mapping to their unique
ID in the vocabulary.

C. Training process

Tokenized couplets were firstly grouped into batches. Each
batch contained 256 couplets. Therefore, we had 3 010 batches
in total. Because of various lengths of couplets, couplets in a
batch were padded with PAD token. The sequence length in
a batch was determined by the maximal length of couplets
in the batch. Next, we randomly chose one batch served as
the validation set, namely 256 couplets. The 3 009 remaining
batches were used for the training purpose.

The encoder and the decoder had hyperparameters as the
following:

• Both of them had hidden size 256.
• The number of embedding features was both 256.
• The dropout layer of the decoder followed the Bernoulli

distribution with probability 0.1. Namely, the probability
of setting an entry of embedded vector xei to 0 was 0.1.

• The loss optimiser used was Adam.
• The learning rate was set to 0.001 initially. As the

number of training epoch increased, the training loss
might oscillate around some level, the learning rate was
adapted manually in order to decrease more the training
loss. The last learning rate used was 0.00005.

• The sequence to sequence model was trained for 204
epochs in total.

D. Losses

The train losses can be seen in Fig.5. The learning rate was
set to 0.001 initially for 4 first epochs. It was modified to
0.0005 for epoch from 5 to 100. Then 0.0001 was used as new
learning rate from epoch 101 to epoch 194. Finally for last 10
epochs, the learning rate was set to 0.00005. The observation
we can make is that when the learning rate of the loss optimiser
was adapted, the loss could go down by some amount. The
training losses were almost monotonically decreasing, whereas
the validation losses seemed increase as time, as shown in Fig.
6. However, we still took the model of last epoch, regardless
its evaluation loss was not minimal. Actually, we found that a
mathematical loss could not express truly the performance of
the model. Couplets generated by the model with the minimal
evaluation loss were much less meaningful than models being
trained for a lot of epochs. When evaluating the couplet results,
the model trained for more epochs was preferred. Hence, for
the final evaluation, the last model after training for 204 epochs
was used.

Fig. 5. This figure shows the evolution of losses during the training process.
The x-axis shows the number of epochs and the y-axis shows loss values.
The learning rate was set to 0.001 initially for 4 first epochs. It was modified
to 0.0005 for epoch from 5 to 100. Then 0.0001 was used as new learning
rate from epoch 101 to epoch 194. Finally for last 10 epochs, it was set to
0.00005. The loss could go down by some amount when the learning rate of
the loss optimiser was adapted.

Fig. 6. This figure shows the evolution of the validation losses. The x-axis
shows the number of epochs and the y-axis shows loss values.

V. EVALUATION AND ANALYSES

A. Evaluation method

As described previously, we need to respect some rules when
dueling Chinese couplets. Constraints are incorporated as
followings:

• When the model evaluates the first line of a couplet, its
length is recorded. The decoder will only produce char-
acters of the same length as the second line of couplets.
PAD, SOS, EOS and UNK tokens are not allowed to
appear.

• Normally, all characters in the first line of couplets are
forbidden to appear in the second line. Thus, we do
not allow our model to reproduce the same characters
appeared in the first line. If the model predicts the
forbidden character, the latter will be replaced by the next
candidate character having secondly maximal probability.

• We found that the coherent and related meanings were
learned by the model itself, as well as the lexical cat-
egory. During the training process, a verb will always
correspond to another verb. Likewise, a noun will always
correspond to another noun. Consequently, when the
model encounters a verb during the evaluation process,
it will only search for the best candidate from the set
of corresponding words encountered during the training
process. As a result, the rule of having the same lexical
category is usually respected.

5



• When there are repeated words in the first line of cou-
plets, the second line should also have repeated words
at the corresponding positions. Therefore, we forced the
model answer to have the correct format. For each input
couplet, the positions of repeated characters are recorded.
Then the model answer was re-evaluated in the way that
each character at these positions follows the character that
appeared firstly.

• We have applied tone masking during the evaluation
process to respect the tone pattern. The decoder evaluates
one character at a time. When the model evaluates the ith
character yi of the second line, each candidate character
in the vocabulary is associated with a probability. Nor-
mally the character with the maximal probability will be
chosen as described in Section III-C. Although, nothing
guarantees that this character has an opposite tone as the
tone of the ith character xi of the source sentence. As we
need to respect the tone rule, what we do is to mask all
the characters having the same tone as ith character xi,
then search for the character having maximal probability
among the remaining elements.

Each time, searching for the best candidate for the predic-
tion is called greedy search. We have also used beam search
to find the best results. Beam search finds k best candidates
for each iteration, instead of using one single candidate. By
doing so, we can consider more choices and may obtain better
results. The final result is taken from the best one having
maximal probability among k answers. The number k is called
beam width. It is set to 3 for the human evaluation.

B. Evaluation results

Fig.7 contains some couplets results of our model. The obser-
vation we can make is that generally our model produced fair
results. Sometimes it could produce even better results than
the original answers. Nevertheless, our model performed less
well for longer couplets. Characters tends to repeat for the last
part of the answer.

C. Attention plots

Fig.8 contains attention plots for six different couplets. Atten-
tion weights are from 0 to 1. We observed that the attention
weights have a diagonal form. The ith character is decoded
mostly based on the ith input character, which makes sense.

D. BLEU score

Bilingual Evaluation Understudy (BLEU) is used as a machine
language translation metric which measures the overlap of
the source sentence and the output sentence. The higher the
BLEU score is, the better the performance is. The Table I
shows BLEU scores of our model with different beam widths,
averaging over 3 930 couplets from the test set.

Note that it is natural to consider the quantity of overlaps as
a metric of language translation performance as the translation
is almost an one-to-one mapping. Though the overlap is less
significant for Chinese couplets, since we do not translate the
source sentence but duel a special poem. There can be millions

Beam width BLEU score
1 14.15
3 13.76
5 13.54

TABLE I
PERFORMANCE OF OUR MODEL

of possible and good answers. That’s why we required the
human evaluation at the same time.

E. Human evaluation

For the human evaluation, we randomly chose 50 couplets
from the test set to form a couplet questionnaire. Each question
consists of the first line of the couplets and two choices. One
choice is the original couplet answer, the other is the answer
produced by our model. Choices are randomly ordered. The
volunteers should choose the choice that they think it is better
compared to the other choice. The questionnaire was answered
by 17 volunteers. Overall, our model was chosen in 48.94%
cases. This number was computed by the number of times
volunteers chose our answers divided by the number of total
answers and total volunteers. Fig.9 contains examples where
our model was chosen by most of volunteers compared to the
original answer and examples where original answers were
mostly chosen.

For most of the time, the original answers were still pre-
ferred. Reasons may be the following:

• Our model cannot handle long couplets well in general.
Characters in the couplet answer tend to repeat.

• Generally, if there are not repeated characters in the first
line of couplets, then there should not have repeated
characters in the second line. Nevertheless, our model
produces repeated words in a couplet whereas it should
not.

• Sometimes our model does not generate meaningful an-
swers.

F. Additional constraint

The fact that the model generates repeated words in a couplet
whereas it should not deteriorates rapidly the performance of
the model. Unfortunately we have noticed that after the human
evaluation. But, we still decided to fix this issue.

To avoid the model generating repeated characters, we can
remove these illegal characters from the list of character
candidates. During the evaluation phase, the decoder returns an
output for each iteration. This output is a list of probabilities
associated to all character candidates. In order to remove
unwanted characters, we simply reset the probabilities of
characters produced so far by the model to some minimal
values. In this fashion, the model will consider other candidate
with secondly maximal probability as new output, or several
best candidates among the remaining list of probabilities if
beam width was greater than one. The model will never reuse
same characters produced before, as desired. Four improved
results are shown in Fig.10.

6



Fig. 7. Examples of dueling couplets. The first column contains the first line of each couplet which is also the input of the model. The second column
contains the couplet answer of the model. The third column contains the desired couplet answer for the second line.

VI. DISCUSSION

A. Bidirectional decoder

For the decoder, inputs yis are entered one token at a time.
Therefore, the results of forward pass and backward pass are
the same within the iteration. The reason that we still chose
to use a bidirectional decoder in our project are the following:

• Experimentally, the bidirectional decoder is faster than
unidirectional decoder. When the decoder is bidirectional,
GRU only needs to compute with two small matrices of
shape hidden size. One for the forward pass, the other
for the backward pass. When the decoder is unidirec-
tional, its hidden size will be 2 · hidden size. So, GRU
has to deal with a matrix which is two times bigger. A
doubled hidden size is due to the fact that the encoder
with bidirectional GRU outputs its final hidden state
which have 2·hidden size entries. Since the final hidden
state of encoder is the first hidden state of decoder, the
hidden size of decoder should set to 2 · hidden size in
order to be compatible for computation. The computation
takes more time for one big matrix than two small
matrices.

• If unidirectional decoder is used, the final hidden state
of the encoder should be reshaped before fitting into the
decoder. While if the decoder is bidirectional, then there
is no need to reshape the hidden state. The forward pass
and the backward pass are always properly separated.

• Experimentally, the attention plot of bidirectional decoder
is better compared to the result of unidirectional decoder.
For some unknown reasons, the attention of the first word
is concentrated to the last word of the sentence.

B. Chinese tone

Manually writing down tones for each Chinese characters in
the vocabulary is impossible since it would take too much
time. Therefore, we have searched for Chinese Pinyin pack-
ages in order to figure out the tone of each Chinese character.

However, all packages or dictionaries we found contain errors
or inconvenience that we could not use. At the end, the
relatively best Pinyin package was chosen for the project.3

C. Chinese segmentation and lexical category

Same as Chinese tone package, Chinese segmentation pack-
ages produces errors when segmenting couplets. Also, the
same Chinese character can have different lexical categories
according the the context. This is not captured by packages
existing online. As a result, we have not introduced the lexical
category labels into our model. Fortunately, most of time the
model learned lexical categories during the training process.

D. Two other models

During the semester, two other sequence to sequence models
(noted as Model I, Model II for convenience) were created
before the model presented in this report (noted as Model III).
Model I and Model II used the same encoder. The decoder
of Model I is bidirectional while the decoder of Model II is
unidirectional. Model I has been trained for 73 epochs and
Model II has been trained for 106 epochs. These two models
could produce fair results but they are not as good as Model
III.

Different from Model III, for Model I and Model II, all
couplets in the training set were padded to the same length
which was determined by max length, the length of the longest
couplet in the whole dataset. By doing so, even if lengths
of couplets in a batch are much smaller than max length,
they are still padded to have length as max length. In the
implementation of Model I and Model II, PAD tokens are not
ignored by GRU. Even though all PAD tokens are embedded
to all-zero vectors in the embedding layer but they still create
bias term during the computation. What’s worst, couplets
are usually short. They do not often have lengths as large
as max length. That means that most of the time, couplets

3Pinyin package: https://pypi.org/project/pypinyin/

7



Fig. 8. Examples of attention weights. The x-axis is the first line of the couplets, the y-axis is the answer of our model. Couplet words begin from index 0
for both axes in the plot. Weights coefficients are from 0 to 1. The greater the weight is, the whiter the cell is.

8



Fig. 9. Some results of the couplet questionnaire. The first column contains the first line of the couplet. The second column stands for the couplet answer
of our model. The third column shows the original second line of the couplet. Answers that were mostly chosen by volunteers are colored red.

Fig. 10. Improved results by adding the additional constraint mentioned in Section V-F. The first column contains the first line of the couplet. The second
column contains the original couplet answer of the model. The third column shows the improved answer.

are facing useless padding and annoying bias addition, which
could generate a lot of noise.

The major difference between Model I and Model II was
that Model I did not perform a masking for PAD tokens when
computing the attention. Model I seemed to pay attention on
the PAD tokens for each couplets. Model II did perform PAD
masking for attention. However, for some unknown reasons the
attention of the first word is concentrated to the last word of
the sentence, or to the end of the first sub-sentence. Examples
of attention plots can been seen in Fig.11

Models Beam width BLEU score
I 1 13.95
I 3 13.86
I 5 13.90
II 3 13.87
II 5 13.80

TABLE II
PERFORMANCE OF MODEL I AND MODEL II

VII. CONCLUSION

During the semester, we have created a Chinese couplets du-
eling machine which can produce more or less fair, sometimes
human-like results based on the sequence to sequence model.
Couplet constraints are incorporated during both training and
evaluation phases to make legal couplets.

Some further improvements or refinements are still needed
to be done for the reason that the results are far from perfect.
We can probably add local attention into the decoder model
so that the relevance between consecutive characters can be
enforced. Or try the algorithm for the global attention to
compare the performance. The meaningfulness of couplet
answers should be improved as well. Another drawback of
the model is that when characters in the source sentence are
repeated, what we did was to force the output sentence to

have repeated words. Sometimes this can make fair answers
but sometimes not. We need to consider more alternatives to
solve this concern.

REFERENCES

[1] Oriol Vinyals and Quoc Le. A neural conversational
model. arXiv preprint arXiv:1506.05869, 2015.

[2] I Sutskever, O Vinyals, and QV Le. Sequence to sequence
learning with neural networks. Advances in NIPS, 2014.

[3] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio.
Neural machine translation by jointly learning to align and
translate. arXiv preprint arXiv:1409.0473, 2014.

[4] Xiaoyuan Yi, Ruoyu Li, and Maosong Sun. Generating
chinese classical poems with rnn encoder-decoder. In
Chinese Computational Linguistics and Natural Language
Processing Based on Naturally Annotated Big Data, pages
211–223. Springer, 2017.

[5] Xingxing Zhang and Mirella Lapata. Chinese poetry
generation with recurrent neural networks. In Proceedings
of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 670–680, 2014.

[6] Rui Yan, Cheng-Te Li, Xiaohua Hu, and Ming Zhang. Chi-
nese couplet generation with neural network structures. In
Proceedings of the 54th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers),
pages 2347–2357, 2016.

[7] Jiyuan Zhang, Zheling Zhang, Shiyue Zhang, and Dong
Wang. Vv-couplet: An open source chinese couplet gener-
ation system. In 2018 Asia-Pacific Signal and Information
Processing Association Annual Summit and Conference
(APSIPA ASC), pages 1756–1760. IEEE, 2018.

[8] Minh-Thang Luong, Hieu Pham, and Christopher D Man-
ning. Effective approaches to attention-based neural ma-
chine translation. arXiv preprint arXiv:1508.04025, 2015.

9



Fig. 11. Some examples of attention plots of Model I and Model II. The first line contains three attention plots of Model I and the second line contains three
attention plots of Model II. Model I seemed to pay attention on the PAD tokens for each couplets. For model II, the attention of the first word is concentrated
to the last word of the sentence, or to the end of the first sub-sentence.

10


	Introduction
	Related Work
	Model
	Sequence to sequence background
	Encoder
	Decoder
	Attention

	Dataset and training details
	Data preparation
	Data tokenization
	Training process
	Losses

	Evaluation and analyses
	Evaluation method
	Evaluation results
	Attention plots
	BLEU score
	Human evaluation
	Additional constraint

	Discussion
	Bidirectional decoder
	Chinese tone
	Chinese segmentation and lexical category
	Two other models

	Conclusion

