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Abstract

Humor recognition has been widely studied as
a text classification problem using data-driven
approaches. However, most existing work does
not examine the actual joke mechanism to un-
derstand humor. We break down any joke into
two distinct components: the set-up and the
punchline, and further explore the special rela-
tionship between them. Inspired by the incon-
gruity theory of humor, we model the set-up as
the part developing semantic uncertainty, and
the punchline disrupting audience expectations.
With increasingly powerful language models,
we were able to feed the set-up along with the
punchline into the GPT-2 language model, and
calculate the uncertainty and surprisal values
of the jokes. By conducting experiments on
the SemEval 2021 Task 7 dataset, we found
that these two features have better capabilities
of telling jokes from non-jokes, compared with
existing baselines. We also took part in the Se-
mEval 2021 Task 7 (HaHackathon: Detecting
and Rating Humor and Offense) by exploring
and comparing different deep learning struc-
tures to recognize humor and offensiveness.
Our DeBERTa model ranks top 3 in every sub-
task on the development phase leaderboard.

1 Introduction

Humor, regardless of age, gender, or cultural back-
ground, is perhaps one of the most fascinating
human behaviors. Besides being able to provide en-
tertainment, humor can also be beneficial to mental
health by serving as a moderator of life stress (Lef-
court and Martin, 2012), and plays an important
role in regulating human-human interaction. As
Reeves and Nass (1996) have pointed out, people
respond to computers in the same way as they do
to real people, which indicates that modeling hu-
mor computationally could bring positive effects in
human-computer interaction (Nĳholt et al., 2003).
One of the important aspects of computational

humor is to develop computer programs capable
of recognizing humor in text. Early work on hu-
mor recognition (Mihalcea and Strapparava, 2005)
proposed heuristic-based humor-specific stylistic
features, for example alliteration, antonymy, and
adult slang. More recent work (Yang et al., 2015;
Chen and Soo, 2018; Weller and Seppi, 2019) re-
garded the problem as a text classification task, and
adopted statistical machine learning methods and
neural networks to train models on humor datasets.
However, only few of the deep learning methods
have tried to establish a connection between humor
recognition and humor theories. Thus, one research
direction in humor recognition is to bridge the dis-
ciplines of linguistics and artificial intelligence.

In this paper, we restrict the subject of investiga-
tion to jokes, one of the most common humor types
in text form. As shown in Figure 1, these jokes
usually consist of a set-up and a punchline. The
set-up creates a situation that introduces the hearer
into the story framework, and the punchline con-
cludes the joke in a succinct way, intended to make
the hearer laugh. Perhaps the most suitable humor
theory for explaining such humor phenomenon is
the incongruity theory, which states that the cause
of laughter is the perception of something incon-
gruous (the punchline) that violates the hearer’s
expectation (the set-up).

Based on the incongruity theory, we propose two
features for humor recognition, by calculating the
degree of incongruity between the set-up and the
punchline. Recently popular pre-trained language
models enable us to study such relationship based
on large-scale corpora. Specifically, we fed the
set-up along with the punchline into the GPT-2 lan-
guage model (Radford et al., 2019), and obtained
the surprisal and uncertainty values of the joke,
indicating how surprising it is for the model to
generate the punchline, and the uncertainty while
generating it. We conducted experiments on a man-
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Set-up: I would never cheat in a relationship.

Punchline: Because that would require two 
people to find me attractive.

I am loyal to my partner.

Expectation

Violation

Figure 1: A joke example consisting of a set-up and
a punchline. A violation can be observed between the
punchline and the expectation.

Text Humor Label HR HC OR

... 1 1.126 0 3.098

... 0 1.282

... 1 3.983 1 1.644

Table 1: SemEval 2021 Task 7 dataset example. HR
means humor rating score, HC means humor contro-
versy label and OR means offense rating score.

ually labeled humor dataset, and the results showed
that these two features could better distinguish jokes
from non-jokes, compared with existing baselines.
Our work made an attempt to bridge humor theo-
ries and humor recognition by applying large-scale
pre-trained language models, and we hope it could
inspire future research in computational humor.
Besides proposing incongruity-based features,

we also explored some deep learning structures
and participated in the SemEval 2021 Task 7 (
HaHackathon: Detecting and Rating Humor and
Offense) 1. The organizers collected labels and
ratings of all texts from a balanced set of age groups
from 18-70. The invited annotators also represent
a variety of genders, political stances and income
levels. There are three questions for each annotator:
1) Is the intention of this text to be humorous? (0
or 1) 2) [If it is intended to be humorous] How
humorous do you find it? (1-5). 3) [If it is intended
to be offensive] How offensive do you find it?
(1-5). They also represented the subjectivity of
humor appreciation with a controversy score. This
examines the variance in humor ratings for each
text. If the variance of a text was higher than the
median variance of all texts, the humor of the text
is labelled as controversial. Table 1 gives some
samples of the dataset.

1https://semeval.github.io/SemEval2021/

2 Literature Review

Humor Theory The attempts to explain humor
date back to the age of ancient Greece, where
philosophers like Plato and Aristotle regarded the
enjoyment of comedy as a form of scorn, and held
critical opinions towards laughter. These philo-
sophical comments on humor, also followed by
early Christian thinkers, were summarized as the
superiority theory, which states that laughter ex-
presses a feeling of superiority over other people’s
misfortunes or shortcomings. Starting from the
18th century, two other humor theories began to
challenge the dominance of the superiority the-
ory: the relief theory and the incongruity theory.
The relief theory argues that laughter serves to
facilitate the relief of pressure for the nervous sys-
tem. This explains why laughter is caused when
people recognize taboo subjects—one typical ex-
ample is the wide usage of sexual terms in jokes.
The incongruity theory, supported by Kant (1790),
Schopenhauer (1883), and many later philosophers
and psychologists, states that laughter comes from
the perception of something incongruous that vi-
olates the expectations. This view of humor fits
well the types of jokes commonly found in stand-up
comedies, where the set-up establishes an expecta-
tion, and then the punchline violates it. Morreall
(2020) gives a more comprehensive examination of
these traditional humor theories.
As an expansion of the incongruity theory,

Raskin (1979) proposed the Semantic Script-based
Theory of Humor (SSTH) by applying the semantic
script theory. It posits that, in order to produce
verbal humor, two requirements should be fulfilled:
(1) The text is compatible with two different scripts;
(2) The two scripts with which the text is compatible
are opposite. The General Theory of Verbal Humor
(GTVH) (Attardo and Raskin, 1991) expanded the
range of descriptive and explanatory dimensions of
SSTH to six, called knowledge resources.

Humor Data Mihalcea and Strapparava (2005)
created a one-liner dataset with humorous examples
extracted from webpages with humor theme and
non-humorous examples fromReuters titles, British
National Corpus (BNC) sentences, and English
Proverbs. Yang et al. (2015) scraped puns from
the Pun of the Day website2 and negative examples
from various news websites. There is also work on
the curation of non-English humor datasets (Zhang

2http://www.punoftheday.com/
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Dataset Size # Turns

One-liner 32k 1
Pun of the Day 4.8k 1
Stupidstuff 3.77k 1
Wocka 10k 1

Short Jokes 232k 1
Reddit Jokes 195k 2
UR-FUNNY 16k Multi

BigBang Theory 40k Multi

Table 2: Comparison of different English humor
datasets. # Turns denotes the number of turns of each
sample. When a sample consists of a set-up and a punch-
line, # Turns is 2. When a sample is extracted from a
dialogue, # Turns is multi.

et al., 2019; Blinov et al., 2019). Hasan et al.
(2019) developed UR-FUNNY, a multimodal hu-
mor dataset that involves text, audio and video
information extracted from TED talks. Bertero
and Fung (2016) constructed the BigBang Theory
dataset which contains dialogues annotated with
punchlines. Some other datasets are not proposed
in publications but released on Github, like Reddit
Jokes, Stupidstuff, Wocka 3 and Short Jokes 4. Ta-
ble 2 compares different English humor datasets in
detail.

Humor Recognition Most of the existing work
on humor recognition in text focuses on one-liners,
one type of jokes that delivers the laughter in a sin-
gle line. The methodologies typically fall into two
categories: feature engineering and deep learning.
Mihalcea and Strapparava (2005) designed three
human-centric features (alliteration, antonymy and
synonym) for recognizing humor in the curated one-
liner dataset. Mihalcea et al. (2010) approached
the problem by calculating the semantic relatedness
between the set-up and the punchline (they evalu-
ated 150 one-liners by manually splitting them into
“set-up” and “punchline”). Morales and Zhai (2017)
proposed a probabilistic model and leveraged back-
ground text sources (such as Wikipedia) to identify
humorous Yelp reviews. Liu et al. (2018) proposed
to model sentiment association between elemen-
tary discourse units and designed features based on
discourse relations. With neural networks being
popular in recent years, some deep learning struc-
tures have been developed for the recognition of

3https://github.com/taivop/joke-dataset
4https://github.com/amoudgl/

short-jokes-dataset

humor in text. Chen and Lee (2017) and Chen and
Soo (2018) adopted convolutional neural networks,
while Weller and Seppi (2019) used a Transformer
architecture to do the classification task. Fan et al.
(2020a,b) incorporated extra phonetic and seman-
tic (ambiguity) information into the deep learning
framework.
Although the work of Mihalcea et al. (2010) is

the closest to ours, we are the first to bridge the
incongruity theory of humor and large-scale pre-
trained language models. Other work (Bertero and
Fung, 2016) has attempted to predict punchlines
in conversations extracted from TV series, but
their subject of investigation should be inherently
different from ours—punchlines in conversations
largely depend on the preceding utterances, while
jokes are much more succinct and self-contained.

3 Construct the Reddit Humor Dataset

In order to do data-driven humor recognition tasks,
we should construct a humor dataset which contains
balanced positive and negative samples. In Table 2,
we can see that the Reddit Jokes dataset contains
2 turns sample which is suitable for our approach.
So we firstly clean the Reddit Jokes dataset and ex-
tract the corresponding negative samples on Reddit
website 5.

3.1 Data Cleaning
We cleaned the Reddit Jokes dataset with the fol-
lowing rules: 1) Remove jokes that are too long
(>30 tokens, contain particular escape characters).
2) Remove jokes that have a set-up with fewer than
4 tokens. 3) Remove URLs in jokes (usually with
pattern ‘[...](url)’). 4) Remove jokes whose punch-
line and set-up overlap (usually in this case, the
set-up is literally a title, and the punchline is the full
joke). For unigram, bigram, 3-gram and 4-gram,
calculate the percentage of n-grams in the set-up
that also appear in the punchline. If this percentage
is higher than 0.5, then reject this joke. After clean-
ing procedure, we reduced the Reddit jokes from
194,553 to 119,235, which are the positive samples
in Reddit Humor dataset.

3.2 Extract Negative Samples
The samples in Reddit Jokes dataset are scrapted
from /r/jokes page of Reddit website. So we ex-
tracted samples from other pages as negative sam-
ples and implemented the similar data cleaning

5https://www.reddit.com/
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rules described in Section 3.1. To keep a balanced
dataset, we selected 120,000 samples from all neg-
ative samples we extracted randomly. Finally, our
Reddit Humor dataset contains 239,235 samples
(119,235 positive ones and 120,000 negative ones).

4 Baseline Human-Centric Features

In order to recognize humor in natural language, we
tried effective features in three aspects: (a) Phonetic
Style; (b) Ambiguity Theory and (c) Semantic
Relatedness. For each aspect, several features are
designed to capture humor.

4.1 Phonetic Style
Ruch (2002) found that structural and phonetic
properties of jokes are at least as important as their
content regarding humor appreciation. Actually,
one-liners often rely on the reader’s awareness
of attention-catching sounds, through linguistic
phenomena such as alliteration, word repetition and
rhyme, which produce a kind of comic effect even if
the jokes are not necessarily meant to be humorous
or not. Some similar rhetorical devices also play
an important role in wordplay jokes, and are often
used in newspaper headlines and in advertisement.
The following one-liners are examples of jokes that
include one or more alliteration chains:

Veni, Vidi, Visa: I came, I saw, I did a little shopping.
Infants don’t enjoy infancy like adults do adultery.
An alliteration chain refers to two or more words

beginning with the same phones. A rhyme chain
is defined as the relationship that words end with
the same syllable. We implemented the CMU
Pronunciation Dictionary6 to extract these phonetic
features and computed the total number of chains
found in the input text.

4.2 Ambiguity Theory
Semantic ambiguity is found to be a crucial part of
humor jokes (Miller and Gurevych, 2015). Humor
and ambiguity often come together when a listener
expects one meaning, but the actual meaning is
forced to be another one. Ambiguity occurs when
the words in one sentence structure can be grouped
in more than one way, thus yielding more than one
understanding of readers, as shown in the example
below.

Did you hear about the guy whose whole left side was cut
off? He’s all right now.

6http://www.speech.cs.cmu.edu/cgi-bin/
cmudict

To capture the ambiguity included in a sentence,
we took advantage of WordNet (Miller, 1995). We
considered the possible meanings of each word and
computed the ambiguity value:

log
∏
F ∈B

num_of_senses(F), (1)

where F is a word in the input text B.

4.3 Semantic Relatedness
Compared to the features constructed for one-liners,
some methods try to capture the incongruity be-
tween the set-up and the punchline. The identifi-
cation of incongruity in humor has to satisfy two
requirements: 1) Jokes have to be coherent, which
means the requirement for coherence between the
set-up and the punchline. 2) They have to produce
a surprising effect, which means the requirement
of an unexpected punchline interpretation based
on the set-up. In our settings, we assumed that
jokes already satisfy the first requirement. So we
emphasized the second requirement and tried to
find models able to identify the surprising effect
generated by the punchline.

We used several knowledge-basedmetrics tomea-
sure the semantic relatedness between the set-up
and the punchline. The idea is that the real punch-
line will have a minimum semantic relatedness with
respect to the set-up.
Before computing the semantic relatedness, we

should disambiguity each word to determine the
actual meaning in a given sentence. The Lesk
algorithm is a classical algorithm for word sense
disambiguation (Lesk, 1986). The Lesk algorithm
is based on the assumption that words in a given
context will tend to share a common topic. A sim-
plified version of the Lesk algorithm is to compare
the dictionary definition of an ambiguous word
in WordNet with the terms contained in its con-
text. The implementation looks like this: 1) For
every sense of the ambiguous word should count
the amount of words that are in the context of that
word and in the dictionary definition of that sense.
2) The sense that is to be chosen is the sense which
has the biggest number of this count.
Given a metric for word-to-word relatedness,

we defined the semantic relatedness of two text
segments )1 and )2 using a metric that combines
the semantic relatedness of each text segment in turn
with respect to the other text segment (Mihalcea
et al., 2006): 1) For each word F in the segment )1,
we tried to identify the word in the segment )2 that
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has the highest semantic relatedness, according to
one of the word-to-word measures described below.
2) The same process is applied to determine the
most similar word in )1 starting with words in )2.
3) The word similarities are weighted, summed
up, and normalized with the length of each text
segment. 4) The resulting relatedness scores are
combined using a simple average.

We present below threeword-to-word relatedness
metrics found to work well based on WordNet. The
first two metrics have the best performance in the
work of Mihalcea et al. (2010) and the last one is
based on shortest paths in WordNet.

• Leacock & Chodorow similarity (Leacock
and Chodorow, 1998), defined as

Simlch = − log
length
2 ∗ � , (2)

where length is the length of the shortest path
between two concepts using node-counting,
and � is the maximum depth of WordNet.

• Wu & Palmer similarity (Wu and Palmer,
1994) calculates similarity by considering the
depths of the two synsets in WordNet, along
with the depth of their LCS (Least Common
Subsumer), which is defined as

Simwup =
2 ∗ depth(LCS)

depth(�1) + depth(�2)
, (3)

where �1 and �2 denote synset 1 and synset 2
respectively.

• Path similarity (Rada et al., 1989) is also
based on the length of the shortest path be-
tween two concepts in WordNet, which is
defined as

Simpath =
1

1 + length . (4)

5 Uncertainty and Surprisal

As introduced in 4.3, the incongruity theory at-
tributes humor to the violation of expectation. This
means the punchline delivers the incongruity that
turns over the expectation established by the set-up,
making it possible to interpret the set-up in a com-
pletely different way. However, different from the
traditional semantic metrics, pre-trained language
models make it possible to study such relationship
between the set-up and the punchline based on

GPT-2

x1 x2 xm⋯ y1 y2 ⋯ yn−1

y1 y2 y3 yn

⋯v1 v2 v3 vn

Figure 2: The set-up G and the punchline H are concate-
nated and fed into GPT-2 for predicting the next token.
E8’s are probability distributions on the vocabulary.

large-scale corpora, with neural networks blooming
in recent years. Given the set-up, language mod-
els are capable of writing expected continuations,
enabling us to measure the degree of incongruity,
by comparing the actual punchline with what the
language model is likely to generate.
In this paper, we leverage the GPT-2 language

model (Radford et al., 2019), a Transformer-based
architecture trained on the WebText dataset consist-
ing of over 8 million documents for a total of 40 GB
of text. WebText was curated without making any
assumptions on the genres of the text; thus the re-
sulting model is domain independent, and is shown
to learn many NLP tasks without explicit supervi-
sion. We chose GPT-2 as our research tool because:
(1) GPT-2 is already pre-trained on massive data
and publicly available online, which spares us the
training process; (2) it is domain independent, thus
suitable for modeling various styles of English text.
Our goal is to model the set-up and the punchline as
a whole piece of text using GPT-2, and analyze the
probability of generating the punchline given the
set-up. In the following text, we denote the set-up
as G, and the punchline as H. Basically, we are
interested in two quantities regarding the probabil-
ity distribution ?(H |G): uncertainty and surprisal,
which are elaborated in the next two sections.

5.1 Uncertainty

The first question we are interested in is: given the
set-up, how uncertain it is for the language model to
continue? This question is related to SSTH, which
states that, for a piece of text to be humorous, it
should be compatible with two different scripts. To
put it under the framework of set-up and punchline,
this means the set-up could have multiple ways of
interpretation, according to the following punchline.
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Thus, one would expect a higher uncertainty value
when the languagemodel tries to continue the set-up
and generate the punchline.

We propose to calculate the averaged entropy of
the probability distributions at all token positions of
the punchline, to represent the degree of uncertainty.
As shown in Figure 2, the set-up G and the punchline
H are concatenated and then fed into GPT-2 to
predict the next token. While predicting the tokens
of H, GPT-2 produces a probability distribution E8
over the vocabulary. The averaged entropy is then
defined as

* (G, H) = − 1
|H |

=∑
8=1

∑
F ∈+

EF8 log EF8 , (5)

where + is the vocabulary.

5.2 Surprisal
The second question we would like to address is:
how surprising it is when the language model ac-
tually generates the punchline? As the incongruity
theory states, laughter is caused when something in-
congruous is observed and it violates the previously
established expectation. Therefore, we expect the
probability of the language model generating the
actual punchline to be relatively low, which indi-
cates the surprisal value should be high. Formally,
the surprisal is defined as

((G, H) = − 1
|H | log ?(H |G)

= − 1
|H |

=∑
8=1

log EH8
8
.

(6)

6 Deep Learning Methods

We implemented different deep learning structures
to find the most effective one for recognizing hu-
mor, which are CNN, Bi-LSTM, Transformer and
DeBERTa.

6.1 CNN
Convolutional neural network (CNN) is designed
to learn some particular local features of high di-
mensional data such as images or speech signals.
Most of CNN structures are designed for Computer
Vision tasks. But CNN also shows successes in sev-
eral text classification tasks (Kim, 2014; Johnson
and Zhang, 2015).
We chose the CNN architecture following the

Chen and Soo (2018) for text classification and Fig-
ure 3 shows the structure details. In the embedding
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Figure 3: The CNN Architecture.

layer, each tokenized input sentence is converted
to a matrix by utilization of the GloVe word em-
bedding vectors (Pennington et al., 2014). Next,
we experimented with different filter sizes ranging
from 3 to 20 to adapt to the average sentence length.
The window width of each filter is set to the em-
bedding dimension. For each filter size, 100-200
filters are applied in the convolutional layer. Then
we implemented a max pooling layer to flatten the
output of convolutional layer. The output dimen-
sion of the max pooling layer equals to the number
of filters we choose.

In our model, we also used the highway network
layer after max pooling layer to improve the model’s
performance (Srivastava et al., 2015). The highway
network involves shortcut connections with gate
functions. These gates are data-dependent with
parameters. It allows information unimpeded to
flow through several layers like information high-
ways. The architecture is characterized by the gate
units that learn to regulate the flow of information
through the network. With this architecture, we
could train much deeper CNNs. In the end, the out-
put from a fully connected layer is used to predict
labels.

6.2 Bi-LSTM

Long Short Term Memory (LSTM) is proposed
to overcome gradient exploding and long term
dependency problems of Recurrent Neural Network
(RNN) (Hochreiter and Schmidhuber, 1997). There
are one cell and three gates in LSTM structure,
which are a memory cell 2C , an input gate 8C , a forget
gate 5C and an output gate >C . The computations
are indicated by the following equations,

8C = f (,8GC +*8ℎC−1 ++82C−1) , (7)
5C = f

(
, 5 GC +* 5 ℎC−1 ++ 5 2C−1

)
, (8)

>C = f (,>GC +*>ℎC−1 ++>2C−1) , (9)
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Figure 4: The Bi-LSTM Layer Structure.

2̃C = tanh (,2GC +*2ℎC−1) , (10)
2C = 5C � 2C−1 + 8C � 2̃C , (11)
ℎC = >C � tanh (2C ) , (12)

where GC is the input vector at each time step C, ℎC
is the hidden vector at each time step C, ,8, 5 ,>,2,
*8, 5 ,>,2 and +8, 5 ,>,2 are learnable parameters. In
LSTM structure, the hidden state ℎC only encodes
the input text in a forward direction without cosider-
ing the backward direction.
Bidirectional LSTM (Bi-LSTM) is designed to

improve LSTM structure which consists of two
LSTMs: one taking the input in a forward direction,
and the other in a backwards direction (Graves
and Schmidhuber, 2005). Bi-LSTM effectively
increases the amount of information available to
the network and improves the context available to
the algorithm by knowing what words immediately
follow and precede a word in a sentence. Figure
4 shows the Bi-LSTM structure, where a forward
LSTM and a backward LSTM concatenate the two
hidden state vectors as the representation of the
current word. The equations are as following,

−→
ℎ C = �

(
,
G
−→
ℎ
GC +,−→

ℎ
−→
ℎ

−→
ℎ C−1 + 1−→

ℎ

)
, (13)

←−
ℎ C = �

(
,
G
←−
ℎ
GC +,←−

ℎ
←−
ℎ

←−
ℎ C−1 + 1←−

ℎ

)
, (14)

ℎout = ,−→
ℎ H

−→
ℎ C +,←−

ℎ H

←−
ℎ C + 1H , (15)

where
−→
ℎ C denotes the forward LSTM,

←−
ℎ C denotes

the backward LSTM and ℎout is the final output of
the Bi-LSTM layer.

6.3 Transformer
Unlike recurrent neural networks that process text
in sequence, Transformer applies self-attention to
compute in parallel every word from the input text

Inputs

Input
Embedding

Positional
Encoding

Multi-Head
Attention

Feed
Forward

Attention

Prediction

Transformer
Encoder

Figure 5: The Transformer Architecture.

an attention weight that represents the influence
each word has on another (Vaswani et al., 2017).
Transformer consists stacked encoder and decoder,
following the auto-encoder structure. In text genera-
tion tasks, the encoder transforms an input sequence
of words - = (G1, G2, ..., G=) into a sequence of con-
tinuous representations I = (I1, I2, ..., I=). Given
I, the decoder then generates an output sequence
of tokens . = (H1, H2, ..., H<) one token at each
time step. The decoder is auto-regressive at each
time step, given the previous generated token as
additional input when generating the next. The
objective function can be written as

?(. |-) = ?(H1 |I)
<∏
C=2

?(HC |I, H1, ..., HC−1). (16)

However in our humor recognition task, we only
need the encoder part to compute hidden vectors of
each input sentence. Figure 5 shows the architecture
of our Transformer model and some mechanisms
involved in this architecture will be introduced.

6.3.1 Encoder Stack

The encoder stack consists of 6 identical layers.
Each identical layer has one multi-head attention
sub-layer and one feed forward sub-layer. There
is also a residual connection around each of the
two sub-layers, followed by layer normalization (Ba
et al., 2016).
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6.3.2 Self-Attention Mechanism
Each embedding vector is mapped to three vectors,
query(@), key(:) and value(E) by three correspond-
ing mapping matrices. The output is computed as a
weighted sum of values, where the weight assigned
to each value is computed by a compatibility func-
tion of the query with the corresponding key. In
practice, we packed all the queries, keys and values
vectors into &,  and + matrices. We computed
the self-attention U as

U(&,  ,+) = softmax(& 
)

√
3:
)+, (17)

where 3: denotes the dimension of @. The multi-
head attention allows the model to jointly attend to
information from different representation subspaces
at different positions, which is computed as

V = concat(U1, ..., Uℎ),$, (18)

U8 = U(&,&

8
,  , 

8 , +,
+
8 ), (19)

where V denotes the multi-head attention,,$,,&

8
,

, 
8

and,+
8

are all projection matrices, which are
corresponding to the dimension of @, : and E. In
multi-head attention mechanism, different U8 may
focus on different parts of the input sentence in
order to extract more features of the input sentence.

6.3.3 Feed-Forward Network
In addition to the multi-head attention layers, both
encoder and decoder contain fully connected feed-
forward networks. The function of this feed-forward
network can be written as

W(G) = max(0, G,1 + 11),2 + 12, (20)

where W denotes the output, ,1, ,2 are weight
matrices and 11, 12 are biases. This layer consists of
two linear transformations with a ReLU activation
function.

6.3.4 Positional Encoding
Up to now, we do not make use of the sequence
order of the input sentence. We implemented the
positional encoding to extract the position informa-
tion of the input sentence. The computation of the
positional encoding is

�pos,28 = sin(pos/1000028/3model), (21)

�pos,28+1 = cos(pos/1000028/3model), (22)

where pos denotes the position and 8 denotes the
dimension of encoding. 3model is the dimension of
the input vector and output vector.

6.4 DeBERTa
Decoding-enhanced BERT with disentangled atten-
tion (DeBERTa) improves the Transformer-based
models using two novel techniques, disentangled
attention mechanism and enhanced mask decoder
(He et al., 2020). In our humor recognition task, we
only need the encoder part so we mainly introduce
the disentangled attention mechanism here.
For a token at position 8 in a sequence, we rep-

resent it using two vectors, �8 and %8 | 9 , which
represent its content and relative position with the
token at position 9 , respectively. The calculation
of the cross attention score between tokens 8 and 9
can be denoted as
�8, 9 =

{
�8 , %8 | 9

}
×

{
� 9 , % 9 |8

}>
= �8�

>
9 + �8%>9 |8 + %8 | 9�

>
9 + %8 | 9%>9 |8 .

(23)

The attention weight of a word pair can be com-
puted as a sum of four attention scores using disen-
tangled matrices on their contents and positions as
content-to-content, content-to-position, position-to-
content, and position-to-position.
Shaw et al. (2018) used a separate embedding

matrix to compute the relative position bias in
computing attention weights. This is equivalent
to computing the attention weights using only the
content-to-content and content-to-position terms
in Equation 23. However, the position-to-content
term is also important since the attention weight
of a word pair depends not only on their contents
but on their relative positions, which can only be
fully modeled using both the content-to-position
and position-to-content terms.
In Section 6.3.2, we introduce what is the self-

attention mechanism. Here we represent how dis-
entagled attention mechanism works. Denote : as
the maximum relative distance, X(8, 9) ∈ [0, 2:) as
the relative distance from token 8 to token 9 , which
is defined as

X(8, 9) =


0 for 8 − 9 6 −:

2: − 1 for 8 − 9 > :
8 − 9 + : others .

(24)

Then the disentangled attention can be computed
as

&2 = �,@,2 ,  2 = �,:,2 , +2 = �,E,2, (25)
&A = %,@,A ,  A = %,:,A , (26)

�8, 9 = &
2
8  

2>
9 +&28  A>X (8, 9) +  

2
9&

A>
X ( 9 ,8) , (27)

U = softmax( �
√

33
)+2 , (28)
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where � represents input hidden vectors, &2,  2
and+2 are projected content vectors generated using
projection matrices ,@,2, ,:,2 and ,E,2 respec-
tively, % represents the relative position embedding
vectors, &A and  A are projected relative position
vectors generated using projection matrices ,@,A
and,:,A respectively, �8, 9 is the element of atten-
tion matrix � denoting the attention score from
token 8 to token 9 , &2

8
is the 8-th row of &2,  29 is

the 9-th row of  2,  AX (8, 9) is the X(8, 9)-th row of
 A with regarding to relative distance X(8, 9) and
&A
X ( 9 ,8) is the X( 9 , 8)-th row of &A with regarding

to relative distance X( 9 , 8).

7 Experiments

7.1 Experiment with Features
We evaluated and compared the proposed features
with several baselines by conducting experiments in
two settings: predicting using individual features,
and combining the features with a content-based
text classifier.

7.1.1 Baselines
In Section 4, we introduce the baseline features
constructed for humor recognition and understand-
ing. We chose alliteration, ambiguity and semantic
relatedness (computed by Leacock & Chodorow
similarity, Wu & Palmer similarity and path simi-
larity respectively) as our baseline features.

7.1.2 Dataset
The released training set in SemEval 2021 Task 7
contains 8,000 manually labeled examples in total,
with 4,932 being positive, and 3,068 negative. To
adapt the dataset for our purpose, we only consid-
ered positive examples with exactly two sentences,
and negative examples with at least two sentences.
For positive examples (jokes), the first sentence was
treated as the set-up and the second the punchline.
For negative examples (non-jokes), consecutive two
sentences were treated as the set-up and the punch-
line, respectively.7 After splitting, we cleaned the
data with the following rules: (1) we restricted the
length of set-ups and punchlines to be under 20 (by
counting the number of tokens); (2) we only kept
punchlines whose percentage of alphabetical letters
is greater than or equal to 75%; (3) we discarded
punchlines that do not begin with an alphabetical
letter. As a result, we obtained 3,341 examples in

7We refer to them as set-up and punchline for the sake of
convenience, but since they are not jokes, the two sentences
are not real set-up and punchline.

P R F1 Acc

Random 0.4973 0.4973 0.4958 0.4959

Simlch 0.5291 0.5179 0.4680 0.5177
Simwup 0.5289 0.5217 0.4919 0.5190
Simpath 0.5435 0.5298 0.4903 0.5291
Alliteration 0.5353 0.5349 0.5343 0.5354
Ambiguity 0.5461 0.5365 0.5127 0.5337

Uncertainty 0.5840 0.5738 0.5593 0.5741
Surprisal 0.5617 0.5565 0.5455 0.5570

U+S 0.5953 0.5834 0.5695 0.5832

Table 3: Performance of individual features. Last row
(U+S) is the combination of uncertainty and surprisal.
P: Precision, R: Recall, F1: F1-score, Acc: Accuracy.
P, R, and F1 are macro-averaged, and the scores are
reported on 10-fold cross validation.

total, consisting of 1,815 jokes and 1,526 non-jokes.
To further balance the data, we randomly selected
1,526 jokes, and thus the final dataset contains
3,052 labeled examples in total. For the following
experiments, we used 10-fold cross validation, and
the averaged scores are reported.

7.1.3 Predicting Using Individual Features
To test the effectiveness of our features in distin-
guishing jokes from non-jokes, we built an SVM
classifier for each individual feature (uncertainty
and surprisal, plus the baselines). The resulted
scores are reported in Table 3. Compared with
the baselines, both of our features (uncertainty and
surprisal) achieved higher scores for all the four
metrics. In addition, we also tested the performance
of uncertainty combined with surprisal (last row
of the table), and the resulting classifier shows a
further increase in the performance. This suggests
that, by jointly considering uncertainty and sur-
prisal of the set-up and the punchline, we are better
at recognizing jokes.

7.1.4 Boosting a Content-Based Classifier
We also evaluated the proposed features as well
as the baselines under the framework of a content-
based classifier. The idea is to see if the features
could further boost the performance of existing text
classifiers. To create a starting point, we encoded
each set-up and punchline into vector representa-
tions by aggregating the GloVe (Pennington et al.,
2014) embeddings of the tokens (sum up and then
normalize by the length). We used the GloVe em-
beddings with dimension 50, and then concatenated
the set-up vector and the punchline vector, to repre-
sent the whole piece of text as a vector of dimension
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P R F1 Acc

GloVe 0.8233 0.8232 0.8229 0.8234

GloVe+Simlch 0.8255 0.8251 0.8247 0.8250
GloVe+Simwup 0.8264 0.8260 0.8254 0.8257
GloVe+Simpath 0.8252 0.8244 0.8239 0.8244
GloVe+Alliter. 0.8299 0.8292 0.8291 0.8297
GloVe+Amb. 0.8211 0.8203 0.8198 0.8201

GloVe+U 0.8355 0.8359 0.8353 0.8359
GloVe+S 0.8331 0.8326 0.8321 0.8326

GloVe+U+S 0.8368 0.8368 0.8363 0.8365

Table 4: Performance of the features when combined
with a content-based classifier. U denotes uncertainty
and S denotes surprisal. P: Precision, R: Recall, F1: F1-
score, Acc: Accuracy. P, R, and F1 are macro-averaged,
and the scores are reported on 10-fold cross validation.

2 4 6 8
Uncertainty

0.0

0.2

0.4

0.6

Pr
ob

ab
ili

ty

Joke
(Mdn = 3.64)
Non-joke
(Mdn = 3.47)

2 4 6 8
Surprisal

0.0

0.2

0.4

0.6

Pr
ob

ab
ili

ty

Joke
(Mdn = 3.90)
Non-joke
(Mdn = 3.65)

Figure 6: Histograms of uncertainty (left) and surprisal
(right), plotted separately for jokes and non-jokes. Mdn
stands for Median.

100. For each of the features (uncertainty and sur-
prisal, plus the baselines), we appended it to the
GloVe vector, and built an SVM classifier to do
the prediction. Scores are reported in Table 4. As
we can see, compared with the baselines, our fea-
tures produce larger increases in the performance
of the content-based classifier, and similar to what
we have observed in Table 3, jointly considering
uncertainty and surprisal gives further increase in
the performance.

7.1.5 Visualizing Uncertainty and Surprisal
To get a straightforward vision of the uncertainty
and surprisal values for jokes versus non-jokes,
we plot their histograms in Figure 6 (for all 3,052
labeled examples). It can be observed that, for both
uncertainty and surprisal, jokes tend to have higher
values than non-jokes, which is consistent with our
expectations in Section 5.

7.2 SemEval 2021 Task 7 Results

We implemented different deep learning structures
introduced in Section 6 and compared model perfor-
mance based on the metrics in each subtask to find
the most effective model for humor recognition.

P R F1 Acc

CNN 0.8016 0.8107 0.8053 0.8160
Bi-LSTM 0.8616 0.8400 0.8485 0.8630

Transformer 0.8949 0.9430 0.9183 0.8940
DeBERTa 0.9707 0.9446 0.9575 0.9470

Table 5: Performance of different deep learning models
onSemEval 2021Task 7Subtask 1a (HumorDetection).

7.2.1 Model Settings
The max length of input sentences is 100 and the
optimization algorithm is Adam for all models.
In CNN and Bi-LSTM model, we initialized the
embedding layer with 200 dimension GloVe word
embeddings and the vocabulary size is 30,004. We
chose 100 filters with kernel size 5 for CNN layer
and 32 LSTM units for Bi-LSTM layer. In the
Transformer model, there are 12 encoders and 12
multi-heads, hidden size is 768, vocabulary size is
50,265, learning rate is 5×10−5 and we took advan-
tage of RoBERTa word embedding initialization. In
the DeBERTa model, there are 24 encoders and 16
multi-heads, hidden size is 1024 and learning rate
is 2× 10−6. The batch size is 32 in CNN, Bi-LSTM
and Transformer model but 16 in DeBERTa model.

7.2.2 Dataset
We trained different models on the training dataset
from SemEval 2021 Task 7 which contains 8,000
samples and evaluated the model performance on
the development dataset used in the leaderboard
evaluation which contains 1,000 samples.

7.2.3 Results
In the Subtask 1a (Humor Detection), the resulted
scores are reported in Table 5. It can be observed
that DeBERTa model outperforms other models a
lot in both accuracy and F1-score, which indicates
DeBERTa model has the ability to extract and learn
humor properties more accurately and effectively.
Therefore, we implemented DeBERTa model to
complete other subtasks.

We represent the current top 5 leaderboard in the
development phase and our model performance in
Table 6. Our model ranks top 3 in all subtasks.

7.2.4 Discussion
Overall, it can be observed that Transformer-based
models perform better than sequencemodel or CNN
model. By comparing Transformer model and De-
BERTamodel, the disentangle attention mechanism
in DeBERTa model extracts more informative re-
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SemEval Task7 Subtask 1a Subtask 1b Subtask 1c Subtask 2

Leaderboard F1 Acc RMSE F1 Acc RMSE

Rank 1 0.9603 0.9500 0.4848 0.6598 0.5301 0.4817
Rank 2 0.9570 0.9450 0.4853 0.6567 0.4905 0.4854
Rank 3 0.9539 0.9410 0.4936 0.6565 0.5000 0.5064
Rank 4 0.9538 0.9410 0.4952 0.6553 0.4873 0.5209
Rank 5 0.9528 0.9400 0.5004 0.6546 0.5158 0.5239

Our Team 0.9575 0.9470 0.4923 0.6595 0.5016 0.4794
Our Rank 2/59 3/35 2/33 1/29

Table 6: The top 5 leaderboard and our model performance in development phase.

lation in each word pair of the input sentence. In
the Transformer structure, the position embedding
vectors are only added to the input vectors of the
self-attention layer. But in the DeBERTa structure,
the relative position vectors are calculated in the
self-attention layer by disentangled matrices. Since
both the meaning and position of each word are
crucial for humorous effect, the DeBERTa model
can detect humor in a better way.

8 Conclusion

In this paper, we first made an attempt in establish-
ing a connection between the humor theories and
the nowadays popular pre-trained language models.
Based on that, we proposed two features related to
the incongruity theory of humor: uncertainty and
surprisal. We conducted experiments on a humor
dataset, and the results suggest that our approach
has an advantage in humor recognition over the
baselines. The proposed features can also provide
insight for the task of two-line joke generation—
when designing the text generation algorithm, one
could exert extra constraints so that the set-up is
chosen to be compatible with multiple possible
interpretations, and the punchline should be sur-
prising in a way that violates the most obvious
interpretation. We hope our work could inspire
future research in the community of computational
humor.

In the process of designing the system involved in
SemEval 2021 Task 7 Competition, we found that
DeBERTa structure provides a promising research
direction of understanding not only humor but other
complex emotions contained in nature language. In
the future work, we could add some extra embed-
ding vectors representing phonetic style or ambigu-
ity property of each word in the self-attention layer.

The computation of relative position vectors and
disentangled matrices could also be optimized in
other NLP tasks.
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