
Affect-rich Dialogue Generation using OpenSubtitles 2018

Yan Fua

aInstitute of Electrical Engineering, EPFL Lausanne, Switzerland
{yan.fu}@epfl.ch

June 26, 2019

Abstract–Mainly this report contains three parts: first we introduce three data
sets used in this project; then we extract multi-turn dialogues based on sentence
similarity and reach pk=0.262; finally, this report also tries to improve basic Seq2Seq
dialogue generation by creating an emotional response, and compare the results of
affect-rich method with basic ones.

1 Introduction

To learn an open domain dialogue generation model, corpora of huge size are needed. However,
for current public data sets, they are not perfect: either they are well labelled but are of small
size (e.g. Cornell Movie–Dialogs Corpus, Daily Dialogue), or they have huge dialogues but are
specific on certain topics (e.g. Ubuntu Dialogue Corpus).

OpenSubtitles 2018 is a large data set of movie and TV subtitles and includes a total of
446,612files. And it contains topics on different domains. But the big problem of OpenSubtitles
2018 is that, it is an unlabelled data set, not characters, no scenes and no dialogue boundaries.
This causes big trouble when we want to extract multi-turn dialogues to train our model. So the
first step is to perform dialogue extraction on OpenSubtitles 2018.

Many researchers use OpenSubtitles as their training set. They extract the sentence with

a question mark and the next sentence and consider the pair of sentences is one dialogue
[5]

.
However, this method ignores the continuity between sentences, and it fails to extract multi-

turn dialogue. In this report, we adapt embedding-enhanced texttiling
[2]

to perform better
segmentation based on the similarity between consecutive sentences. We validate our method
on Cornell Movie–Dialogs Corpus, and test it on Scripts data set (both will be introduced in
next session) with pk 0.262 and 0.295 respectively. Then we apply this method on OpenSubtitles
2018, and we will get a corpus of 7 million dialogues at a rough estimation, which is much larger
than Cornell Movie-Dialogs Corpus.

Then we improve the basic Seq2Seq model with affect rich approach
[5]

and train the model
with a small subset of the dialogue extracted from former step. And we find out that with
maximum mutual information objective function and VAD embedding, the model can generate a
less generic and more affective response. For example, given the input ’are you gonna miss me?’,
the basic Seq2Seq will respond with ’no.’ while our model will say ’i do n’t know, sweetheart.’

0 Codes and results are in the Github repo: https://github.com/yf0726/OpenSubtitlesAffectiveDiag

1

https://github.com/yf0726/OpenSubtitlesAffectiveDiag

2 Data set

In this part we introduce the OpenSubtitles 2018 data set, Cornell Movie–Dialogs corpus and
scripts data set used in this project

1. OpenSubtitles 2018

We downloaded English subtitles from http://opus.nlpl.eu/OpenSubtitles2018.php.
The original subtitles on OpenSubtitles is .src file, and the data set downloaded has already
converted .src file into .xml file.

Only time stamp and lines are known in the OpenSubtitles data set. No characters, no
pre-known dialogue session, even no names of the movies. We have 446,612 .xml files in
total. And some of them are trailers, lyrics or lectures (whose duration is either too short
(few minutes) or too long (more than 3 hours)), and these files generally do not contain
meaningful dialogue. Given that most movies and episodes last between half an hour and
three hours, we only use files whose durations are in 0.5 - 3 hours. And finally, we got
349,313 processed subtitles, accounting for 78% of the total.

Mainly there are three main tags in each xml file: <s> tag, <time> tag and <mega> tag.
In each <s> tag is a whole sentence, in each <time> tag are words shown in one screen.

• Generally, <s> tag and <time> tag are paired one to one: it means one whole
sentence in one screen (as shown in Example 1, the sentence is: What do you know
about Wakanda?). But there are some exceptions:

• Multiple <s> tags in one <time> tag: it means short sentences by different character
are shown in one screen (as shown in Example 2).

• Multiple <time> tags in one <s> tag: it means the sentence is too long and is split
to be shown in multi-screens (as shown in Example 3).

Figure 1: Example1 of OpenSubtitles 2018

In <meta> tag there contains some meta information for each subtitle: number of sen-
tences, number of tokens, language, duration, etc. Note that the information in <meta>
tag is not very reliable, on the one hand not all subtitles have full information, on the other
hand, the information itself is confusing and even wrong.

For pre-processing, first, we need to extract sentences in tags. And there are some non-
speech parts in OpenSubtitles data set (e.g. special symbols (namely nondigit, non-
English), brackets and contents in between like [BOOM]). These are not relevant to the
dialogue itself so we remove them. And also, we replaced numbers with <NUM>.

2. Cornell Movie–Dialogs Corpus

2

http://opus.nlpl.eu/OpenSubtitles2018.php
https://www.opensubtitles.com/en

Figure 2: Example2 of OpenSubtitles 2018

We validate our method on the Cornell Movie–Dialogs corpus. In Cornell Movie–Dialogs
corpus, each sentence is given a unique serial number (LineID), and these numbers are
sequenced in time: smaller number means this sentence occurs earlier in the movie. In
each row, there are IDs of two speaker, movie ID and then sentence IDs in one dialogue.
In the original data set, the dialogues are sorted according to speaker ID (eg. all dialogues
of speaker u0 and speaker u2 in movie 0 will are placed at the top.)

Because we want to find dialogue boundaries in consecutive texts, first we re-order the
dialogues in Cornell Movie–Dialogs corpus by the serial number of starting sentence of
each dialogue. Then we have dialogues in time order.

3. Scripts data set

The authors
[1]

collected scripts of corresponding movie or TV in OpenSubtitles 2018 data
set. We asked them for the scripts and corresponding subtitles; then we found dialogues
boundaries for each subtitle based on the scripts. Finally, we got 946 labeled subtitles, in
total of 718524 sentences and 162832 dialogues. And we will also test our segmentation
methods on this labeled data set.

3 Dialogue Segmentation

3.1 Problems

As mentioned before, OpenSubtitles data set does not include the information like charac-
ters and boundaries of dialogues. So we need to extract dialogues by ourselves to create
our dialogue training data set. Here we first introduce concepts used in later part:

• Sentence: Group of words separated by punctuation like . ? ! etc. In OpenSubtitle,
we define one sentence as words in same <s> tag.

• Turn: Sentences by one speaker in one dialogue, not interrupted by another speaker.

• Dialogue: Consecutive turns focused on related topics.

• Session: Consecutive turns, we try to extract one dialogue in one session. And in a
later experiment, we consider there are ten sentences in one session.

OpenSubtitles does not have turns information neither does it have dialogue boundaries,
so to get an ideal data set we will need to:

3

Figure 3: Example3 of OpenSubtitles 2018

Figure 4: Original Cornell Movie–Dialogs cor-
pus

Figure 5: Re-ordered Cornell Movie–Dialogs
corpus

• First perform the turn segmentation, find out characters for each sentence;

• Second perform dialogue segmentation to extract multi-turn dialogues.

Most work using OpenSubtitles notice these two problems but do not solve it. Generally,
they simply consider each sentence as one turn, and they take sentence ending with a
question mark as input, the sentence next to input as output. Some constraints may be
added, varying from different researchers, like the time interval between input and output
should be less than 20 seconds, either sentence should be less than 20 words, etc. Few works

were found on the first problem. Automatic turn segmentation for Movie TV subtitles
[1]

introduced a supervised method on turn segmentation. Aside OpenSubtitles 2018, they
scraped scripts of corresponding subtitles and used the character information in scripts as
the label. They scraped 7000+ scripts, and then performed sentence alignment to align
sentence in OpenSubtitles and those in scripts, only 34% movies and 60% episodes were
successfully aligned. Finally, they annotated 5,413 subtitles and got 1,521,382 sentences
labeled with the speaker. Then they extracted features like timing, punctuation, lexical

4

features, visual features, length features, adjacency features, edit distance features etc and
used the linear classifier. They got an accuracy of 78.1% on the test set. However, this
method is too time-consuming: first, we need to find out the name of subtitles, which is
not included in OpenSubtitles data set, and we will have to search for movie names from
the original OpenSubtitles website, download the .src file and then convert it to the .xml
file. Then, web scraping and parsing are needed for scripts. Thirdly, sentence alignment
is needed, and the inconsistency of scripts and subtitles add even more difficulties to this
task (scripts online are usually an early version of drafts, and are usually quite different
from the final subtitle). Due to the limited time, we hold the simple assumption that each
sentence is a turn.

For the second problem, here we adapted methods in Dialogue Session Segmentation by

Embedding-Enhanced TextTiling
[2]

. Details are shown in the next subsection.

3.2 Solutions

We redefine the dialogue segmentation as following: given the beginning sentence of one
dialogue and consecutive sentences of the beginning sentence (name as ’a session’), we want
to find one dialogue boundary in that session so that context from starting sentences to the
sentence just before the boundary can form one meaningful dialogue. And here we regard
sentence ending with a question mark as the beginning sentence.

3.2.1 Time-based segmentation

As mentioned above, one simple idea is that sentences in a short time interval should
be relevant and thus has a higher probability to belong to the same dialogue. And in
the OpenSubtitles data set, we have a timestamp for each sentence. So in one session, if
the time gap (which means the gap between two sentences’ time stamp) of the beginning
sentence and sentence A is larger than the threshold, then sentence A will be considered
as the dialogue boundary.

However, there is no strict guideline in how to choose the time threshold; and this method
is also hard to be evaluated as I did not find labeled open-source data set with time stamp.

3.2.2 Similarity-based segmentation

Here we adapted the embedding-enhanced texttiling
[2]

. Simply speaking, the basic idea is
to calculate the similarity between consecutive sentences, cut off where the similarity is
low so that consecutive sentences with high similarity will be considered as topic relevant
dialogue. And still, first we assume that sentence ending with a question mark is the
beginning of each dialogue, then the problem is converted to find the boundary of dialogue
in consecutive lines after the beginning sentence. First, we need to convert words to vectors.
Then we need to define the sentence level similarity. For two words we can compute their
cosine distance, the closer to 1 the more similar they are; and the opposite for -1. One
intuition is to average all word vectors in one sentence and use the averaged vector as the
representative vector for this sentence, and then calculate the cosine distance between two
sentence vectors as the similarity between two sentences.

There is another definition of sentence similarity. For similarity we followed the best
measure in that paper, the heuristic max similarity between sentence 1 (S1) and sentence

5

2 (S2):

sim(S1, S2) =
1

n1

n1∑
i=1

maxn2
j=0{cos(wi, vj)}

More detailedly, n1 is the number of words in sentence 1, wi is the i-th word in sentence
1; n2 and vj means the same for sentence 2. So for heuristic max similarity, we find the
most related word in s2 for each word in s1, and then the sentence similarity is the average

of words in s1. The authors
[2]

said this is better than sum pooling method (first get the
vectors for s1 and s2 by averaging words in them, and then calculate the cosine similarity
of that two vectors) which has a blurring side effect.

Then we calculated the depth score. For example, now we have one session beginning
with question mark sentence. And we have calculated the similarity between neighboring
sentences in that session, the depth score of the i-th sentence in that session will be the
difference of the i-th similarity and maximal similarity up to the i-th. Then the boundary
of dialogue should be where the depth score is low.

There are two ways to find the boundary. First is using a threshold. The threshold is
defined as:

th = µ− α ∗ σ

where µ and σ are the mean and standard deviation of session depth score. α is a hy-
perparameter. We tuned α on Cornell dialogue data set, where dialogue boundaries are
given.

Another idea is to cut off the session at the lowest point of depth score. Since there will
be multi-lowest points in one session, we return the index of the first lowest point.

We combine the result of threshold cut-off and lowest point cut-off. Because we want
to have related sentences as long as possible , so the final prediction is the maximum of
threshold cut-off and lowest point cut-off. For example, we have ten sentences in a session;
threshold cut-off says the boundary is at sentence 7, and at sentence 3, 6 and 8 there are
the local lowest points. So the final prediction will be max(min(3,6,8),7) = 7.

3.3 Metrics

Another problem is to define the metric to evaluate the quality of segmentation. Even
though the dialogue segmentation can be somewhat considered as classification task (label
0 inside one dialogue as there is no boundary; label 1 between two dialogues as there is
a boundary), standard classification metrics(e.g. accuracy) are not very suitable in our
cases. In this section, we will show why and discuss few commonly used metrics in text
segmentation task.

3.3.1 Classification-Based Metrics

As mentioned in the former section, the segmentation task can be seen as a classification
task: we consider each sentence as one sample, and only predict 1 where the sentence
is considered as the boundary of two dialogues (sentence itself is the beginning of next
dialogue, and the sentence before it is the ending of current dialogue) and 0 elsewhere.

However, such a metric is not appropriate in our cases. In the following table, we show a
simple example. We have 10 sentences and 3 ground truth boundaries, which mean that

6

S1 to S4, S5 to S8 are two whole dialogues and S9 is ground truth boundary and beginning
of the third dialogue. And row pred1 and pred2 are two predictions. We can easily see
that pred1 and pred2 have same accuracy, but intuitionally, pred1 should be better then
pred2: each boundary of pred1 is only 1 sentence away from ground truth, while in pred2
the prediction is far away from the ground truth.

Besides, unlike common text segmentation task, where the aim is to segment all possible
sub-topics as many as possible, our task aims to find the end of dialogue given its beginning
sentence. That is to say, we now know S1 is the beginning of one dialogue, and we have
8 sentences following S1 (S2 to S10), we want to find the boundary Si, so that S1 to Si

can make up one meaningful dialogue. Under the assumption that different dialogue have
different topics, and topic in one dialogue does not change a lot, the word ’meaningful’ here
refers that the topics in S1 to Si should be relevant. And still, pred1 is better than pred2.
In pred 1, though S4 is missed, S1 to S3 is still focusing on same topic; in pred 2, S1 to
S6 is predicted to be one dialogue, but S5, S6 actually belong to another dialogue. Thus it
is worse. So when predicting dialogue boundary, a boundary earlier is better than a later
one, and accuracy cannot reflect such information.

Sentences S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

GroundTruth 1 0 0 0 1 0 0 0 1 0

Pred1 1 0 0 1 0 0 0 1 0 0

Pred2 1 0 0 0 0 0 1 0 0 1

Table 1: An example binary classification evaluation

So accuracy is not suitable in our situation: though ideally, we want to predict exact
boundary as ground truth, predictions near to ground truth are better than those far
away; and predictions earlier than ground truth is tolerable. So in the next section we
introduce different metrics.

3.3.2 Segmentation-Based Metrics

1. Hinge-like loss

Here we use a self-defined loss (hinge-like loss, which means it works similar to hinge loss).
If the prediction is earlier than ground truth, then the loss is the distance between ground
truth label and predicted label; if the prediction is later than ground truth than the loss
will be the length of the session. It works as a punishment for late prediction.

For example, ground truth label is at sentence 6 and prediction is at sentence 4, then the
loss will be 2, and if the prediction is at sentence 8 and session length is 10, then the loss
will be 10. The smaller the loss is, the closer the prediction is to ground truth. Though
hinge-like loss is easily understood, it heavily depends on the session size: hinge-like loss
will be smaller on the small session but larger on the big session, thus causing difficulties
in comparing results.

2. Pk

To combat this problem, we use Pk (proposed by Beeferman et al. (1999)), which expresses
a probability of segmentation error: the average probability, given two points in the data
set, that the predictor is incorrect as to whether they are separated by a boundary or not.

7

(Note that as Pk scores are probabilities, they range between 0 and 1, but a higher score
means less accurate: a higher probability of error). To calculate Pk, we take a window of
fixed width k and move it across the session, at each step examining whether the prediction
is correct about the separation (or not) of the two ends of the window. For a single window
position with start i and end j, we can express this separation via the indicator function
δS(i, j):

δS(i, j) =

{
1 if predict that Si and Sj are in same dialogue

0 else

For a single window (i, j), the error of a predicted segmentation P relative to a reference
segmentation R can then be calculated as: And the error is:

δP (i, j)⊕ δR(i, j)

where ⊕ is logic operator XOR, A⊕B equals to 1 if and only if A and B are different, else
A⊕B equals to 0.

And we obtain Pk by moving the window and summing it up:

Pk =

∑N−k
i=1 δP (i, i+ k)⊕ δR(i, i+ k)

N − k

The choice of k is arbitrary, but it is generally set to be half the average segment length in
the reference segmentation R. This value ensures (under some assumptions) that the four
obvious baseline algorithms (hypothesizing no boundaries, boundaries everywhere, evenly-
spaced boundaries or randomly-spaced boundaries) all have Pk = 0.5. A perfect segmenter
will score 0, of course; a score of 1.0 will only be achieved by a truly terrible segmenter
which manages to hypothesize boundaries in all and only the wrong places.

3.4 Training

3.4.1 Virtual sentence

The authors
[2]

proposed the concept of virtual sentences to train word embeddings for
conversation data.

Sheriff: Hannah, was that Holtz?
Hannah: Yes, Sheriff, it was.
Sheriff: Thank you.
Hannah: You ’re welcome.

’Virtual sentences’ means concatenating two consecutive sentences as one, and train word
embedding on these virtual sentences. For example, ’Hannah, was that Holtz? Yes, Sheriff,
it was.’ is one virtual sentence concatenating ’Hannah, was that Holtz?’ and ’Yes, Sheriff,
it was.’ The motivation for training on virtual sentences is that, in dialogues, consecutive
sentences have stronger interaction. One common example is that ’You’re welcome’ is a
very common response to ’Thank you’ but rare is the situation that the word ’welcome’ will
come up with ’thank you’ in one sentence. But constructing virtual sentences can solve this

8

problem (e.g. we have the virtual sentences ’Thank you. You’re welcome.’). Considering
that our method is to cut off texts where successive similarity is low, the concept of a
virtual sentence is believed to be useful to learn common question-response pair.

3.5 Results

First, we compare the results of different word embedding (with or without virtual sentence;
a lower case for all words or not; removing punctuation or not).

In the below table, we show the results of predictions using different word embeddings, and
all are made with alpha = 0.5, session length = 10. We can see all predictions are much
better than random prediction. Using virtual sentence improve the performance slightly.
And taking high accuracy, low hinge-like loss and low Pk into account, we finally choose to
embed method 6 as the best method.

Embedding ACC Hinge Pk Random ACC Random Hinge Random Pk

1 0.307 4.229 0.268 0.100 6.204 0.501

2 0.311 4.209 0.265 0.101 6.198 0.499

3 0.305 4.144 0.264 0.102 6.167 0.498

4 0.316 4.188 0.265 0.099 6.19 0.498

5 0.314 4.2 0.266 0.098 6.202 0.498

6 0.314 4.105 0.262 0.100 6.152 0.501

Table 2: All predictions are made under alpha = 0.5, session length = 10

Embedding Method Details of embedding

1 Basic embedding

2 Use virtual sentence

3 Use virtual sentence and remove punctuation

4 Lower all words

5 Lower all words and use virtual sentence

6 Lower all words and use virtual sentence and remove punctuation

Table 3: Details for each embedding method

Then we look into how different alpha affects prediction performance.

9

alpha ACC Hinge Pk Random Hinge Random Hinge Random Pk

0.1 0.305 3.723 0.271 0.101 6.349 0.503

0.2 0.309 3.804 0.267 0.098 6.344 0.503

0.3 0.310 3.918 0.266 0.099 6.293 0.501

0.4 0.311 4.013 0.264 0.096 6.253 0.501

0.5 0.314 4.105 0.262 0.102 6.143 0.499

Table 4: Results of different alphas

Higher alpha means lower threshold in depth score, and if the depth score is too low and all
scores in the session are higher than the threshold (µ−α∗σ), then we set the prediction at
the tail of this session. So higher alpha will cause later prediction and thus higher hinge-like
loss. However, higher alpha also causes higher accuracy and lower Pk. We need to balance
between them. And here we choose alpha = 0.5 (the same value picked by text tiling
method in nltk package).

On scripts data set, using alpha = 0.5 and embedding 6, we got the result of accuracy
0.290, hinge loss 4.342 and pk 0.295 on average, which are very close to that of Cornell
data set.

data set alpha embedding ACC Hinge Pk

Cornell Movie–Dialogs Corpus 0.5 method 6 0.314 4.105 0.262

Scripts data set 0.5 method 6 0.290 4.342 0.295

Table 5: Comparison of Segmentation Results on two data sets

Then we show some results on the Cornell Movie–Dialogs corpus. In each image, the first
red line is the beginning of the dialogue, the second red line is the dialogue boundary
(beginning of next dialogue), and the black dash line is the predicted boundary. The blue
plot is the depth score of the session. And in each image, we also show the index and
content of sentence of that session. For example, in the next figure we show a perfect
prediction, which predicts sentence 2-nd as dialogue boundary. So the extracted dialogue
will be:

Turn 0: That ca n’t be right ; it ’s only twenty-six light years away .
Turn 1: I scanned it at Arecibo ; negative results , always .

Then we show examples of early prediction as well as late prediction. Though it is not
perfect, an early prediction is tolerable.

And in original text tiling, smoothing for depth score is needed. However the smoothing
is not doing good in our case. And this time we add the orange plot showing the result of
smoothing. Using smoothing we can get the general trend of the depth score, but it will
cause dislocation when we are looking for the lowest point. For example, the lowest point
should be at 2-nd sentence, but after smoothing, the position moves to 4-th sentence. Also,
metrics can show how badly smoothing is doing (with accuracy 0.272, hinge loss 4.314 and
Pk 0.274, all worse than without smoothing).

10

Figure 6: An example of accurate prediction.

Figure 7: An example of early prediction.

11

Figure 8: An example of late prediction.

Figure 9: An example of dislocation caused by smoothing

4 Affect-rich dialogue generation

4.1 Affect-rich Dialogue generation model

Seq2Seq based conversational model (abbreviation for sequence to sequence) is widely used
to generate open-domain dialogues. It can learn semantic and syntactic relations. However,
basic Seq2Seq conversational model tends to generate safe and highly-generic replies (e.g.
’I do not know.’) regardless of the input, which is not wanted in a dialogue system, because
it closes a conversation.

Also, it is hard for basic Seq2Seq model to capture and generate emotional sentences, and
affect-rich approach is needed. And to avoid general replies, maximum mutual information
is used in the beam search strategy.

12

4.1.1 Affect-rich approach

The idea of affect-rich dialogue generation
[5]

is to extend the Seq2Seq model adopting
VAD affective notations to embed each word with effects. Besides, an affect-incorporated
objective function is used during training to encourage affect-rich response.

VAD (Valence, Arousal and Dominance) notation is widely used as a representation of

human emotions in psychology. We adopted the annotated lemma-VAD pairs corpus
[6]

to
encode word affects. This corpus comprises 13,915 lemmas with VAD values annotated in
the [1, 9] scale. And we extended the basic VAD corpus to 36,267 lemmas by assigning the
average VAD values of their synonyms to absent lemmas. Then VAD values of all words are
clipped to the [3, 7] interval to prevent extreme values. And for words not in the extended
VAD corpus, neural VAD values [5, 3, 5] are assigned to them.

1. Affective Embedding

We incorporate VAD embedding by concatenating VAD value after word embedding:

e(xt) = [xt;λV AD(xt)]

where xt is the word embedding of the word xt, V AD(xt) = V AD(xt) − [5, 3, 5], λ is a
scalar denoting the strength of VAD embeddings.

2. Affective Attention

The authors
[5]

assume that human pay more attention on affect-rich word and incorporate
affect into attention as follows:

et′ t = hT
t st′ + ηt

ηt = γ|µ(xt)(1 + β)⊗ V AD(xt)|22
β = tanh(Wbxt−1)

where ⊗ denotes element-wise multiplication, Wb is a model parameter, β is a scaling
factor in V, A, D dimension, γ controls the magnitude of affect bias, and µ(xt) measures
the term importance of xt.

3. Term Importance

Term importance is used to compute the importance of a word. And in this report, we
adopt ’local importance’, which is calculated as following:

µ(xt) =
log(1/p(xt) + ε)

Σt=T
t=1 log(1/p(xt) + ε)

where p(xt) denotes the term frequency of xt in training corpus, ε is a small constant with
value 10−8.

4. Affective Objective Function

To encourage the generation of affect-rich words, the authors incorporate VAD embedding
of words into loss:

Ψt = −|V | 1 + δ|V AD(yt)|2
Σŷt∈V (1 + δ|V AD(ŷt)|2)

where yt denotes the target token at decoding time step t, V denotes the data set vocabu-
lary, and δ regulates the contribution of VAD embedding in loss function.

13

4.1.2 Maximum Mutual Information

To avoid generic response, maximum mutual information (MMI)
[7]

objective function is
adopted in this project.

The standard objective of Seq2Seq model is to maximize the log-likelihood of target T
given source S:

T̂ = argmax{logp(T |S)}

However, generic responses have high probability in this objective function. And to avoid
this, we try to balance between the probability of sources given targets and that of targets
given sources:

T̂ = argmax{(1− λ)logp(T |S) + λlogp(S|T)}

And the new objective is intractable since logp(S|T) can only be calculated after target
prediction. So here we split the objective into two steps (named as ’MMI-bidi’): first we use
beam search to find N-best responses given T̂ = argmax{logp(T |S)}; then for N responses
we calculate the probability p(S|T) and re-rank them.

4.2 Training

In this part we introduce training set and parameters used during the training. Ideally, we
will use the result of OpenSubtitles dialogue segmentation in previous part as our training
set. However, due to the limit of computation ability of my laptop, here we do not train
with multi-turn dialogues but only two-turn dialogues (only the first two turns in each
dialogue are used). And we choose dialogues with turns that are neither too long nor too
short (word counts between 3-20). Finally we have 46400 dialogues in training set, and
9984 dialogues in test set. The hyper-parameters are chosen as below:

• λ = 0.1 (for affective embedding)

• γ = 0.5 (for affective attention)

• δ = 0.15 (for the affect objective function)

• beam search width = 32

• learning rate = 0.001

4.3 Results

In this section we will show the result of dialogue generation.

P (T |S) Responses P (S|T) Responses

-6.457921 my name. -6.353932 what ’s wrong with you .

-6.605519 all right. -9.697718 oh , my god . my name ’s .

-6.686670 i do n’t know . -12.913490 oh , my god . that ’s ...

-6.767957 oh , my god . -13.057776 oh , my god . my name .

-6.977804 maybe . -13.782521 my name is sherlock holmes .

Table 6: Input: ’what ’s your name ?’

14

From table 6 we can see that re-order the beam search result with P (S|T) can avoid
generic answers like ’I do n’t know’. For each question we have 32 answer candidates, and
we re-order them by P (S|T), take the top-10 answers, and then among those 10 answer
candidates we select the one with highest VAD value as the final response to given question.
In the following table we compare the results of responses maximizing P (T |S)(basic gener-
ation) and responses balancing between P (T |S), P (S|T) and VAD value(MMI+affect-rich
generation).

input Basic generation MMI+affect-rich generation

what ’s your name
?

my name . i do n’t know . i was just
looking for my friend .

why did i agree to
this ?

i do n’t know . i do n’t know , but i did n’t
know why i was talking

about it .

are you gonna miss
me ?

i am . i do n’t know , sweetheart .

does that mean his
parents are still

alive ?

no . well , it does n’t matter
what he says .

what am i doing
down here ?

what are you doing ? well , i thought you were n’t
supposed to be right here .

Table 7: Basic generation vs. MMI+affect-rich generation

Though the predictions are not perfect (because we only run on small training set with
very few epochs), we can still see that1 using MMI+affect-rich we can generate less generic,
longer and more affective responses.

References

[1] Lison P, Meena R. Automatic turn segmentation for movie and tv subtitles[C]//2016
IEEE Spoken Language Technology Workshop (SLT). IEEE, 2016: 245-252.

[2] Song Y, Mou L, Yan R, et al. Dialogue session segmentation by embedding-enhanced
texttiling[J]. arXiv preprint arXiv:1610.03955, 2016.

[3] Hearst M A. TextTiling: Segmenting text into multi-paragraph subtopic passages[J].
Computational linguistics, 1997, 23(1): 33-64.

[4] Purver M. Topic segmentation[J]. Spoken language understanding: systems for extract-
ing semantic information from speech, 2011: 291-317.

[5] Zhong P, Wang D, Miao C. An Affect-Rich Neural Conversational Model with Biased
Attention and Weighted Cross-Entropy Loss[J]. arXiv preprint arXiv:1811.07078, 2018.

[6] Warriner, A. B.; Kuperman, V.; and Brysbaert, M. 2013. Norms of valence, arousal,
and dominance for 13,915 English lemmas. Behavior Research Methods 45(4):11911207.

[7] Li J, Galley M, Brockett C, et al. A diversity-promoting objective function for neural
conversation models[J]. arXiv preprint arXiv:1510.03055, 2015.

1 More examples are available in the ’results/predictions.csv’ file.

15

	Introduction
	Data set
	Dialogue Segmentation
	Problems
	Solutions
	Time-based segmentation
	Similarity-based segmentation

	Metrics
	Classification-Based Metrics
	Segmentation-Based Metrics

	Training
	Virtual sentence

	Results

	Affect-rich dialogue generation
	Affect-rich Dialogue generation model
	Affect-rich approach
	Maximum Mutual Information

	Training
	Results

