
Optional Project

Affect French Language model

Author:
Ayyoub EL AMRANI

Supervisor:
Dr. Pearl Pu Faltings

Yubo Xie

June 6, 2019

Contents

1 Introduction 3

2 French Opensubtitles Data 4
2.1 Overview of OpenSubtitles Data 4
2.2 Description and Parsing of Data 5
2.3 Analysis on Data . 7

3 Sequence to sequence model 11
3.1 Definition . 11
3.2 Pre-processing and training 12
3.3 Testing the model . 14

4 Comparison between DeepMoji and LIWC 15

5 Conclusion 16

1

Abstract

Human verbal communications and dialogues always hide several
intentions and emotions.[1] Lots of research have been made in this
field regarding the English language. However, the French language
knows poor interests in this area. That’s why, we were highly inter-
ested in implementing a french language model able to add emotions
in generating sentences from a certain input of sentences. However,
this ultimate goal was difficult to reach in the given time slot. Hence,
in this report, we will be presenting the results we find regarding the
work made from scratch. Indeed, we first had to look for french data
on which the model can be based. We then proceed to a work of
parsing and cleaning of the huge amounts of data found. We then did
some basic statistical analysis on our data. We finally tried to test
a ”sequence to sequence” -hoping this can be integrated in a chat-
bot later- model on a small sample of our data to have an idea of the
”quality” of our data. In parallel with this work, we did some research
in order to test the validity of some potentially ”good” emotion dic-
tionaries. Indeed, we compared DeepMoji and LIWC dictionary and
found out that LIWC dictionary was performing very poorly. This
project is an ”optional project” at EPFL during the spring semester
2019 supervised by Dr. Pearl PU Faltings.

2

1 Introduction

Movie and TV subtitles constitute a pioneer resource for the compilation of
parallel corpora. Indeed, it is a resource full of information and rich of data
since it represents a huge panel of conversations that is very comparable to
our daily dialogues and conversations. From a linguistic perspective, subti-
tles cover a wide and interesting span of genres, from colloquial language or
slang to narrative and expository discourse (as in e.g. documentaries). Large
databases of subtitles are also available and continue to grow rapidly – for
instance, the Open-Subtitles database contains more than 3 million subtitles
in over 60 languages.[2]

The second section will focus on looking into the French Open-subtitles Data.
it is a wide source of data that we will parse and analyze. To begin, French
Open-subtitles Data is going to be parsed, cleaned and then analyzed.

In the third section right after, we will preprocess the data in order to train a
one turn natural language processing model on it (a model that can predict
one sentence given one sentence as input) -sequence to sequence in our case-.
We will briefly explain the model, go through our preprocessing and present
some results.

In the last section, we made some investigations/comparisons over existing
models that provides emotions.

3

2 French Opensubtitles Data

2.1 Overview of OpenSubtitles Data

The OpenSubtitles data is a compressed cluster of folders containing XML
files. Each XML file is split into a script portion with the subtitles of the
movie and a metadata portion with additional information about the movie
or show. The name of one of the parent folders of the XML file is the corre-
sponding IMDb identifier of the movie or show, thus allowing us to extract
additional information from the IMDb dataset.

The dataset consists of 66.5 GB (uncompressed) of XML files distributed
in the following file structure:

| ---- o p e n s u b t i t l e
| | ---- OpenSubt it les2018
| | | ---- Year
| | | | ---- Id
| | | | | ---- #######.xml . gz
| | | | | ---- #######.xml . gz
| | ---- en . ta r . gz
| | ---- f r . t a r . gz
| | ---- zhcn . ta r . gz

where:

• ‘‘ is a 6-digit unique identifier of the file on the OpenSubtitles dataset.

• Year‘ is the year the movie or episode was made.

• ‘Id‘ is a 5 to 7 digit identifier (if it’s 7-digit it’s also an IMDb identifier).

4

The subtitles are provided in different languages. In our work, we focus
on the french data. It is important to note that the decompressed XML files
vary in size, ranging from 5KB to 9000KB sized files.

Size 66.5 Gb
files 127204

tokens 791M
sentences 106.8M

Table 1: Basic stats on French Open-subtitles data

2.2 Description and Parsing of Data

As we said before each XML file is split into a ‘document‘ and ‘metadata‘
section. In our work, we don’t give much importance to the ‘metadata‘ part
so we will only focus on ‘document‘.

The ‘document‘ section contains all the subtitles and its general structure
is the following:

‘ ‘ ‘
| ---- s
| | ---- time : I n t eg e r
| | ---- w: S t r ing
‘ ‘ ‘

An example snippet of an XML file:

‘ ‘ ‘ xml
<s id=”1”>

<time id=”T1S” value =”00:00:51 ,819” />
<w id =”1.1”>Travis</w>
<w id =”1.2”>.</w>
<time id=”T1E” value =”00:00:53 ,352” />

</s>
‘ ‘ ‘

5

The subtitles in each XML file are stored by blocks denoted by ‘s‘ with a
unique ‘id‘ attribute (integers in increasing order starting at 1).

Each block (<s id=”1”> f o r i n s t ance) has a :

• Set of timestamps (denoted by ‘time‘) with

– A timestamp ‘id‘ attribute that can take two different formats:
‘T#S‘ or ‘T#E‘, where ˙S˙ indicates ˙start˙, ˙E˙ indicates ˙end˙
and ˙#˙ is an increasing integer.

– A ‘value‘ attribute which has the format ‘HH:mm:ss,fff‘.

• Set of words (denoted by ‘w‘) with:

– - an ‘id‘ attribute that is simply an increasing number of decimal
numbers of the format ‘X.Y‘ where X is the string id and Y is the
word id within the corresponding string

– a non-empty ‘value‘ attribute that contains a token: a word or a
punctuation character.

• It sometimes also has an ‘alternative‘, ‘initial‘ and ‘emphasis‘ attribute:

– The ‘initial‘ attribute generally corresponds to slang words or mis-
pronounced words because of an accent such as ‘lyin’‘ instead of
‘lying‘.

– The ‘alternative‘ attribute is another way of displaying the subtitle
for example ˙HOW˙ instead of ˙how˙.

– The ‘emphasis‘ attribute is a boolean.

6

2.3 Analysis on Data

While Parsing the data and transforming it into several txt files -each file
is a parsed movie file-. We Skipped a line every time a threshold on time
difference between two sentences was verified. This, somehow enabled us to
chunk the movie into ”Dialogues”. In order to define the threshold, we made
a big analysis on all the corpus. We studied the difference of timing between
each sentence on all movie files all together. Indeed, in order to complete
this task, we followed the procedure below :

• Loop over 66.5 GB of French Open-subtitles data.

• Parse all files and extract the desired timings: ∆ = sentencei[timestart]−
sentencei−1[timeend]

• Write the differences in a big txt file (1.6 GB)

• Perform the Analysis.

• Get the histogram of counts over the differences of time.

The following histogram shows us the count of these different ∆:

Figure 1: Distribution of ∆ between the occurrence of sentences

7

With the following quantiles:

Quantile Time
25% 1.564s
50% 2.6s
60% 3.33s
70% 4.525s
80% 6.673s
90% 11.43s

Table 2: Basic stats on French Open-subtitles data

So we chose to set 5s as a threshold for chunking our data. Indeed, this
threshold is going to be static for the hole xml files. We manually checked
the data and noticed that this threshold represent a promising bound to
chunk dialogues. Furthermore, at the end of each sentence, we add a token
< SEN > in order to understand that we have to go to the next line and
deal with the next sentence.
The following figures show us three samples of chunked and parsed French
Open-subtitles data:

8

Figure 2: Example of chunks

Figure 3: one chunk/dialogue

9

Figure 4: one chunk/dialogue

10

3 Sequence to sequence model

In this section, we will try to test somehow the ”quality” of our data by
training a sample of our data with the seq2seq model, in order to train the
model, we had to perform some preprocessing. Before digging into details,
let’s define what is the sequence to sequence model :

3.1 Definition

The Sequence to Sequence model (seq2seq) consists of two RNNs - an en-
coder and a decoder. The encoder reads the input sequence, word by word
and emits a context (a function of final hidden state of encoder), which
would ideally capture the essence (semantic summary) of the input sequence.
Based on this context, the decoder generates the output sequence, one word
at a time while looking at the context and the previous word during each
timestep. This is an oversimplification, but it gives an idea of what happens
in seq2seq.[3]

Figure 5: Encoder and Decoder RNNs

11

The context can be provided as the initial state of the decoder RNN or it
can be connected to the hidden units at each time step. Now our objective
is to jointly maximize the log probability of the output sequence conditioned
on the input sequence.[3]

3.2 Pre-processing and training

The sequence to sequence model was implemented in a way that made us per-
form some pre-processing before feeding it. First of all, we choose to partition
the sampled data -We train and test only on a sample of our data- into train/-
validation/test with the following respective percentages 80%/10%/10%.

‘ ‘ ‘
| ---- Open S u b t i t l e s data

| ---- t a r g e t . npy
| ----encoder input . npy

| | ---- t r a i n | ----decoder input . npy
| | ---- e n c l e n . npy
| | ----d e c l e n . npy
| | ---- v a l i d a t i o n : same a r c h i t e c t u r e as t r a i n
| | ---- t e s t : same a r c h i t e c t u r e as t r a i n
| | ---- token2id . p i c k l e
| | ---- id2token . p i c k l e
‘ ‘ ‘

Let’s describe these files :

• target.npy: each line of this file contains the sentence target in the form
of consecutive numbers referring to words that form the sentence (using
our dictionary of vocabulary mappings) ending with SEN integer id to
show the end of the sentence

• encoder˙input.npy: each line of this file contains the input sentence
in the form of consecutive numbers referring to words that form the
sentence (using same dictionary of vocabulary mappings).

• decoder˙input.npy: same as target.npy except it doesn’t finish by SEN
token. Instead, it begins by a special token GO that indicates the
beginning of decoding.

12

• enc˙len.npy: this is a list where each element is the length of the input
sentences in order.

• dec˙len.npy: this is a list where each element is the length of the tar-
get/decoder sentences in order.

• token2id.pickle: dictionary with word tokens as keys and integers as
ids.

• id2token.pickle: inverse keys/values of token2id.

Our model is a single-turn sequence to sequence model. It uses SGD
with Adam optimizer in learning the weights. The perplexity loss is used for
validation.

The sample we chose to train/validate/test our model is:

• 55 parsed movie files randomly chosen

• Number of words: 328169

• Number of sentences: 41176

• Size of vocabulary of words: 10000

• tensor-flow randomly initialized word embedding

Once we merge all movie files in one big txt file. Our encoder/decoder inputs
will have the following look:
encoder, decoder:
line1, line2
line2, line3
line3, line4
line6, line7
etc, etc
etc, etc

After preprocessing it, we run the training. The following graph shows us
the decreasing training loss and validation-loss :

13

Figure 6: Training and validation loss over epochs

• the training loss decreases from 9 to 2

• the perplexity loss gets optimal to 29 within 13 epochs

3.3 Testing the model

The following table shows the query (the input sentence), the target and the
prediction of our seq2seq model.

Query Target Prediction
vers la gauche pour défiler escadron , en avant très bien .

pardonne-moi,helen . je voulais prendre le risque de te revoir . ce n’est rien .
vous allez bien,mlle ” flammèche ” ? je pensais au baron . pas compris .

ensuite,nous leur ferons une surprise . leur chef n’est pas avec eux . elle est vivante .
il te faut quelqu’un comme moi . quelqu’un de ton âge . quelqu’un qui sache comment ... te rendre heureuse . je suis si heureuse .

on regretterait d’avoir été raisonnables et d’avoir attendu . qu’y a-t-il de si agréable dans l’attente ? ce n’est rien .

Table 3: Examples of queries and their targets/our model predictions

14

We notice that there are some cases where the model works slight okay
but others where the response doesn’t really make any meaningful sens.

4 Comparison between DeepMoji and LIWC

Having an emotional dictionary can be very important if we want to imple-
ment a model that uses en emotional layer in its predictions. Despite the
fact that we are working on french data, we looked for English emotional
dictionaries since it is much easy to find and also more trustworthy. A work
of translation can be done on the English dictionary into French in order to
translate sentences to its coherent emotion. First, we tested LIWC dictio-
nary which is very known but seems to work poorly -”I am not angry” is
considered to express angriness-, so we looked for an other more powerful
emotional dictionary.
DeepMoji is a model trained on tweets and emojis. For each given sentence,
DeepMoji gives a list of emojis expressing the embedded emotions of the
sentence with confidence levels. The following chart shows us how DeepMoji
is far way better than LIWC. [4]

Figure 7: Comparison of LIWC and DeepMoji emotional dictionaries

So we notice that DeepMoji is indeed better than LWIC. In fact, Deep-
Moji detects emotions (explicitly or implicitly), it also detects sarcasm and
other ”difficult-to-detect” emotions.

15

5 Conclusion

During this research project, several interesting topics were covered, from
parsing/cleaning/searching for data to the discovery of the field of NLP and
its powerful algorithms and tools. Besides the data cleaning and preprocess-
ing part, language models with NLP neural network models and its use cases
in chatbots were deeply studied through several papers.

Last but not least, working on french data is very interesting. Indeed, the
way we deal with french data changes slightly compared to English data.
Since data had been parsed, cleaned and analyzed. further work would be
to train/tweak and improve the model on a sample first and then on the
hole data using a cluster. Once this work done, what can be interesting is
adding the emotion Layer using DeepMoji. Since DeepMoji only exists in
English, a proposition would be to translate french sentence to English and
get the output emotion of it in order to create a french emotional dictionary
to be added to be integrated as a layer in the language model with the aim
of detecting emotions.

16

References

[1] Sayan Ghosh, Mathieu Chollet, Eugene Laksana, Louis-Philippe
Morency, Stefan Scherer, ”Affect-LM: A Neural Language Model for Cus-
tomizable Affective Text Generation”

[2] Pierre Lison, Jorg Tiedemann, ”OpenSubtitles2016: Extracting Large
Parallel Corpora from Movie and TV Subtitles”

[3] Oriol Vinyals @Google, Quoc V. Le @Google, ”A Neural Conversational
Model”

[4] Bjarke Felbo, Alan Mislove, Anders Søgaard, Iyad Rahwan, Sune
Lehmann, ”Using millions of emoji occurrences to learn any-domain rep-
resentations for detecting sentiment, emotion and sarcasm” @MIT

17

	Introduction
	French Opensubtitles Data
	Overview of OpenSubtitles Data
	Description and Parsing of Data
	Analysis on Data

	Sequence to sequence model
	Definition
	Pre-processing and training
	Testing the model

	Comparison between DeepMoji and LIWC
	Conclusion

