Publications

2020

Proton-transfer-induced 3D/2D hybrid perovskites suppress ion migration and reduce luminance overshoot

H. Kim; J. S. Kim; J-M. Heo; M. Pei; I-H. Park et al. 

Nature Communications. 2020-07-06. Vol. 11, num. 1, p. 3378. DOI : 10.1038/s41467-020-17072-0.

Passivation Mechanism Exploiting Surface Dipoles Affords High-Performance Perovskite Solar Cells

F. Ansari; E. Shirzadi; M. Salavati-Niasari; T. LaGrange; K. Nonomura et al. 

Journal Of The American Chemical Society. 2020-07-01. Vol. 142, num. 26, p. 11428-11433. DOI : 10.1021/jacs.0c01704.

Co-evaporation as an optimal technique towards compact methylammonium bismuth iodide layers

M. C. Momblona Rincón; H. Kanda; A. A. Sutanto; M. Mensi; C. Roldán Carmona et al. 

Scientific Reports. 2020-06-30. Vol. 10, num. 1. DOI : 10.1038/s41598-020-67606-1.

D-pi-A-Type Triazatruxene-Based Dopant-Free Hole Transporting Materials for Efficient and Stable Perovskite Solar Cells

C. Igci; S. Paek; K. Rakstys; H. Kanda; N. Shibayama et al. 

Solar Rrl. 2020-06-16.  p. 2000173. DOI : 10.1002/solr.202000173.

Detection of voltage pulse width effect on charge accumulation in PSCs EFISHG measurement

Z. Ahmad; D. Taguchi; S. Paek; A. Mishra; J. Bhadra et al. 

Results In Physics. 2020-06-01. Vol. 17, p. 103063. DOI : 10.1016/j.rinp.2020.103063.

Spatial Charge Separation as the Origin of Anomalous Stark Effect in Fluorous 2D Hybrid Perovskites

V. I. E. Queloz; M. E. F. Bouduban; I. Garcia-Benito; A. Fedorovskiy; S. Orlandi et al. 

Advanced Functional Materials. 2020-05-28.  p. 2000228. DOI : 10.1002/adfm.202000228.

Principal Descriptors of Ionic Liquid Co-catalysts for the Electrochemical Reduction of CO2

D. V. Vasilyev; S. Shyshkanov; E. Shirzadi; S. A. Katsyuba; M. K. Nazeeruddin et al. 

Acs Applied Energy Materials. 2020-05-26. Vol. 3, num. 5, p. 4690-4698. DOI : 10.1021/acsaem.0c00330.

Tapered Cross-Section Photoelectron Spectroscopy of State-of-the-Art Mixed Ion Perovskite Solar Cells: Band Bending Profile in the Dark, Photopotential Profile Under Open Circuit Illumination, and Band Diagram

M. Wussler; T. Mayer; C. Das; E. Mankel; T. Hellmann et al. 

Advanced Functional Materials. 2020-05-18.  p. 1910679. DOI : 10.1002/adfm.201910679.

A cost-device efficiency balanced spiro based hole transport material for perovskite solar cells

L. Hajikhanmirzaei; H. Shahroosvand; B. Pashaei; G. Delle Monache; M. K. Nazeeruddin et al. 

Journal Of Materials Chemistry C. 2020-05-14. Vol. 8, num. 18, p. 6221-6227. DOI : 10.1039/d0tc00196a.

Zero-dimensional hybrid iodobismuthate derivatives: from structure study to photovoltaic application

Y. Zhang; F. Fadaei Tirani; P. Pattison; K. Schenk-Joss; Z. Xiao et al. 

Dalton Transactions. 2020-05-14. Vol. 49, num. 18, p. 5815-5822. DOI : 10.1039/d0dt00015a.

Inkjet-Printed TiO2/Fullerene Composite Films for Planar Perovskite Solar Cells

A. J. Huckaba; I. Garcia-Benito; H. Kanda; N. Shibayama; E. Oveisi et al. 

Helvetica Chimica Acta. 2020-05-07. DOI : 10.1002/hlca.202000044.

Carbazole-Terminated Isomeric Hole-Transporting Materials for Perovskite Solar Cells

K. Rakstys; S. Paek; A. Drevilkauskaite; H. Kanda; S. Daskeviciute et al. 

Acs Applied Materials & Interfaces. 2020-04-29. Vol. 12, num. 17, p. 19710-19717. DOI : 10.1021/acsami.9b23495.

A hysteresis-free perovskite transistor with exceptional stability through molecular cross-linking and amine-based surface passivation

H. P. Kim; M. Vasilopoulou; H. Ullah; S. Bibi; A. E. X. Gavim et al. 

Nanoscale. 2020-04-14. Vol. 12, num. 14, p. 7641-7650. DOI : 10.1039/c9nr10745b.

Band-bending induced passivation: high performance and stable perovskite solar cells using a perhydropoly(silazane) precursor

H. Kanda; N. Shibayama; A. J. Huckaba; Y. Lee; S. Paek et al. 

Energy & Environmental Science. 2020-04-01. Vol. 13, num. 4, p. 1222-1230. DOI : 10.1039/c9ee02028d.

Self-Crystallized Multifunctional 2D Perovskite for Efficient and Stable Perovskite Solar Cells

H. Kim; M. Pei; Y. Lee; A. A. Sutanto; S. Paek et al. 

Advanced Functional Materials. 2020-03-11.  p. 1910620. DOI : 10.1002/adfm.201910620.

Dynamical evolution of the 2D/3D interface: a hidden driver behind perovskite solar cell instability

A. A. Sutanto; N. Drigo; V. I. E. Queloz; I. Garcia-Benito; A. R. Kirmani et al. 

Journal Of Materials Chemistry A. 2020-02-07. Vol. 8, num. 5, p. 2343-2348. DOI : 10.1039/c9ta12489f.

Minimization of Carrier Losses for Efficient Perovskite Solar Cells through Structural Modification of Triphenylamine Derivatives

C. Rodriguez-Seco; M. Mendez; C. Roldan-Carmona; R. Pudi; M. Khaja Nazeeruddin et al. 

Angewandte Chemie-International Edition. 2020-02-07. DOI : 10.1002/anie.201915022.

Increasing efficiency of perovskite solar cells using low concentrating photovoltaic systems

H. Baig; H. Kanda; A. M. Asiri; M. K. Nazeeruddin; T. Mallick 

Sustainable Energy & Fuels. 2020-02-01. Vol. 4, num. 2, p. 528-537. DOI : 10.1039/c9se00550a.

Doped but Stable: Spirobisacridine Hole Transporting Materials for Hysteresis-Free and Stable Perovskite Solar Cells

N. Drigo; C. Roldan-Carmona; M. Franckevicius; K-H. Lin; R. Gegevicius et al. 

Journal Of The American Chemical Society. 2020-01-29. Vol. 142, num. 4A, p. 1792-1800. DOI : 10.1021/jacs.9b07166.

Consensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS procedures

M. V. Khenkin; E. A. Katz; A. Abate; G. Bardizza; J. J. Berry et al. 

Nature Energy. 2020-01-01. Vol. 5, num. 1, p. 35-49. DOI : 10.1038/s41560-019-0529-5.

CuSCN as Hole Transport Material with 3D/2D Perovskite Solar Cells

V. E. Madhavan; I. Zimmermann; A. A. B. Baloch; A. Manekkathodi; A. Belaidi et al. 

Acs Applied Energy Materials. 2020-01-01. Vol. 3, num. 1, p. 114-121. DOI : 10.1021/acsaem.9b01692.

2019

Introduction of a Bifunctional Cation Affords Perovskite Solar Cells Stable at Temperatures Exceeding 80 degrees C

E. Shirzadi; A. Mahata; C. R. Carmona; F. De Angelis; P. J. Dyson et al. 

Acs Energy Letters. 2019-12-01. Vol. 4, num. 12, p. 2989-2994. DOI : 10.1021/acsenergylett.9b01975.

Getting the Right Twist: Influence of Donor-Acceptor Dihedral Angle on Exciton Kinetics and Singlet-Triplet Gap in Deep Blue Thermally Activated Delayed Fluorescence Emitter

S. Weissenseel; N. A. Drigo; L. G. Kudriashova; M. Schmid; T. Morgenstern et al. 

Journal Of Physical Chemistry C. 2019-11-14. Vol. 123, num. 45, p. 27778-27784. DOI : 10.1021/acs.jpcc.9b08269.

Dimensionally Engineered Perovskite Heterostructure for Photovoltaic and Optoelectronic Applications

S. Heo; G. Seo; K. T. Cho; Y. Lee; S. Paek et al. 

Advanced Energy Materials. 2019-10-30.  p. 1902470. DOI : 10.1002/aenm.201902470.

Synthesis of Pure Brookite Nanorods in a Nonaqueous Growth Environment

M. Hezam; S. M. H. Qaid; I. M. Bedja; F. Alharbi; M. K. Nazeeruddin et al. 

Crystals. 2019-10-26. Vol. 9, num. 11, p. 562. DOI : 10.3390/cryst9110562.

A sequential condensation route as a versatile platform for low cost and efficient hole transport materials in perovskite solar cells

B. Pashaei; H. Shahroosvand; M. Ameri; E. Mohajerani; M. K. Nazeeruddin 

Journal of Materials Chemistry A. 2019-10-14. Vol. 7, num. 38, p. 21867-21873. DOI : 10.1039/c9ta05121j.

Spiro-bifluorene core based hole transporting material with graphene oxide modified CH3NH3PbI3 for inverted planar heterojunction solar cells

S. Ameen; M. S. Akhtar; M. Nazim; E-B. Kim; M. K. Nazeeruddin et al. 

Electrochimica Acta. 2019-10-01. Vol. 319, p. 885-894. DOI : 10.1016/j.electacta.2019.07.031.

Crystal Orientation Drives the Interface Physics at Two/Three-Dimensional Hybrid Perovskites

M. E. F. Bouduban; V. I. E. Queloz; V. M. Caselli; K. T. Cho; A. R. Kirmani et al. 

The Journal of Physical Chemistry Letters. 2019-09-11. Vol. 10, p. 5713-5720. DOI : 10.1021/acs.jpclett.9b02224.

Multiarm and Substituent Effects on Charge Transport of Organic Hole Transport Materials

K-H. Lin; A. Prlj; L. Yao; N. Drigo; H-H. Cho et al. 

Chemistry of Materials. 2019-09-10. Vol. 31, num. 17, p. 6605-6614. DOI : 10.1021/acs.chemmater.9b00438.

Enhanced Interfacial Binding and Electron Extraction Using Boron-Doped TiO2 for Highly Efficient Hysteresis-Free Perovskite Solar Cells

X. Shi; Y. Ding; S. Zhou; B. Zhang; M. Cai et al. 

Advanced Science. 2019-09-10.  p. 1901213. DOI : 10.1002/advs.201901213.

Perovskite Solar Cells: 18% Efficiency Using Zn(II) and Cu(II) Octakis(diarylamine)phthalocyanines as Hole-Transporting Materials

K. T. Cho; M. Cavazzini; K. Rakstys; S. Orlandi; S. Paek et al. 

ACS Applied Energy Materials. 2019-09-01. Vol. 2, num. 9, p. 6195-6199. DOI : 10.1021/acsaem.9b00637.

Inexpensive Hole-Transporting Materials Derived from Troger’s Base Afford Efficient and Stable Perovskite Solar Cells

T. Braukyla; R. Xia; M. Daskeviciene; T. Malinauskas; A. Gruodis et al. 

Angewandte Chemie-International Edition. 2019-08-12. Vol. 58, num. 33, p. 11266-11272. DOI : 10.1002/anie.201903705.

Preserving Porosity of Mesoporous Metal-Organic Frameworks through the Introduction of Polymer Guests

L. Peng; S. Yang; S. Jawahery; S. M. Moosavi; A. J. Huckaba et al. 

Journal of the American Chemical Society. 2019-08-07. Vol. 141, num. 31, p. 12397-12405. DOI : 10.1021/jacs.9b05967.

Micellization behavior of bile salt with pluronic (F-127) and synthesis of silver nanoparticles in a mixed system

M. A. Rub; N. Azum; A. M. Asiri; A. Khan; K. A. Alamry et al. 

Journal Of Physical Organic Chemistry. 2019-08-01. Vol. 32, num. 8, p. e3964. DOI : 10.1002/poc.3964.

Efficiency vs. stability: dopant-free hole transporting materials towards stabilized perovskite solar cells

K. Rakstys; C. Igci; M. K. Nazeeruddin 

Chemical Science. 2019-07-28. Vol. 10, num. 28, p. 6748-6769. DOI : 10.1039/c9sc01184f.

Application of a Tetra-TPD-Type Hole-Transporting Material Fused by a Troger’s Base Core in Perovskite Solar Cells

T. Braukyla; R. Xia; T. Malinauskas; M. Daskeviciene; A. Magomedov et al. 

Solar Rrl. 2019-07-22. DOI : 10.1002/solr.201900224.

Stable perovskite solar cells using tin acetylacetonate based electron transporting layers

M. Abuhelaiqa; S. Paek; Y. Lee; K. T. Cho; S. Heo et al. 

Energy & Environmental Science. 2019-06-01. Vol. 12, num. 6, p. 1910-1917. DOI : 10.1039/c9ee00453j.

Copper sulfide nanoparticles as hole-transporting-material in a fully-inorganic blocking layers n-i-p perovskite solar cells: Application and working insights

J. Tirado; C. Roldan-Carmona; F. A. Munoz-Guerrero; G. Bonilla-Arboleda; M. Ralaiarisoa et al. 

Applied Surface Science. 2019-06-01. Vol. 478, p. 607-614. DOI : 10.1016/j.apsusc.2019.01.289.

Retarding Thermal Degradation in Hybrid Perovskites by Ionic Liquid Additives

R. Xia; Z. Fei; N. Drigo; F. D. Bobbink; Z. Huang et al. 

Advanced Functional Materials. 2019-05-01. Vol. 29, num. 22, p. 1902021. DOI : 10.1002/adfm.201902021.

Saddle-like, π-conjugated, cyclooctatetrathiophene-based, hole-transporting material for perovskite solar cells

J. Urieta-Mora; I. García-Benito; I. Zimmermann; J. Aragó; J. Calbo et al. 

Journal of Materials Chemistry C. 2019-04-18. num. 22, p. 6656-6663. DOI : 10.1039/C9TC00437H.

Improved efficiency and reduced hysteresis in ultra-stable fully printable mesoscopic perovskite solar cells through incorporation of CuSCN into the perovskite layer

I. Zimmermann; P. Gratia; D. Martineau; G. Grancini; J-N. Audinot et al. 

Journal Of Materials Chemistry A. 2019-04-14. Vol. 7, num. 14, p. 8073-8077. DOI : 10.1039/c9ta00669a.

Auto-passivation of crystal defects in hybrid imidazolium/methylammonium lead iodide films by fumigation with methylamine affords high efficiency perovskite solar cells

Y. Zhang; G. Grancini; Z. Fei; E. Shirzadi; X. Liu et al. 

Nano Energy. 2019-04-01. Vol. 58, p. 105-111. DOI : 10.1016/j.nanoen.2019.01.027.

Non‐Planar and Flexible Hole‐Transporting Materials from Bis‐Xanthene and Bis‐Thioxanthene Units for Perovskite Solar Cells

J. Urieta‐Mora; I. García‐Benito; I. Zimmermann; J. Aragó; P. D. García‐Fernández et al. 

Helvetica Chimica Acta. 2019-03-08. Vol. 102, num. 4, p. e1900056. DOI : 10.1002/hlca.201900056.

Molecular engineering of enamine-based small organic compounds as hole-transporting materials for perovskite solar cells

M. Daskeviciene; S. Paek; A. Magomedov; K. T. Cho; M. Saliba et al. 

Journal Of Materials Chemistry C. 2019-03-07. Vol. 7, num. 9, p. 2717-2724. DOI : 10.1039/c8tc06297h.

Stability in 3D and 2D/3D hybrid perovskite solar cells studied by EFISHG and IS techniques under light and heat soaking

Z. Ahmad; T. Noma; S. Paek; K. T. Cho; D. Taguchi et al. 

Organic Electronics. 2019-03-01. Vol. 66, p. 7-12. DOI : 10.1016/j.orgel.2018.12.009.

Origins of High Performance and Degradation in the Mixed Perovskite Solar Cells

S. Heo; G. Seo; Y. Lee; M. Seol; S. H. Kim et al. 

Advanced Materials. 2019-02-22. Vol. 31, num. 8, p. 1805438. DOI : 10.1002/adma.201805438.

Mixed Dimensional 2D/3D Hybrid Perovskite Absorbers: The Future of Perovskite Solar Cells?

A. Krishna; S. Gottis; M. K. Nazeeruddin; F. Sauvage 

Advanced Functional Materials. 2019-02-21. Vol. 29, num. 8, p. 1806482. DOI : 10.1002/adfm.201806482.

Inkjet-Printed Mesoporous TiO2 and Perovskite Layers for High Efficiency Perovskite Solar Cells

A. J. Huckaba; Y. Lee; R. Xia; S. Paek; V. C. Bassetto et al. 

Energy Technology. 2019-02-01. Vol. 7, num. 2, p. 317-324. DOI : 10.1002/ente.201800905.

Effect of annealing temperature on the performance of printable carbon electrodes for perovskite solar cells

A. Mishra; Z. Ahmad; I. Zimmermann; D. Martineau; R. A. Shakoor et al. 

Organic Electronics. 2019-02-01. Vol. 65, p. 375-380. DOI : 10.1016/j.orgel.2018.11.046.

In-situ cross-linkable hole transporting triazatruxene monomers for optoelectronic devicestr

K. Rakstys; A. Huckaba; M. K. Nazeeruddin 

EP3489240.

2019.

Optoelectronic device comprising guanidinium in the organic-inorganic perovskite

A. Z. D. Jodlowski; C. Roldan Carmona; G. De Miguel Rojas; L. Camacho Delgado; M. K. Nazeeruddin 

WO2019097087; EP3486960.

2019.

One-dimensional facile growth of MAPbI(3) perovskite micro-rods

A. Mishra; Z. Ahmad; F. Touati; R. A. Shakoor; M. K. Nazeeruddin 

Rsc Advances. 2019-01-01. Vol. 9, num. 20, p. 11589-11594. DOI : 10.1039/c9ra00200f.

Degradation analysis in mixed (MAPbI(3) and MAPbBr(3)) perovskite solar cells under thermal stress

Z. Ahmad; A. S. Shikoh; S. Paek; M. K. Nazeeruddin; S. A. Al-Muhtaseb et al. 

Journal Of Materials Science-Materials In Electronics. 2019-01-01. Vol. 30, num. 2, p. 1354-1359. DOI : 10.1007/s10854-018-0403-4.

Dimensional tailoring of hybrid perovskites for photovoltaics

G. Grancini; M. K. Nazeeruddin 

Nature Reviews Materials. 2019-01-01. Vol. 4, num. 1, p. 4-22. DOI : 10.1038/s41578-018-0065-0.

2018

A new cross-linkable 9,10-diphenylanthracene derivative as a wide bandgap host for solution-processed organic light-emitting diodes

R. K. Hallani; V. Fallah Hamidabadi; A. J. Huckaba; G. Galliani; A. Babaei et al. 

Journal Of Materials Chemistry C. 2018-12-21. Vol. 6, num. 47, p. 12948-12954. DOI : 10.1039/c8tc05013a.

Highly efficient planar perovskite solar cells achieved by simultaneous defect engineering and formation kinetic control

J. Cheng; H. Zhang; S. Zhang; D. Ouyang; Z. Huang et al. 

Journal Of Materials Chemistry A. 2018-12-14. Vol. 6, num. 46, p. 23865-23874. DOI : 10.1039/c8ta08819e.

Pushing the limit of Cs incorporation into FAPbBr3 perovskite to enhance solar cells performances

A. A. Sutanto; V. I. E. Queloz; I. Garcia-Benito; K. Laasonen; B. Smit et al. 

APL Materials. 2018-12-13. Vol. 7, num. 4, p. 041110. DOI : 10.1063/1.5087246.

Analysis of Photocarrier Dynamics at Interfaces in Perovskite Solar Cells by Time-Resolved Photoluminescence

A. A. B. Baloch; F. H. Alharbi; G. Grancini; M. I. Hossain; M. K. Nazeeruddin et al. 

Journal Of Physical Chemistry C. 2018-11-29. Vol. 122, num. 47, p. 26805-26815. DOI : 10.1021/acs.jpcc.8b07069.

Dimensionality engineering of hybrid halide perovskite light absorbers

P. Gao; A. R. B. M. Yusoff; M. K. Nazeeruddin 

Nature Communications. 2018-11-28. Vol. 9, p. 5028. DOI : 10.1038/s41467-018-07382-9.

Fashioning Fluorous Organic Spacers for Tunable and Stable Layered Hybrid Perovskites

I. García-Benito; C. Quarti; V. I. E. Queloz; S. Orlandi; I. Zimmermann et al. 

Chemistry of Materials. 2018-10-31. Vol. 30, num. 22, p. 8211-8220. DOI : 10.1021/acs.chemmater.8b03377.

Solution processed organic light-emitting diodes using a triazatruxene crosslinkable hole transporting material

A. Babaei; K. Rakstys; S. Guelen; V. Fallah Hamidabadi; M-G. La-Placa et al. 

RSC Advances. 2018-10-30. Vol. 8, num. 62, p. 35719-35723. DOI : 10.1039/C8RA07184E.

Inkjet-​printed mesoporous TiO2 and perovskite layers for high efficiency perovskite solar cells

A. Huckaba; Y. Lee; R. Xia; S. Paek; V. Costa Bassetto et al. 

ChemRxiv. 2018-10-29. DOI : 10.26434/chemrxiv.7127066.v1.

Low-Dimensional Perovskites: From Synthesis to Stability in Perovskite Solar Cells

A. R. b. M. Yusoff; M. K. Nazeeruddin 

Advanced Energy Materials. 2018-10-23. Vol. 8, num. 26, p. 1702073. DOI : 10.1002/aenm.201702073.

Picosecond Capture of Photoexcited Electrons Improves Photovoltaic Conversion in MAPbI3 :C70 -Doped Planar and Mesoporous Solar Cells

S. Gharibzadeh; F. Valduga de Almeida Camargo; C. Roldán-Carmona; G. C. Gschwend; J. Pascual et al. 

Advanced Materials. 2018-10-12. Vol. 30, num. 40, p. 1801496. DOI : 10.1002/adma.201801496.

Photophysics of Deep Blue Acridane- and Benzonitrile-Based Emitter Employing Thermally Activated Delayed Fluorescence

N. A. Drigo; L. G. Kudriashova; S. Weissenseel; A. Sperlich; A. J. Huckaba et al. 

Journal Of Physical Chemistry C. 2018-10-04. Vol. 122, num. 39, p. 22796-22801. DOI : 10.1021/acs.jpcc.8b08716.

Design of cyclopentadithiophene-based small organic molecules as hole selective layers for perovskite solar cells

L. Calio; S. Kazim; M. Salado; I. Zimmermann; M. K. Nazeeruddin et al. 

Sustainable Energy & Fuels. 2018-10-01. Vol. 2, num. 10, p. 2179-2186. DOI : 10.1039/c8se00119g.

All that glitters is not gold: Recent progress of alternative counter electrodes for perovskite solar cells

L. Liang; Y. Cai; X. Li; M. K. Nazeeruddin; P. Gao 

Nano Energy. 2018-09-21. Vol. 52, p. 211-238. DOI : 10.1016/j.nanoen.2018.07.049.

Pyridination of hole transporting material in perovskite solar cells questions the long-term stability

A. Magomedov; E. Kasparavicius; K. Rakstys; S. Paek; N. Gasilova et al. 

Journal Of Materials Chemistry C. 2018-09-07. Vol. 6, num. 33, p. 8874-8878. DOI : 10.1039/c8tc02242a.

Hole transporting organic molecules containing enamine groups for optoelectronic and photoelectrochemical devices

V. Getautis; M. Daskeviciene; T. Malinauskas; K. M. Nazeeruddin; S. Paek et al. 

JP2019530746; CN110167911; EP3515884; US2019229272; WO2018051278; LT6540; WO2018051278; LT2016515; WO2018051278.

2018-08-24.

Water-Repellent Low-Dimensional Fluorous Perovskite as Interfacial Coating for 20% Efficient Solar Cells

K. T. Cho; Y. Zhang; S. Orlandi; M. Cavazzini; I. Zimmermann et al. 

Nano Letters. 2018-08-22. Vol. 18, num. 9, p. 5467-5474. DOI : 10.1021/acs.nanolett.8b01863.

Tetrathienoanthracene and Tetrathienylbenzene Derivatives as Hole-Transporting Materials for Perovskite Solar Cell

D. E. M. Rojas; K. T. Cho; Y. Zhang; M. Urbani; N. Tabet et al. 

Advanced Energy Materials. 2018-08-17. Vol. 8, num. 25, p. 1800681. DOI : 10.1002/aenm.201800681.

Efficient Planar Perovskite Solar Cells Using Passivated Tin Oxide as an Electron Transport Layer

Y. Lee; S. Lee; G. Seo; S. Paek; A. J. Huckaba et al. 

Advanced Science. 2018-08-10. Vol. 5, num. 6, p. 1800130. DOI : 10.1002/advs.201800130.

Selective growth of layered perovskites for stable and efficient photovoltaics

K. T. Cho; G. Grancini; Y. Lee; E. Oveisi; J. Ryu et al. 

Energy and Environmental Science. 2018-08-04. Vol. 11, num. 4, p. 952-959. DOI : 10.1039/c7ee03513f.

A newly developed lithium cobalt oxide super hydrophilic film for large area, thermally stable and highly efficient inverted perovskite solar cells

C-H. Chiang; C-C. Chen; M. K. Nazeeruddin; C-G. Wu 

Journal of Materials Chemistry A: Materials for Energy and Sustainability. 2018-08-03. Vol. 6, num. 28, p. 13751-13760. DOI : 10.1039/c8ta05264f.

A Facile Preparative Route of Nanoscale Perovskites over Mesoporous Metal Oxide Films and Their Applications to Photosensitizers and Light Emitters

H. J. Lee; K. T. Cho; S. Paek; Y. Lee; A. J. Huckaba et al. 

Advanced Functional Materials. 2018-08-01.  p. 1803801. DOI : 10.1002/adfm.201803801.

Unsymmetrical and Symmetrical Zn(II) Phthalocyanines as Hole-Transporting Materials for Perovskite Solar Cells

Y. Zhang; S. Paek; M. Urbani; M. Medel; I. Zimmermann et al. 

ACS Applied Energy Materials. 2018-07-27. Vol. 1, num. 6, p. 2399-2404. DOI : 10.1021/acsaem.8b00425.

Heteroatom Effect on Star-Shaped Hole-Transporting Materials for Perovskite Solar Cells

I. García-Benito; I. Zimmermann; J. Urieta-Mora; J. Aragó; J. Calbo et al. 

Advanced Functional Materials. 2018-07-27. Vol. 28, num. 31, p. 1801734. DOI : 10.1002/adfm.201801734.

Surface passivation of perovskite layers using heterocyclic halides: Improved photovoltaic properties and intrinsic stability

M. Salado; A. D. Jodlowski; C. Roldan-Carmona; G. de Miguel; S. Kazim et al. 

Nano Energy. 2018-07-20. Vol. 50, p. 220-228. DOI : 10.1016/j.nanoen.2018.05.035.

Stable perovskite solar cells using thiazolo [5,4-d]thiazole-core containing hole transporting material

S. Ameen; M. S. Akhtar; M. Nazim; M. K. Nazeeruddin; H-S. Shin 

Nano Energy. 2018-07-01. Vol. 49, p. 372-379. DOI : 10.1016/j.nanoen.2018.04.016.

Frontiers, opportunities, and challenges in perovskite solar cells: A critical review

M. I. H. Ansari; A. Qurashi; M. K. Nazeeruddin 

Journal Of Photochemistry And Photobiology C-Photochemistry Reviews. 2018-06-01. Vol. 35, p. 1-24. DOI : 10.1016/j.jphotochemrev.2017.11.002.

Discerning recombination mechanisms and ideality factors through impedance analysis of high-efficiency perovskite solar cells

O. Almora; K. T. Cho; S. Aghazada; I. Zimmermann; G. J. Matt et al. 

Nano Energy. 2018-06-01. Vol. 48, p. 63-72. DOI : 10.1016/j.nanoen.2018.03.042.

Low-Cost TiS2 as Hole-Transport Material for Perovskite Solar Cells

A. J. Huckaba; S. Gharibzadeh; M. Ralaiarisoa; C. Roldán-Carmona; N. Mohammadian et al. 

Small Methods. 2018-06-01. Vol. 1, num. 10, p. 1700250. DOI : 10.1002/smtd.201700250.

Trash into Treasure: δ-FAPbI3 Polymorph Stabilized MAPbI3 Perovskite with Power Conversion Efficiency beyond 21%

Y. Zhang; Z. Zhou; F. Ji; Z. Li; G. Cui et al. 

Advanced Materials. 2018-05-29. Vol. 30, num. 22, p. 1707143. DOI : 10.1002/adma.201707143.

Hole transporting materials based on benzodithiophene and dithienopyrrole cores for efficient perovskite solar cells

R. Sandoval-Torrientes; I. Zimmermann; J. Calbo; J. Aragó; J. Santos et al. 

Journal of Materials Chemistry. 2018-05-25. Vol. A6, num. 14, p. 5944-5951. DOI : 10.1039/C7TA11314E.

Photo-induced dynamic processes in perovskite solar cells: the influence of perovskite composition in the charge extraction and the carrier recombination

N. F. Montcada; M. Méndez; K. T. Cho; M. K. Nazeeruddin; E. Palomares 

Nanoscale. 2018-05-18. Vol. 10, num. 13, p. 6155-6158. DOI : 10.1039/C8NR00180D.

Dispiro-​oxepine​/thiapine derivatives for optoelectronic semiconductors

K. Rakstys; S. Paek; M. Sohail; K. H. Damen; M. K. Nazeeruddin 

US2019334092; EP3481833; EP3481833; WO2018009771.

2018-04-13.

Recent progress in organohalide lead perovskites for photovoltaic and optoelectronic applications

A. R. B. Mohd Yusoff; P. Gao; M. K. Nazeeruddin 

Coordination Chemistry Reviews. 2018-03-29. Vol. 373, p. 258-294. DOI : 10.1016/j.ccr.2017.10.021.

Intercalation makes the difference with TiS2: Boosting electrocatalytic water oxidation activity through Co intercalation

A. J. Huckaba; M. Ralaiarisoa; K. T. Cho; E. Oveisi; N. Koch et al. 

Journal of Materials Research. 2018-03-14. Vol. 33, num. 5, p. 528-537. DOI : 10.1557/jmr.2017.431.

Charge-Transporting Materials for Perovskite Solar Cells

S. Ameen; M. S. Akhtar; H-S. Shin; M. K. Nazeeruddin 

Materials For Sustainable Energy. 2018-01-01. Vol. 72, p. 185-246. DOI : 10.1016/bs.adioch.2018.05.009.

Tuning electronic structures of thiazolo [5,4-d] thiazole-based hole-transporting materials for efficient perovskite solar cells

M. Nazim; S. Ameen; M. Akhtar; M. Nazeeruddin; H. Shin 

SOLAR ENERGY MATERIALS AND SOLAR CELLS. 2018. Vol. 180, p. 334-342. DOI : 10.1016/j.solmat.2017.07.016.

Ruthenium Complexes as Sensitizers in Dye-Sensitized Solar Cells

S. Aghazada; M. Nazeeruddin 

INORGANICS. 2018. Vol. 6, num. 2, p. 52. DOI : 10.3390/inorganics6020052.

Metal-Halide Perovskites for Gate Dielectrics in Field-Effect Transistors and Photodetectors Enabled by PMMA Lift-Off Process

A. Daus; C. Roldan-Carmona; K. Domanski; S. Knobelspies; G. Cantarella et al. 

ADVANCED MATERIALS. 2018. Vol. 30, num. 23, p. 1707412. DOI : 10.1002/adma.201707412.

Influence of Charge Transport Layers on Open-Circuit Voltage and Hysteresis in Perovskite Solar Cells

S. Ravishankar; S. Gharibzadeh; C. Roldán-Carmona; G. Grancini; Y. Lee et al. 

Joule. 2018. Vol. 2, num. 4, p. 788-798. DOI : 10.1016/j.joule.2018.02.013.

Impact of pi Spacers on the Optical, Electrochemical and Photovoltaic performance of D-(pi-A)(2) Based Sensitizers

J. Sivanadanam; P. Ganesan; P. Gao; M. Nazeeruddin; R. Rajalingam 

CHEMISTRYSELECT. 2018. Vol. 3, num. 19, p. 5269-5276. DOI : 10.1002/slct.201800977.

Hysteresis-Free Lead-Free Double-Perovskite Solar Cells by Interface Engineering

M. Pantaler; K. Cho; V. Queloz; I. Benito; C. Fettkenhauer et al. 

ACS ENERGY LETTERS. 2018. Vol. 3, num. 8, p. 1781-1786. DOI : 10.1021/acsenergylett.8b00871.

Facile fabrication method of small-sized crystal silicon solar cells for ubiquitous applications and tandem device with perovskite solar cells

H. Kanda; N. Shibayama; A. Uzum; T. Umeyama; H. Imahori et al. 

MATERIALS TODAY ENERGY. 2018. Vol. 7, p. 190-198. DOI : 10.1016/j.mtener.2017.09.009.

Diphenylamine-Substituted Carbazole-Based Hole Transporting Materials for Perovskite Solar Cells: Influence of Isomeric Derivatives

A. Magomedov; S. Paek; P. Gratia; E. Kasparavicius; M. Daskeviciene et al. 

ADVANCED FUNCTIONAL MATERIALS. 2018. Vol. 28, num. 9. DOI : 10.1002/adfm.201704351.

Co-Solvent Effect in the Processing of the Perovskite:Fullerene Blend Films for Electron Transport Layer-Free Solar Cells

J. Pascual; I. Kosta; E. Palacios-Lidon; A. Chuvilin; G. Grancini et al. 

JOURNAL OF PHYSICAL CHEMISTRY C. 2018. Vol. 122, num. 5, p. 2512-2520. DOI : 10.1021/acs.jpcc.7b11141.

Bis-Tridentate-Cyclometalated Ruthenium Complexes with Extended Anchoring Ligand and Their Performance in Dye-Sensitized Solar Cells.

S. Aghazada; I. Zimmermann; Y. Ren; P. Wang; M. K. Nazeeruddin 

ChemistrySelect. 2018. Vol. 3, num. 5, p. 1585-1592. DOI : 10.1002/slct.201703138.

Bis(arylimidazole) Iridium Picolinate Emitters and Preferential Dipole Orientation in Films

A. Huckaba; A. Senes; S. Aghazada; A. Babaei; S. Meskers et al. 

ACS OMEGA. 2018. Vol. 3, num. 3, p. 2673-2682. DOI : 10.1021/acsomega.8b00137.