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Figure 1: Each point in the latent space (left) corresponds to a state in the configuration space
(right). By navigating in a learned latent space along chosen paths (here circles), one could simulate
the temporal evolution of a physical system. In addition to speeding up simulation, the latent space
could be structured in such a way that smaller circles around the origin have lesser total energy i.e.,
the latent space is made interpretable. The chain system under gravity illustration is taken from
Sharp and colleagues [4].

Description
When subject to external forces, physical systems describe trajectories in their configuration space
that are governed by laws of physics. For instance, in case of conservative forces only (and time-
invariant potential), these paths are isolines of the total energy of the system. Computing such
paths can be done by integrating the Hamiltonian equations, for which the Hamiltonian can be
learned [5], or by equivalently integrating equations of motion (Newton’s second law).

To cut computation costs while preserving predictive accuracy, many works focus on building
lower dimensional simulation spaces that capture most of the system’s behavior [1]. In such setups,
the integration happens directly in the subspace, see Brandt and coworkers [3] for instance. Fol-
lowing that idea, Sharp and colleagues [4] recently proposed a data-free method to learn such sim-
ulation subspaces. While appealing at first glance for reduced simulation, their method is meant
to find low potential energy configurations of the system. High potential energy configuration are
discarded, and potential energy varies little on the subspace. This prohibits exchanges between
kinetic and potential energy, and leads to loss in the total energy of the system during simulation.

We are interested in adapting their framework so that traveling along certain chosen paths (e.g.,
straight lines, circles) in the learned subspace amounts to integrating NSL in the full configuration
space. The training algorithm has to change. For instance, it could evaluate how likely it is for two
states to be separated by a time increment h using the proximal operator defined in Bouaziz and
colleagues [2], Equation (4).

https://github.com/nmwsharp/neural-physics-subspaces


Milestones
The goals of the project may be summarized as

• Reproduce results from Sharp and colleagues [4], and evaluate conservation of energy using
their latent space simulation method;

• Implement a simple yet illustrative differentiable physical simulation to compare the baseline
method and the developed one;

• Learn a latent space for which simple paths map to physically plausible trajectories in the
configuration space;

• Organize the latent space so that navigating is human interpretable e.g., one latent direction
orthogonal to the latent paths could correspond to changing the total energy of the system.

Prerequisites
Good knowledge of Python is required, along with experience with one auto-differentiation frame-
work (preferrably JAX). Experience with physical simulation will be helpful.

Remarks
The project is intended for Master students in the context of a 8 or 12 credits semester project.
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