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Introduction

This course is an introduction to the path integral formalism of Quantum Mechanics.
Familiarity with the standard formulation of Quantum Mechanics is assumed. The course
requires some mathematical background. In appendix A, we summarize some of the
relevant concepts. The following books are useful complementary reading for this course:

• “Quantum Mechanics and Path Integrals” , R.P. Feynman and A.R. Hibbs, McGraw-
Hill, 1965.

• “Techniques and applications of Path Integration”, L.S. Schulman, John Wiley &
Sons Inc., 1981.

• “Path Integral Methods and Applications”, R. MacKenzie, arXiv:quant-ph/0004090.

• “Modern Quantum Mechanics”, J.J. Sakurai, The Benjamin/Cummings Publishing
Company, 1985.

• “Aspects of Symmetry”, S. Coleman, Cambridge University Press, 1985.

• “Path Integrals in Quantum Mechanics, Statistics and Polymer Physics”, Hagen
Kleinert, World Scientific, 1995.

v

https://arxiv.org/abs/quant-ph/0004090




Chapter 1

The path integral formalism

Lecture 1 - From the double slit experiment to path integrals

Axioms of (practical) Quantum Mechanics

1. The state of an isolated system is a vector |ψ〉 in a Hilbert space H. State vectors
are normalized: 〈ψ|ψ〉 = 1.

2. The state evolves in time according to the Schrödinger equation

i~
∂

∂t
|ψ〉 = Ĥ |ψ〉 ,

where Ĥ is a hermitian operator called the Hamiltonian.

3. An observable O is associated to a hermitian operator Ô. The expectation value
of O on the state |ψ〉 is given by 〈ψ| Ô |ψ〉. This can be used to determine the
probability of obtaining a specific value. Writing Ô =

∑
λ λ P̂λ, where P̂λ is the

projector onto the subspace of H associated to the eigenvalue λ of Ô, we conclude
that the probability of measuring O = λ is 〈ψ| P̂λ |ψ〉 (Born rule).

4. After the measurement of an observable O, the state |ψ〉 collapses into the state
P̂λ |ψ〉 /

√
〈ψ| P̂λ |ψ〉, where λ is the value obtained in the measurement.

This is the usual formulation of quantum mechanics often called the Copenhagen
interpretation. Clearly, there is tension between axioms 2 and 4 because they give two
different rules for time evolution. In addition, one may ask what is a measurement?
We shall see that axiom 4 is not necessary once we include the “measurement” in the
Hamiltonian of the full system. Nevertheless, the debate continues between different
interpretations of Quantum Mechanics.

Path integral formulation

The path integral formulation of quantum mechanics is equivalent to the usual one
described above. Schematically, it states that the probability that a particle travels from

1



2 Chapter 1 The path integral formalism

xi at time ti to xf at time tf is given by

Probability(xi, ti → xf , tf ) =

∣∣∣∣∣ ∑
pathsx(t)
x(ti)=xi
x(tf )=xf

exp

(
i

~
S[x(t)]

) ∣∣∣∣∣
2

,

where S[x(t)] is the classical action of the path x(t). The path integral formulation has
several advantages:

• The classical limit is straightforward.

• There is a clear interpretation of interference (double-slit experiment).

• The path integral in quantum field theory is manifestly Lorentz invariant.

• Non-perturbative phenomena such as instantons are described more easily.

• There is a clear connection with statistical mechanics and the related numerical
methods (e.g. Path Integral Monte Carlo).

The double-slit experiment

Before deriving a rigorous formula for the path integral from the Schrödinger picture,
we motivate it by considering the double slit experiment. The setup is the following: a
screen measures the flux of electrons coming from the source. These electrons are blocked
by a wall with two slits, denoted 1 and 2 in figure (1.1). The two slits can be opened or
closed.

Figure 1.1: The double slit experiment: an electron source and a screen are separated
by a wall with two slits, so that the electrons have to pass through slit 1 or slit 2. We
measure the electron flux on the screen.
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When slit 1 is open and slit 2 is closed, we measure a flux P1 on the screen (fig 1.2a).
Similarly, when slit 2 is open and slit 1 is closed, we measure a flux P2 on the screen (fig
1.2b)

(a) Slit 1 is open, slit 2 is closed. P1 is the
distribution of electrons on the screen

(b) Slit 2 is open, slit 1 is closed. P2 is the
distribution of electrons on the screen

Figure 1.2: The double slit experiment in the configurations where one slit is closed and
the other is open.

However, if both slits are open, the electron distribution on the screen, P , is not
equal to the sum P1 + P2 (fig 1.3)1. There is an interference pattern, as if the electrons
behaved like waves.

Figure 1.3: The double slit experiment when both slits are open. P 6= P1 + P2 is the
electron distribution on the screen, exhibiting a clear interference pattern.

1This figure is not meant to depict the precise interference pattern. A real paper describing the
experiment can be found in [1]. The interference pattern itself can be found at https://commons.
wikimedia.org/wiki/File:Single_slit_and_double_slit2.jpg.

https://commons.wikimedia.org/wiki/File:Single_slit_and_double_slit2.jpg
https://commons.wikimedia.org/wiki/File:Single_slit_and_double_slit2.jpg


4 Chapter 1 The path integral formalism

According to the Copenhagen interpretation, P should be interpreted as a probability
density. In practice, this means: compute the amplitude ϕ as if dealing with waves, and
interpret the intensity |ϕ|2 as a probability density for a point-like particle position.

The reason for the interference is then straightforward: the distributions P1 and P2

are the modulus squared of amplitudes ϕ1 and ϕ2. P is then obtained by summing the
amplitudes, and then computing the modulus squared:

P1 = |ϕ1|2

P2 = |ϕ2|2

}
=⇒ P =

∣∣∣∣ϕ1 + ϕ2√
2

∣∣∣∣2 = 1

2
(P1 + P2 + Pint)

“In quantum mechanics, you sum amplitudes, not probabilities.”

We can complicate the setup further by placing two detectors around each slit. The
detectors flash when an electron passes through the corresponding slit (1.4). However,
the detectors are not 100% accurate: sometimes the electron arrives at the screen without
any detector flashing.

Figure 1.4: The double slit experiment with detectors on each slit. The light bulb
flashes when an electron goes through the corresponding slit, but it is not 100% accurate:
sometimes there is no flash.

Then, the position on the screen of each individual electron is recorded and labelled
x1, x2, . . .. Furthermore, we add a superscript that denotes whether the slit 1 flashed
(x(1)), the slit 2 flashed (x(2)), or if there was no flash (x(0)). After sending a large
number of electrons, we organize the data as in (table 1.1).
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Slit 1 Slit 2 No flash

Coordinates on screen
x
(1)
1 x

(2)
2 x

(0)
4

x
(1)
6 x

(2)
3 x

(0)
5

...
...

...
Electron distribution P1 P2 P

Table 1.1: Example of a possible set of measurements in the double slit experiment with
detectors.

The distributions for the data points in each column correspond to P1, P2 and P
respectively. If we detect an electron in one slit, it is the same as if we block the other
slit.

According to the Copenhagen interpretation, the detectors influence the be-
havior of the electrons: their state collapses after being measured in either slit 1 or 2,
therefore destroying the interference pattern. If the detectors miss an electron, as is the
case when there is no flash, then the state does not collapse and interference happens.

This is a good opportunity to explain why the collapse of the wave-function is not
necessary. In the double-slit experiment without detectors, the time evolution of the
particle’s wave function is as follows

|x = 0〉 → 1√
2
(|xup〉+ |xdown〉) →

ˆ
dx

1√
2
(ϕ1(x) |x〉+ ϕ2(x) |x〉) (1.1)

where the intermediate step corresponds to passing through the (up and down) slits.
Therefore, the probability of finding the particle at position x ∈ [a, b] is given by

〈ψ|P[a,b] |ψ〉 =
ˆ b

a
dx

1

2
|ϕ1(x) + ϕ2(x)|2 (1.2)

Let us now model each detector by a qubit that takes value 0 if no electron was detected
and 1 otherwise. For simplicity, let us assume that the detectors are infallible. Then the
time evolution of the state of the system is given by:

|x = 0, q1 = 0, q2 = 0〉 → 1√
2
(|xup, q1 = 1, q2 = 0〉+ |xdown, q1 = 0, q2 = 1〉) (1.3)

→
ˆ
dx

1√
2
(ϕ1(x) |x, q1 = 1, q2 = 0〉+ ϕ2(x) |x, q1 = 0, q2 = 1〉)

where we denoted the detector qubits by q1 and q2. In this case, the probability of finding
the particle at position x ∈ [a, b] is given by

〈ψ|P[a,b] |ψ〉 =
ˆ b

a
dx

1

2

(
|ϕ1(x)|2 + |ϕ2(x)|2

)
(1.4)

because of the orthogonality 〈x, q1 = 1, q2 = 0|x′, q1 = 0, q2 = 1〉 = 0. Therefore, if there
is any degree of freedom that changes its state depending on which slit the electron
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passes then the interference pattern will be lost. This is the reason why it is so difficult
to perform double slit experiments with larger objects [2]. This is also the reason why
quantum communication can be very safe.

Now in order to motivate the path integral formulation, imagine a N -slit experiment
with M walls (figure 1.5)

Figure 1.5: N -slit experiment with M walls.

Now the probability distribution on the screen will be given, as before, by some
amplitude squared |ϕ|2. There are now several different amplitudes associated to the
different paths that the electron might take to go through the slits. For example,
ϕ(xD1,1, xD2,2, xD3,1, . . .) is the amplitude for a trajectory passing through slit 1 in the
first wall, slit 2 in the second wall, and slit 1 in the third wall.

By superposition, the amplitude on the final screen is given by summing the amplitudes
corresponding to the different paths:

ϕ =
N∑
j1=1

N∑
j2=1

. . .
N∑

jM=1

ϕ(xD1,j1 , xD2,j2 , . . . , xDM ,jM ).

As we consider more and more slits in each wall, we approach the situation where there
is no wall at all. Mathematically, this corresponds to taking the limit N → ∞, and the
sums become integrals:

ϕ =

ˆ
dx1 . . . dxM ϕ(x1, . . . , xM ). (1.5)

Intuitively, we have an amplitude for each possible trajectory of the electron, and we
then integrate over all possible trajectories.
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From the Schrödinger approach to the path integral

We begin by defining the propagator

K(xf , tf ;xi, ti) ≡ 〈xf | e−
i
~ Ĥ(tf−ti) |xi〉 , Ĥ =

p̂2

2m
+ V (x̂). (1.6)

We then divide the time interval into N steps of size ε:

t = tf − ti = Nε, 0 < ε� 1.

We will then take the limit N → ∞ (or ε → 0) at the end of the computation. Using
this, we can write

K(xf , tf ;xi, ti) = 〈xf | e−
i
~ Ĥε . . . e−

i
~ Ĥε︸ ︷︷ ︸

N times

|xi〉 (1.7)

Now between each exponential we insert a completeness relation (1 =
´

dx |x〉 〈x|).
Overall, N − 1 completeness relations are inserted, and there are therefore N − 1
integration variables x1, x2, . . . xN−1. For ease of notation, we set xN ≡ xf and x0 ≡ xi.

K(xf , tf ;xi, ti) = 〈xN | e−
i
~ Ĥε

ˆ
dxN−1 |xN−1〉 〈xN−1| . . .

ˆ
dx1 |x1〉 〈x1| e−

i
~ Ĥε |x0〉

=

ˆ
dxN−1 . . . dx1

N∏
k=1

〈xk| e−
i
~ Ĥε |xk−1〉 (1.8)

Consider then2

〈
x′
∣∣ e− i

~ Ĥε |x〉 =
ˆ

dp 1√
2π~

e
i
~px

′ 〈p| e−
i
~ Ĥε |x〉 . (1.9)

The Zassenhaus formula (A.3) allows to compute the matrix element 〈p| e−
i
~ Ĥε |x〉 in the

limit ε→ 0:

〈p| e−
i
~ Ĥε |x〉 = e−

i
~ (

p2

2m
+V (x))ε 〈p|x〉+O(ε2). (1.10)

We assume now that in the limit ε→ 0, the higher order terms O(ε2) can be neglected3.
Then, 〈

x′
∣∣ e− i

~ Ĥε |x〉 ≈
ˆ

dp 1

2π~
e

i
~p(x

′−x)e−
iε
~ ( p2

2m
+V (x)). (1.11)

Now the integral is Gaussian and can be done:〈
x′
∣∣ e− i

~ Ĥε |x〉 ≈ 1

2π~
e−

iε
~ V (x)

ˆ
dp e

i
~p(x

′−x)− iε
2m~p

2 (1.12)

=

√
m

2πi~ε
e

i
~ ε

[
1
2
m
(

x′−x
ε

)2
−V (x)

]
. (1.13)

2We use the conventions: 〈x|x′〉 = δ(x− x′), 〈p|p′〉 = δ(p− p′) and 〈x|p〉 = 1√
2π~e

i
~ px.

3see exercise 4 for more a detailed explanation
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Now in the limit ε→ 0,

x′ − x

ε
≈ ẋ (1.14)

=⇒ ε

[
1

2
m

(
x′ − x

ε

)2

− V (x)

]
≈ εL(x, ẋ) ≈

ˆ ε

0
dtL(x, ẋ) = S(x′, x) (1.15)

Defining
√

m
2πi~ε ≡

1
A , we get

〈
x′
∣∣ e− i

~ Ĥε |x〉 ≈ 1

A
e

i
~S(x

′,x). (1.16)

Using this result, we can go back to the propagator (eq 1.8):

K(xf , tf ;xi, ti) =

ˆ
dxN−1 . . . dx1

1

AN
e

i
~

N∑
k=1

S(xk,xk−1)
(1.17)

At this point the limit ε→ 0 can be taken:

K(xf , tf ;xi, ti) = lim
ε→0

ˆ
dxN−1 . . . dx1

1

AN
e

i
~

N∑
k=1

S(xk,xk−1)
(1.18)

= lim
ε→0

1

A

ˆ N−1∏
j=1

dxj
A

e
i
~S[x(t)] (1.19)

≡
ˆ
x(ti)=xi
x(tf )=xf

D[x(t)] e
i
~S[x(t)], (1.20)

where the action S[x(t)] is

S[x(t)] =

ˆ tf

ti

dtL(x, ẋ) (1.21)

and the “path integral measure” D[x(t)] is defined as the limit ε→ 0 of the product of
integrals over the xj ’s above. To summarize, we have an expression for the propagator in
terms of a path integral:

K(xf , tf ;xi, ti) =

ˆ
x(ti)=xi
x(tf )=xf

D[x(t)] e
i
~S[x(t)] (1.22)

This formula is the rigorous version of the formula (1.5) derived at the beginning when
considering the double-slit experiment.

Example: Free Particle – As a first example, consider the case of a free particle,
where

L(x, ẋ) = 1

2
mẋ2. (1.23)
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Then

K(xf , t, xi, 0) = lim
ε→0

1

A

ˆ N−1∏
k=1

dxk
A

e
i
~S , (1.24)

where

t = Nε, x0 = xi, xN = xf , S = ε

N∑
k=1

1

2
m

(
xk − xk−1

ε

)2

,
1

A
=

√
m

2πi~ε

In order to do the integrals over the xk’s, we begin by doing the integral over x1, then
over x2, and we will then see a pattern which will allow us to do all of them easily.

Each integration variables appears in two consecutive terms in the expression of S.
For x1, we have an integral of the following form:

ˆ ∞

−∞
dx1 e

im
2~ε

(
(x1−x0)2+(x2−x1)2

)
=

1√
2
Aei

m
2~ε

(x2−x0)
2

2 (1.25)

This term now enters the computation of the x2 integral:
ˆ ∞

−∞
dx2 e

i m
2~ε

(
(x2−x0)

2

2
+(x3−x2)2

)
=

√
2

3
Aei

m
2~ε

(x3−x0)
2

3 (1.26)

At this point we can see the pattern: the k-th integral will be
ˆ ∞

−∞
dxk e

i m
2~ε

(
(xk−x0)

2

k
+(xk+1−xk)2

)
=

√
k − 1

k
Aei

m
2~ε

(xk+1−x0)
2

k+1 (1.27)

Therefore the propagator can be written

K(xf , t, xi, 0) = lim
ε→0

1

A

√
1

2

2

3
. . .

N − 2

N − 1
ei

m
2~ε

(xN−x0)
2

N (1.28)

Taking the limit is trivial now as Nε = t. We have obtained an explicit expression for
the free propagator:

K(free)(xf , t, xi, 0) =

√
m

2πi~t
exp

(
i
m

2~t
(xf − xi)

2
)
. (1.29)

Exercise 1.1 (The free propagator made easy).
Compute the free propagator starting from

K(free)(xf , t, xi, 0) = 〈xf | e−
i
~ Ĥt |xi〉 , Ĥ =

p̂2

2m
, (1.30)

and inserting the resolution of the identity in momentum eigenstates. Verify that your
result matches the one obtained using the path integral formalism (equation 1.29).
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Wavepacket evolution – The propagator can be used for computing the time evolution
of wavepackets. Indeed,

ψ(x, t) = 〈x|ψ(t)〉 = 〈x| e−
i
~ Ĥt |ψ(0)〉 =

ˆ
dy 〈x| e−

i
~ Ĥt |y〉 〈y|ψ(0)〉 . (1.31)

We recognize here the definition of the propagator, which leads to the useful formula

ψ(xf , t) =

ˆ
dxi K(xf , t;xi, 0)ψ(xi, 0) . (1.32)

Exercise 1.2 (Gaussian wavepacket evolution).

1. Consider the following Gaussian wavefunction defined at t = 0:

ψ(y, 0) =
1

(2πσ2)1/4
e

i
~pye−

y2

4σ2 . (1.33)

Using formulas (1.32) and (1.29), verify that the wavefunction at time t is given by

ψ(x, t) =
e−

ip2t
2m~

(2πσ(t)4/σ2)1/4
e

i
~pxe−

(
x− p

m
t
)2
/4σ(t)2 , (1.34)

where

σ(t)2 = σ2 + i
~t
2m

(1.35)

2. Compute |ψ(x, t)|2 and read off the average position 〈x〉 and the width
〈
(x− 〈x〉)2

〉
of the particle as a function of time. Comment on your results.
Hint: the standard form of a Gaussian distribution is

f(x) =
1√
2πσ2

e
− 1

2

(
x−µ
σ

)2

(1.36)

where µ is the mean and σ2 is the standard deviation.

3. Rederive the previous results in momentum space:

ψ(x, t) =

ˆ
dk 〈x| e−

i
~ Ĥt |k〉 〈k|ψ(0)〉 . (1.37)
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The phase space path integral

The phase space path integral is what we obtain if we do not perform the gaussian
integral in p during the derivation of the path integral formulation. Explicitly, we use
equations (1.8) and (1.11) to get

K(xf , T ;xi, 0) =

ˆ
dxN−1 . . . dx1

N∏
k=1

(ˆ dpk
2π~

e
iε
~

[
p
xk−xk−1

ε
−( p2

2m
+V (x))

])
, (T = Nε)

=

ˆ dpN
2π~

N−1∏
k=1

(ˆ dxkdpk
2π~

)
e

i
~
´ T
0 dt [pẋ−H(p,x)]

≡
ˆ
x(0)=xi
x(T )=xf

D[x(t)]D[p(t)]e
i
~S[x(t),p(t)] (1.38)

It may help to draw the real space trajectory and the momentum space trajectory in the
same picture (1.6). There is a momentum integral for each time step, which is why they
are represented in between each position integral.

Figure 1.6

Some properties of the propagator

Note first that

K(xf , tf ;xi, ti) = 〈xf | e−
i
~ Ĥ(tf−ti) |xi〉

=

ˆ
dxm 〈xf | e−

i
~ Ĥ(tf−t) |xm〉 〈xm| e−

i
~ Ĥ(t−ti) |xi〉

=

ˆ
dxm K(xf , tf ;xm, tm)K(xm, tm;xi, ti). (1.39)
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This composition property follows directly from the path integral representation:

K(xf , tf ;xi, ti) =

ˆ
x(ti)=xi
x(tf )=xf

D[x(t)]e
i
~S[x(t)] (1.40)

=

ˆ
dxm

ˆ
x(ti)=xi
x(tm)=xm

D[x1(t)]

ˆ
x(tm)=xm
x(tf )=xf

D[x2(t)]e
i
~ (S[x1(t)]+S[x2(t)])

(1.41)

=

ˆ
dxm K(xf , tf ;xm, tm)K(xm, tm;xi, ti), (1.42)

This result can be understood easily by drawing the trajectory as in figure (1.7)

Figure 1.7: Illustration of the composition property of the path integral

One can also derive a differential equation for the propagator. Let

|ψ(t)〉 = e−
i
~ Ĥt |x0〉 .

Then,

K(x, t;x0, 0) = 〈x|ψ(t)〉 = ψ(x, t)

=⇒ K(x, t;x0, 0) solves the Schrödinger equation for the variables x, t

Furthermore, the propagator verifies a boundary condition in time:

lim
t→0

K(x, t;x0, 0) = 〈x|x0〉 = δ(x− x0). (1.43)

These two properties fix the propagator uniquely.
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Summary of Lecture 1

• Path integral representation of the propagator:

K(xf , t;xi, 0) = 〈xf | e−
i
~ Ĥt |xi〉 =

ˆ
x(ti)=xi
x(tf )=xf

D[x(t)] e
i
~S[x(t)]

• Free particle propagator:

K(free)(xf , t, xi, 0) =

√
m

2πi~t
exp

(
i
m

2~t
(xf − xi)

2
)
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Lecture 2 - Gaussian path integrals

“The career of a young theoretical physicist consists of treating the harmonic oscillator in
ever-increasing levels of abstraction” - Sydney Coleman

Now that we have defined the path integral for a general action, our first goal is to
compute it for the harmonic oscillator. The action of the harmonic oscillator is quadratic
in x, which is why we first study generic Gaussian integrals, and then move on to the
full path integral of the HO.

Gaussian integrals

The goal is to eventually be able to compute the propagator of the harmonic oscillator.
To do so, we first review regular gaussian integrals. It is well known that in 1 dimension,

ˆ ∞

−∞
dx e−λx2 =

√
π

λ
, λ > 0 (1.44)

Consider now the generalization to the n-dimensional Gaussian integral:

In ≡
ˆ

dnx e−xTΛx, Λ ∈Mn×n, ΛT = Λ (1.45)

Exercise 1.3.
Argue why we do not need to consider the more general case where ΛT 6= Λ. Hint: any
matrix M can be decomposed into its symmetric and antisymmetric parts as

M =
1

2
(M +MT ) +

1

2
(M −MT )

Since Λ is symmetric, it can be diagonalized using an orthogonal matrix O (this is
the spectral theorem):

OTΛO = diag(λ1, . . . , λn), OTO = 1, det(O) = ±1 (1.46)

In order to evaluate In, we perform a change of variable using this orthogonal matrix:
x = Oy. Then

In ≡
ˆ

dny | det(O)|︸ ︷︷ ︸
=1

e−yTOTΛOy =

ˆ
dny e−

∑n
i=1 λiy

2
i =

n∏
i=1

√
π

λi
. (1.47)

Therefore, ˆ
dnx e−xTΛx =

πn/2√
det(Λ)

. (1.48)
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One might wonder what happens if det(Λ) ≤ 0. This is not real cause for concern as
it would mean that at least one of the λi is less than or equal to 0, and therefore the
integral In would diverge.

After considering n-dimensional real gaussian integrals, we look at complex gaussian
integrals. Consider ˆ ∞

−∞
dx eiλx2 , λ ∈ R (1.49)

A possible way to compute this integral is to analytically continue the real result (1.44).
To do so, we start with a real number α > 0 and rotate it in the complex plane (see
figure 1.8) so that it lands at ±iα.

Figure 1.8: Rotations by ±π/2 in the complex plane

Using this operation, we can get the complex integral from the real one. Consider
the transformation α→ −iα:ˆ ∞

−∞
dx e−αx2 →

ˆ ∞

−∞
dx eiαx2 , α > 0 (1.50)

Now we have to analytically continue the right-hand side:√
π

α
=

√
π

αe−iπ/2
= eiπ/4

√
π

α
(1.51)

We therefore have our result (check the case α→ iα for the other sign possibility):ˆ ∞

−∞
dx eiλx2 = ei sgn(λ)π/4

√
π

|λ|
(1.52)
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This result can also be obtained by methods of complex analysis involving contour
integrals (see exercise 1 in the appendix).

Using the same reasoning as for the n-dimensional real Gaussian integral, we find the
n-dimensional complex Gaussian integral:

ˆ
dnx eixTΛx = ei(n+−n−)π/4 πn/2√

| det(Λ)|
, (1.53)

where n± is the number of positive (negative) eigenvalues of Λ.

The harmonic oscillator path integral

Consider now the harmonic oscillator propagator:

K(xf , tf ;xi, ti) =

ˆ
x(ti)=xi
x(tf )=xf

D[x(t)]e
i
~S[x(t)], (1.54)

where S[x(t)] =
ˆ tf

ti

dt
(
1

2
mẋ2 − 1

2
mω2x2

)
. (1.55)

We can find the classical trajectory xc(t) easily:

ẍc(t) + ω2xc(t) = 0 , xc(ti) = xi , xc(tf ) = xf .

Consider now the change of variables x(t) = xc(t) + y(t). The boundary conditions of
the path integral now change to y(ti) = y(tf ) = 0, but the measure does not since the
change of variables is linear: D[x(t)] = D[y(t)]. We get

K(xf , tf ;xi, ti) =

ˆ
y(ti)=0
y(tf )=0

D[y(t)]e
i
~S[xc(t)+y(t)]. (1.56)

Let us now see what happens with the action.

S[xc(t) + y(t)] =

ˆ tf

ti

dt 1
2
m(ẋc + ẏ)2 − 1

2
mω2(xc + y)2 (1.57)

= S[xc(t)] + S[y(t)] +m

ˆ tf

ti

dt ẋcẏ − ω2xcy (1.58)

= S[xc(t)] + S[y(t)]−m

ˆ tf

ti

dt y(t)(ẍc + ω2xc︸ ︷︷ ︸
=0 (E.O.M.)

) (1.59)
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This is not a coincidence! Indeed,

S[xc + y] = S[xc] +

ˆ
dt δS

δx(t)︸ ︷︷ ︸
=0 (E.O.M.)

∣∣∣∣∣
x=xc

y(t)

+
1

2

¨
dt1dt2

δ2S

δx(t1)δx(t2)

∣∣∣∣
x=xc

y(t1)y(t2)

+
1

3!

˚
dt1dt2dt3

δ3S

δx(t1)δx(t2)δx(t3)︸ ︷︷ ︸
=0 (quadratic action)

∣∣∣∣∣
x=xc

y(t1)y(t2)y(t3) + . . .

With this result in hand, we can see that the propagator can be written as

K(xf , tf ;xi, ti) = e
i
~S[xc(t)]

ˆ
y(ti)=0
y(tf )=0

D[y(t)]e
i
~S[y(t)] (1.60)

= e
i
~S[xc(t)]K(0, ti; 0, tf ) (1.61)

≡ e
i
~S[xc(t)]J(tf − ti), (1.62)

where we can write K(0, ti; 0, tf ) ≡ J(tf − ti) thanks to time translation symmetry.

Exercise 1.4 (Classical action of the Harmonic Oscillator).
Show that

S[xc] =
mω

2

(
x2f + x2i

)
cos(ωT )− 2xixf

sin(ωT )
, T = tf − ti (1.63)

What is left to compute is the function J(T ). The first step is to rewrite the integrand
in a form comparable to a Gaussian integral (similar to 1.48):

S[y] =

ˆ T

0
dt
(
1

2
mẏ2 − 1

2
mω2y2

)
=
m

2

ˆ T

0
dt y

(
− d2

dt2 − ω2

)
︸ ︷︷ ︸

≡Ô

y (1.64)

=⇒ J(T ) =

ˆ
y(ti)=0
y(tf )=0

D[y(t)]e
i
~

m
2

´ T
0 dt yÔy (1.65)

By analogy with the n-dimensional Gaussian integral, we expect J(T ) ∝ | det Ô|−1/2.
More explicitly, we can expand the integration variable y(t) in a complete basis of or-
thonormal eigenfunctions of the operator Ô. This is the equivalent of diagonalizing the
matrix Λ in the n-dimensional case.
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Define the eigenfunctions yn(t) as

Ôyn(t) = λnyn(t), yn(0) = yn(T ) = 0

=⇒ yn(t) =

√
2

T
sin

(
nπt

T

)
, λn =

(nπ
T

)2
− ω2

Here, we chose to normalize the eigenfunctions by
´ T
0 dt(yn(t))

2 = 1. Note that the sign
of λn depends on how big n is. For small n, λn < 0, but for n > ωT

π , λn > 0. Therefore,
the number of negative eigenvalues of Ô is n− = int

(
ωT
π

)
.4

We can now expand y(t) in the complete basis given by the yn(t):

y(t) =

∞∑
n=1

anyn(t) (1.66)

Since the yn(t) are fixed now, it makes sense that we have to integrate over the coefficients
an. Since we are changing variables, we need to keep track of the jacobian, which we
denote Ñ . It is important to notice that since the eigenfunctions yn(t) do not depend on
ω, neither does the jacobian Ñ . Furthermore, for reasons that will become clear soon, it
is convenient to pull out a factor 1√

2πi
from the jacobian for each an, such that the path

integral measure becomes

D[y] →
ˆ ∏

n

dan√
2πi

Ñ . (1.67)

In terms of the new variables an, we have
ˆ T

0
dt yÔy =

ˆ T

0
dt
∑
n,m

anamyn(t)Ôym(t) (1.68)

=
∑
n,m

anamλm

ˆ T

0
dt yn(t)ym(t)︸ ︷︷ ︸

δn,m

(1.69)

=
∑
n

a2nλn. (1.70)

The path integral therefore becomes a product of gaussian integrals that we can evaluate:

J(T ) =

ˆ (∏
n

dan√
2πi

)
Ñe

i
~

m
2

∑
n a

2
nλn = Ñ

ei
π
4
(n+−n−)

(2πi)
1
2
(n++n−)

∏
n

√
2π~
m|λn|

(1.71)

= Ñ
ei

π
4
(n+−n−)

ei
π
4
(n++n−)︸ ︷︷ ︸

=e−i π2 n−

∏
n

√
~

m|λn|
(1.72)

4The function int(x) gives the largest integer smaller or equal than x.
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Now you might be worried that the product
∏
n

√
~

m|λn| is identically 0, since we
have an infinite product of smaller and smaller numbers (the λn grow as n2). However,
the product of the Ñ with

∏
n

√
~

m|λn| is finite and well defined. 5 Indeed, we can take
a ratio of two functions J(T ) with different values of ω. This is useful because, as we
mentioned before, the jacobian Ñ does not depend on ω and cancels out when we take
the ratio. We therefore compute:

Jω(T )

J0(T )
=
Ñe−i

π
2
n−(ω)∏

n

√
~

m|λn(ω)|

Ñe−i
π
2
n−(0)∏

n

√
~

m|λn(0)|

(1.74)

= e−i
π
2
(n−(ω)−n−(0))

∣∣∣∣∣det Ôωdet Ô0

∣∣∣∣∣
−1/2

(1.75)

Since n−(0) = 0, we write n− ≡ n−(ω). Furthermore, the ratio of determinants can be
computed as

det Ôω

det Ô0

=
∞∏
n=1

(
nπ
T

)2 − ω2(
nπ
T

)2 =
∞∏
n=1

[
1−

(
ωT

nπ

)2
]

(1.76)

This expression has zeros at ωT = nπ, just like a sine function. However, as ωT → 0, the
ratio of determinants tends to 1. Moreover, it does not have any poles. We can therefore
guess that

det Ôω

det Ô0

=
sin(ωT )

ωT
(1.77)

This qualitative reasoning can be made rigorous by using the Weierstrass factorization
theorem6. All the pieces needed to conclude the derivation are present: we have

Jω(T ) = e−i
π
2
n−

√
ωT

| sin(ωT )|

√
m

2πi~T
, (1.78)

where we used the expression for the free propagator found in lecture 1 (equation 1.29),
since J0(T ) = K(free)(0, T ; 0, 0). Having found Jω(T ), we finally put everything together
to obtain the harmonic oscillator propagator:

K(HO)(xf , T ;xi, 0) = e
−iπ

2
int

(
ωT
π

)√
mω

2πi~| sin(ωT )|
e
imω

2~

(
x2f+x2i

)
cos(ωT )−2xixf

sin(ωT ) . (1.79)

5A more careful approach to this problem would be to go back to the definition of the path integral
with discretized time, and take the limit ε→ 0 at the end of the computation. Intuitively, if

ˆ
y(0)=0
y(T )=0

D[y(t)] → lim
ε→0

1

A

ˆ N−1∏
j=1

dyj
A
, (1.73)

then the operator Ô becomes matrix with a finite number of eigenvalues. However, this method would be
technically more involved.

6https://en.wikipedia.org/wiki/Weierstrass_factorization_theorem

https://en.wikipedia.org/wiki/Weierstrass_factorization_theorem
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Summary of Lecture 2

• Gaussian integrals
ˆ

dnx e−xTΛx =
πn/2√
det(Λ)ˆ

dnx eixTΛx = ei(n+−n−)π/4 πn/2√
| det(Λ)|

• Harmonic Oscillator

K(HO)(xf , T ;xi, 0) = e
i
~S[xc]

ˆ
y(0)=0
y(T )=0

D[y] e
i
~S[y] (x = xc + y)

= e
−iπ

2
int

(
ωT
π

)√
mω

2πi~| sin(ωT )|
e
imω

2~

(
x2f+x2i

)
cos(ωT )−2xixf

sin(ωT )
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Lecture 3 - Gelfand-Yaglom formula and time-ordered products

Time-dependent harmonic oscillator

Consider the time dependent harmonic oscillator:

L =
1

2
mẋ2 − 1

2
mω2(t)x2 (1.80)

Following the same method as for the time-independent harmonic oscillator, we can write
the propagator as

K(xf , tf ;xi, ti) = e
i
~S[xc]K(0, tf ; 0, ti), (1.81)

where xc(t) is the classical solution (we used the change of variables x(t) = xc(t) + y(t)).

In order to make progress, we use the definition of the path integral as a limit N → ∞
of the system with discretized time. Let

ti ≡ t0, tf ≡ tN+1, ε =
tf − ti
N + 1

, ωj ≡ ω(tj) (1.82)

We use this convention so that there are N+1 time steps and N integrals (over y1, . . . , yN ):

K(0, tf ; 0, ti) = lim
N→∞

ˆ
dy1 . . . dyN

( m

2πi~ε

)N+1
2
e

i
~

N∑
j=0

m
2
ε

[(
yj+1−yj

ε

)2
−ω2

j y
2
j

]
(1.83)

At this point it is convenient to define:

y ≡


y1
y2
...
yn

 , σ =
m

2~ε
σ̃ (1.84)

σ̃ ≡



2 −1 0 . . . 0
−1 2 −1

0 −1 2
. . . ...

... . . . . . .
2 −1

0 . . . −1 2


− ε2



ω2
1 . . . 0

ω2
2

ω2
3

...
... . . .

ω2
N−1

0 . . . ω2
N


(1.85)

With these definitions in hand, we can write the propagator as

K(0, tf ; 0, ti) = lim
N→∞

( m

2πi~ε

)N+1
2

ˆ
dNyeiyT σy (1.86)
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Now the integral can be computed using equation (1.53) to get

K(0, tf ; 0, ti) = lim
N→∞

( m

2πi~ε

)N+1
2
ei(n+−n−)π

4
πN/2√
| det(σ)|

(1.87)

= lim
N→∞

ei(n+−n−)π
4

[( m

2πi~ε

)N+1 πN

| det(σ)|

]1/2
(1.88)

= lim
N→∞

√
m

2πi~
ei(n+−n−)π

4

[(
1

i

)N 1

ε| det(σ̃)|

]1/2
(1.89)

= lim
N→∞

√
m

2πi~
e−i

π
2
n−

[
1

ε|det(σ̃)|

]1/2
(1.90)

where we used det(σ) =
(
m
2~ε
)N

det(σ̃) and i−1/2 = e−i
π
4 . Note that the result depends

on n−, the number of negative eigenvalues of σ. In the continuum limit, the size of σ is
sent to infinity, and we can interpret n− in a different way. To do so, recall that originally
we had

K(0, tf ; 0, ti) =

ˆ
D[y(t)]e

i
~
´ tf
ti

1
2
mẏ2− 1

2
mω2(t)y2 (1.91)

=

ˆ
D[y(t)]e

im
2~
´ tf
ti

y
(
− d2

dt2−ω
2(t)

)
y (1.92)

where we integrated by parts and used y(ti) = y(tf ) = 0. In the above, one can identify
− d2

dt2 − ω2(t) as the N → ∞ analog of σ̃ by comparison with (1.86) 7. We can therefore
interpret n− as the number of negative eigenvalues of the operator − d2

dt2 − ω2(t).

Now that we understand n− in the N → ∞ limit, our task is to compute det(σ̃).
To do so, we compute the determinant by the Laplace method (also known as cofactor
method). Define pj as the determinant of the top left j × j block of σ̃:

pj = det[σ̃]j×j (1.93)

Then,

p1 = 2− ε2ω2
1 (1.94)

p2 = (2− ε2ω2
1)(2− ε2ω2

2)− 1 (1.95)
...

pj+1 = det


0
...
−1

0 · · · −1 2− ε2ω2
j+1

σ̃j×j (1.96)

7Since we only care about the number of negative eigenvalues n−, the overall factors of m or ~ are
irrelevant - there is therefore no difference between n− for σ or for σ̃.
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We can now write pj+1 as a function of pj using the method of cofactors. We develop
the determinant along the last column to get:

pj+1 = det


0 0
...

...
−1 0

0 . . . −1 2− ε2ω2
j −1

0 . . . 0 −1 2− ε2ω2
j+1


σ̃j−1×j−1

(1.97)

= (2− ε2ω2
j+1)pj − (−1) · det


0

−1

0 0 −1

σ̃j−1×j−1 (1.98)

= (2− ε2ω2
j+1)pj − pj−1, (1.99)

where in the last line we developed the determinant along the last row. This procedure
gives us a recurrence equation on the pj ’s:

pj+1 − 2pj + pj−1

ε2
= −ω2

j+1pj (1.100)

As ε→ 0, this becomes a differential equation! Indeed, define

εpj ≡ ϕ(ti + ε · j), j = 1, . . . , N. (1.101)

Then, equation (1.100) implies

ϕ(ti + ε(j + 1))− 2ϕ(ti + ε · j) + ϕ(ti + ε(j − 1))

ε2
= −ω2

j+1ϕ(ti + ε · j) (1.102)

=⇒ ϕ̈(t) = −ω2(t)ϕ(t). (1.103)

The initial conditions are given by

ϕ(ti) = lim
ε→0

εp1 = 0 (1.104)

ϕ̇(ti) = lim
ε→0

εp2 − εp1
ε

= 1 (1.105)

Therefore, given the time-dependent frequency ω(t), one can solve for ϕ(t). What is
relevant to us is to compute

lim
N→∞

εdet(σ̃) = lim
N→∞

εpN = ϕ(tf ) (1.106)

This gives us an expression for the time-dependent harmonic oscillator propagator:

K(xf , tf ;xi, ti) = e
i
~S[xc]e−i

π
2
n−

√
m

2πi~|ϕ(tf )|
, (1.107)
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where ϕ(t) is the solution to the following ODE:

ϕ̈(t) = −ω2(t)ϕ(t),

{
ϕ(ti) = 0

ϕ̇(ti) = 1
(1.108)

Equation (1.107) is known as the Gelfand-Yaglom formula. At first it is surprising
to realize that we have found an analytic expression for the propagator of the time-
dependent harmonic oscillator. However, path integrals with quadratic actions are in
a sense a generalization of Gaussian integrals, so we expect to be able to solve them exactly.

Exercise 1.5.
Use the Gelfand-Yaglom formula to re-derive the propagators for the free particle (ω = 0)
and the harmonic oscillator (ω = const).

Operator matrix elements

Recall that in the Schrödinger picture, the states |ψ(t)〉 evolve in time while the operators
Ô are fixed. In the Heisenberg picture, the states |ψ〉 are fixed and the operators Ô(t)
evolve. To go from one picture to another, we use the formula

ÔH(t) = e
i
~ ĤtÔSe

− i
~ Ĥt. (1.109)

Define now the state |x, t〉 as an eigenstate of the (Heisenberg picture) position operator
x̂(t). We can write this state in terms of the |x〉, the eigenstate of the (Schrödinger
picture) operator x̂ as follows:

|x, t〉 ≡ e
i
~ Ĥt |x〉 (this is not time evolution!)

=⇒ x̂(t) |x, t〉 =
(
e

i
~ Ĥtx̂e−

i
~ Ĥt
)
e

i
~ Ĥt |x〉 = x |x, t〉

Then, we can write the propagator in terms of the |x, t〉:

〈xf , tf |xi, ti〉 = 〈xf | e−
i
~ Ĥ(tf−ti) |xi〉 = K(xf , tf ;xi, ti) =

ˆ
D[x]e

i
~S[x]

You may have noticed that the path integral representation of the propagator is similar
to the kind of expressions one gets in statistical mechanics:

Z =
∑

config
e−βH

〈O〉 = 1

Z

∑
config

Oe−βH ,

if we identify −βH with i
~S. This leads us to wonder about the possible physical

significance of an expression such as:ˆ
D[x]A(x(t1))e

i
~S[x], ti < t1 < tf , (1.110)
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where A = A(x) is some function of x. It seems intuitive to use the composition property
(1.39) to break up the path integral into two regions: the first region where the particle
evolves from ti to t1 (labelled by a), and the second where it evolves from t1 to tf (labelled
by b). We can then write

ˆ
D[x] e

i
~S[x]A(x(t1)) =

ˆ
dx1
ˆ
xa(ti)=xi
xa(t1)=x1

D[xa]

ˆ
xb(t1)=x1
xb(tf )=xf

D[xb] e
i
~ (Sa+Sb)A(x1)

= 〈xf | e−
i
~ Ĥ(tf−t1)

ˆ
dx1 |x1〉A(x1) 〈x1|︸ ︷︷ ︸

=A(x̂)

e−
i
~ Ĥ(t1−ti) |xi〉

= 〈xf | e−
i
~ Ĥtf e

i
~ Ĥt1A(x̂)e−

i
~ Ĥt1︸ ︷︷ ︸

=A(x̂(t1))

e
i
~ Ĥti |xi〉

= 〈xf , tf |A(x̂(t1)) |xi, ti〉

Therefore we see that we have

〈xf , tf |xi, ti〉 =
ˆ

D[x]e
i
~S[x]

〈xf , tf |A(x̂(t1)) |xi, ti〉 =
ˆ

D[x]e
i
~S[x]A(x(t1))

We can also wonder what happens if we plug in two functions in the path integral. Let
tf > t2 > t1 > ti, and consider two functions O1(x) and O2(x). Then,
ˆ

D[x]e
i
~S[x]O1(x(t1))O2(x(t2))

=

ˆ
dx1dx2

ˆ
D[xa]D[xb]D[xc] e

i
~ (Sa+Sb+Sc)O1(x(t1))O2(x(t2))

=

ˆ
dx1dx2 〈xf , tf |x2, t2〉O2(x(t2)) 〈x2, t2|x1, t1〉O1(x(t1)) 〈x1, t1|xi, ti〉

= 〈xf , tf | O2(x̂(t2))O1(x̂(t1)) |xi, ti〉 . (1.111)

Notice that on the path integral side (on the left), the functions O1 and O2 commute,
since they are just numbers. However, on the right side, they do not commute any-
more since they contain the Heisenberg-picture operators x̂(t1) and x̂(t2). In the
Schrödinger picture, x̂ obviously commutes with itself, but in the Heisenberg picture,
x̂(t) involves the hamiltonian and therefore [x̂(t1), x̂(t2)] 6= 0 in general. In fact, the
non-commutativity of the O’s on the right side comes from the assumption that t2 > t1.
If we had assumed t1 > t2, the order of the O’s would be reversed (see the exercise below).

Exercise 1.6 (Introduction to time-ordering).
In equation (1.111), it was assumed that t1 < t2. Verify that in the other case, t1 > t2,
one hasˆ

D[x]e
i
~S[x]O1(x(t1))O2(x(t2)) = 〈xf , tf | O1(x̂(t1))O2(x̂(t2)) |xi, ti〉 . (1.112)
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Define the time-ordered product of two operators as

T [Ô1(t1)Ô2(t2)] = Ô2(t2)Ô1(t1)θ(t2 − t1) + Ô1(t1)Ô2(t2)θ(t1 − t2), (1.113)

where we write Ô(t) ≡ O(x̂(t)) as a shorthand. The generalization to an arbitrary
number of O’s is obvious:
ˆ

D[x]e
i
~S[x]O1(x(t1)) . . .On(x(tn)) = 〈xf , tf |T

[
Ô1(t1) . . . Ôn(tn)

]
|xi, ti〉 (1.114)

Question: how could we compute out of time-order correlators with path integrals?
This will be discussed in lecture 5.

Introduction to the classical limit and useful properties of Scl

Consider the propagator

K(xf , tf ;xi, ti) =

ˆ
D[x]e

i
~S[x]. (1.115)

The classical limit is the limit where ~ → 0. 8 In this case, we can do a saddle point
approximation (see exercise 10 for more details) and write

K(xf , tf ;xi, ti) =

ˆ
D[x]e

i
~S[x] = e

i
~S[xcl]F (xf , tf ;xi, ti), (1.116)

where F is some function depending on the boundary conditions. Then, we have

−i~∂xfK =
[
∂xfSclK +O(~)

]
K =

[
pcl
f +O(~)

]
K (1.117)

i~∂tfK =
[
−∂tfSclK +O(~)

]
K = [Ecl +O(~)]K. (1.118)

Here we used the fact that F does not depend exponentially on ~ when ~ → 0. The
equalities between derivatives of Scl and the classical momentum and energy are exact
relations coming from classical mechanics, and are justified below. It is interesting to see
that the quantum version of the final momenta and the energy acting on the propagator
(the left-hand side) are equal to the classical version, plus some correction of order ~
(the right-hand side).

In order to prove the equalities ∂xfScl = pcl
f and ∂tfScl = −Ecl, consider the following

definitions:

Scl =

ˆ tf

ti

dt L[xc, ẋc], with
[

d
dt
∂L
∂ẋ

− ∂L
∂x

]
x=xc

= 0, and
{
xc(ti) = xi

xc(tf ) = xf
(1.119)

8Note that it would be more precise to say that the action is much bigger than ~, since it does not
make sense to send a dimensionful quantity to 0.
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Define now the function f as

xc(t) = f(xf , tf , xi, ti, t). (1.120)

In a way, we are saying that the classical solution obviously depends on which boundary
conditions we choose, and the function f reflects this choice explicitly, rather than just
writing xc(t) where the boundary conditions are implicit. We therefore have

f(xf , tf , xi, ti, t = ti) = xi, f(xf , tf , xi, ti, t = tf ) = xf (1.121)

Now we can differentiate either of the expressions in (1.121) with respect to any variable.
For example, differentiating the first expression with respect to ti, we get[

∂

∂ti
xc + ẋc

]
t=ti

= 0 (1.122)

If we differentiate with respect to tf or xi, we simply get[
∂

∂tf
xc

]
t=ti

= 0 (1.123)[
∂

∂xi
xc

]
t=ti

= 1 (1.124)

The same ideas can be applied to the other expression in equation (1.121):[
∂

∂ti
xc

]
t=tf

= 0 (1.125)[
∂

∂tf
xc + ẋc

]
t=tf

= 0 (1.126)[
∂

∂xf
xc

]
t=tf

= 1 (1.127)

. . .

These identities are useful because they allow us to compute derivatives of the classical
action. Indeed,

∂tfScl = ∂tf

ˆ tf

ti

dt L[xc, ẋc] (1.128)

= L[xc, ẋc]t=tf +

ˆ tf

ti

dt ∂L
∂x

∣∣∣∣
xc

∂tfxc +
∂L
∂ẋ

∣∣∣∣
xc

∂tf ẋc (1.129)

= L[xc, ẋc]t=tf +

[
∂L
∂ẋ

∣∣∣∣
xc

∂tfxc

]tf
ti

−
ˆ tf

ti

dt
[

d
dt
∂L
∂ẋ

− ∂L
∂x

]
x=xc︸ ︷︷ ︸

=0 (E.O.M.)

∂tfxc, (1.130)
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where in the last line we integrated by parts. Using equations (1.123) and (1.126), we
find

∂tfScl =

[
L[xc, ẋc]−

∂L
∂ẋ

∣∣∣∣
xc

ẋc

]
t=tf

= − [pcẋc − L[xc, ẋc]]t=tf (1.131)

= − H|t=tf = −Ecl (1.132)

Similarly, we have

∂xfScl =

ˆ tf

ti

dt ∂L
∂x

∣∣∣∣
xc

∂xfxc +
∂L
∂ẋ

∣∣∣∣
xc

∂xf ẋc (1.133)

=

[
∂L
∂ẋ

∣∣∣∣
xc

∂xfxc

]tf
ti

+

ˆ tf

ti

dt
[
∂L
∂x

∣∣∣∣
xc

− d
dt

∂L
∂ẋ

∣∣∣∣
xc

]
∂xfxc (1.134)

= pcl
f , (1.135)

where in the last line we used (1.127).

Summary of Lecture 3

• Gelfand-Yaglom formula:

K(xf , tf ;xi, ti) = e
i
~S[xc]

√
m

2πi~ϕ(tf )
, where ϕ̈(t) = −ω2(t)ϕ(t),

{
ϕ(ti) = 0

ϕ̇(ti) = 1

• Operator matrix elements:
ˆ

D[x]e
i
~S[x]O1(x(t1)) . . .On(x(tn)) = 〈xf , tf |T

[
Ô1(t1) . . . Ôn(tn)

]
|xi, ti〉

• Properties of the classical action:

∂xfScl = pcl
f , ∂tfScl = −Ecl

Lecture 4 - Quantum Mechanics in Your Face.

In this special lecture we discuss a famous lecture by Sidney Coleman:
https://arxiv.org/abs/2011.12671
https://www.youtube.com/watch?v=EtyNMlXN-sw

https://arxiv.org/abs/2011.12671
https://www.youtube.com/watch?v=EtyNMlXN-sw


Chapter 2

Functional and Euclidean methods

Lecture 5 - Euclidean path integral

Euclidean path integrals are the most useful in practice because of their convergence
properties. They are very common in Quantum Field Theory (QFT) and Statistical
Mechanics, and are used to perform perturbation theory through the use of Feynman
diagrams. They will also be useful to compute out of time-order correlators, which we
mentioned in Lecture 3.

Define the Euclidean propagator KE as

KE(xf , xi, β) = 〈xf | e−
β
~ Ĥ |xi〉 , β ≥ 0 1 (2.2)

Note that it is possible to go from the usual propagator K(xf , T, xi, 0) to the Euclidean
propagator by analytic continuation, through the replacement T → −iβ. For this
reason, this is sometimes called “evolution in imaginary time”. This replacement is where
the name Euclidean comes from. Indeed, the metric of Minkowski spacetime is

ds2M = −dt2 + dx2

Now if we set t→ −iτ , we get the Euclidean metric:

ds2E = dτ2 + dx2,

which is just Cartesian space with one extra coordinate. Notice that Lorentz transforma-
tions, which leave Minkowski spacetime invariant, become simply 4D rotations, which
leave Euclidean space invariant.

1More generally Re(β) > 0. The reason for this is that Ĥ is not bounded from above. More explicitly,

〈xf | e−
β
~ Ĥ |xi〉 =

∑
E

〈xf |E〉 〈E|xi〉 e−
β
~E , (2.2)

which diverges when Re(β) < 0 since there is an infinite number of states with increasing energy.

29
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Path integral representation of KE

We go through the same steps we did to build the path integral representation of the
Minkowski propagator. Let x0 = xi, xN = xf , and β = Nε. Then,

KE(xf , xi, β) = 〈xN | e−
ε
~ Ĥ

ˆ
dxN−1 |xN−1〉 〈xN−1| . . .

ˆ
dx1 |x1〉 〈x1| e−

ε
~ Ĥ |x0〉 (2.3)

=

ˆ
dxN−1 . . . dx1

N∏
i=1

〈xi| e−
ε
~ Ĥ |xi−1〉 . (2.4)

Consider now

〈
x′
∣∣ e− ε

~ Ĥ |x〉 =
ˆ

dp
〈
x′
∣∣p〉 〈p|x〉 e− ε

~

(
p2

2m
+V (x)

)
(2.5)

=

ˆ dp
2π~

e
i
~p(x

′−x)e
− ε

~

(
p2

2m
+V (x)

)
. (2.6)

Now after doing the Gaussian integral, we find

〈
x′
∣∣ e− ε

~ Ĥ |x〉 =
√

m

2π~ε
e
− 1

~

(
1
2
m
(

x′−x
ε

)2
+V (x)

)
ε
, (2.7)

and therefore

KE(xf , xi, β) =
1

AE

ˆ N−1∏
k=1

dxk
AE

e−
1
~
∑N

i=1

(
1
2
mẋ2i+V (x)

)
ε

(
1

AE
≡ m

2π~ε

)
. (2.8)

Taking the limit ε→ 0, we find

KE(xf , xi, β) = lim
ε→0

1

AE

ˆ N−1∏
k=1

dxk
AE

e
− 1

~
´ β
0 dτ

(
1
2
m
(

dx
dτ

)2
+V (x)

)
(2.9)

≡
ˆ

DE [x] e
−SE [x]

~ , where SE [x] =
ˆ β

0
dτ
[
1

2
m

(
dx
dτ

)2

+ V (x)

]
Notice the two main differences compared to the Minkowski path integral: there is no i
in the exponent, and the action now has a +V (x) instead of a −V (x).

Notice that this result could have also been attained through analytic continuation.
Indeed, we have

t→ −iτ
T → −iβ

}
=⇒ dt→ −idτ,

(
dx
dt

)2

→ −
(

dx
dτ

)2

, (2.10)

and therefore

iS[x] = i

ˆ T

0
dt
[
1

2
m

(
dx
dt

)2

− V (x)

]
→
ˆ β

0
dτ

[
−1

2
m

(
dx
dτ

)2

− V (x)

]
= −SE [x].
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The path integral measures of the Minkowski P.I. and the Euclidean P.I. are also related
through analytic continuation.

The Euclidean path integral
ˆ

DE [x]e
− 1

~SE

is dominated by paths with minimal SE . The other paths are exponentially suppressed.
Notice that if V (x) is bounded from below (which is usually the case), then so is SE [x].
This is why the Euclidean path integral has better convergence properties than the
Minkowski version, where each path is weighted with a pure phase eiS/~.

Remark:
A link between the Euclidean path integral and statistical mechanics can be drawn by
interpreting the exponential in the path integral as a Boltzmann weight:

e−
1
~SE ∼ e

− E
kBT . (2.11)

One can then perform numerical Monte-Carlo simulations, where we sum over random
paths with probability distribution given by e−SE/~. Even if the Minkowski path integral
for a system cannot be computed exactly, one can use numerical methods to solve the
Euclidean path integral2.

Connection with statistical mechanics

Let |n〉 be the energy eigenstates. Then,

KE(xf , xi, β) = 〈xf | e−
β
~ Ĥ

(∑
n

|n〉 〈n|

)
|xi〉 (2.12)

=
∑
n

ψn(xf )ψ
∗
n(xi)e

−β
~En (2.13)

=⇒
ˆ

dxKE(x, x, β) =
∑
n

ˆ
dx|ψn(x)|︸ ︷︷ ︸

=1

e−
β
~En . (2.14)

The right-hand side of the last line is exactly the thermal partition function Z from
statistical mechanics, evaluated at temperature T = ~

kBβ
(here by T we denote the

temperature, not the period):
ˆ

dxKE(x, x, β) =
∑
n

e−
β
~En = Z

(
T =

~
kBβ

)
(2.15)

2An example where this is used is non-abelian gauge theories, which model the strong nuclear
interaction. Many observables cannot be computed in the Minkowski path integral, but can be solved
numerically by going to the Euclidean regime and discretizing spacetime (Lattice Gauge Theory).
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For clarity, we will denote Z(T = ~
kBβ

) ≡ Z(β).

Our formalism allows us to have a path integral representation of the partition
function:

Z(β) =

ˆ
dy
ˆ
x(0)=y
x(β)=y

DE [x]e
−SE [x]

~ ≡
ˆ
x(0)=x(β)

DE [x]e
−SE [x]

~ (2.16)

The sum is over periodic paths, with period β in imaginary time.

Note that we can also write the partition function as a trace, since

Z(β) =

ˆ
dxKE(x, x, β) =

ˆ
dx 〈x| e−

β
~ Ĥ |x〉 = Tr

(
e−

β
~ Ĥ
)

Example: Harmonic Oscillator
In this example we derive the Euclidean propagator for the HO by analytic continuation
of the Minkowski propagator. Recall that

K(HO)(xf , T ;xi, 0) = e
−iπ

2
int

(
ωT
π

)√
mω

2πi~| sin(ωT )|
e
imω

2~

(
x2f+x2i

)
cos(ωT )−2xixf

sin(ωT ) .

In this example we assume that T is small enough that we can neglect the phase term,
and write sin(ωT ) > 0. In that case,

K(HO)(xf , T ;xi, 0) =

√
mω

2πi~ sin(ωT )
e
imω

2~

(
x2f+x2i

)
cos(ωT )−2xixf

sin(ωT ) .

To get the Euclidean propagator, let T → −iβ. Then,

K
(HO)
E (xf , xi, β) =

√
mω

2π~ sinh(ωβ)
e
−mω

2~

(
x2f+x2i

)
cosh(ωβ)−2xixf

sinh(ωβ) (2.17)

It is also possible to derive this result directly from the path integral representation of KE .

Exercise 2.1 (HO energy levels from the Euclidean propagator).
Using the explicit form for the Euclidean propagator of the harmonic oscillator (eq. 2.17)
and its relation to the partition function (eq. 2.15), compute the energy levels of the
harmonic oscillator.

From the exercise above, one can see that the Euclidean propagator can be used to
derive the energy spectrum. In fact, the propagator also “knows” the eigenfunctions of
the system - see equation (2.13).
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Euclidean n-point correlators

Consider now a Euclidean time interval [−β/2, β/2], with β > 0, and let τi ∈ [−β/2, β/2],
i = 1, . . . , n. Consider then the following path integral:

ˆ x(β/2)=xf

x(−β/2)=xi
D[x]E e

−SE [x]

~ x(τ1) . . . x(τn). (2.18)

By analogy with the Minkowski case that we computed in lecture 3, we find that this
path integral is equal to the time-ordered correlator

〈xf | e−
βĤ
2~ T [x̂E(τ1) . . . x̂E(τn)] e

−βĤ
2~ |xi〉 , (2.19)

where
x̂E(τ) ≡ e

τ
~ Ĥ x̂Ee

− τ
~ Ĥ = x̂(−iτ). (2.20)

x̂E(τ) is the analytic continuation of the Heisenberg picture position operator.

We now attempt to find an expression in terms of path integral of another object:
the vacuum expectation value of the time-ordered product

〈0|T [x̂E(τ1) . . . x̂E(τn)] |0〉 , (2.21)

where |0〉 is the vacuum (the ground state of the system). To do so, we could look at the
limit β → ∞, since it corresponds to the temperature going to 0. At zero temperature,
we only get the contribution from the ground state, and we therefore hope to find the
expression above. Indeed, we have

lim
β→∞

〈xf | e−
βĤ
2~ T [x̂E(τ1) . . . x̂E(τn)] e

−βĤ
2~ |xi〉

=
∑
n,m

lim
β→∞

e−
β(En+Em)

2~ 〈xf |n〉 〈n| T [x̂E(τ1) . . . x̂E(τn)] |m〉 〈m|xi〉 .

Now, assuming that the energy levels are positive, we see that every term is exponentially
suppressed. The leading order term among all these is the one with the smallest energy,
i.e. the one with n = m = 0. We therefore find

lim
β→∞

〈xf | e−
βĤ
2~ T [x̂E(τ1) . . . x̂E(τn)] e

−βĤ
2~ |xi〉

= e−
βE0
~ ψ0(xf )ψ

∗
0(xi) 〈0|T [x̂E(τ1) . . . x̂E(τn)] |0〉

(
1 +O

(
e−

β(E1−E0)
2~

))
We can see the vacuum expectation value we were looking for. However, there are

extra factors in front which we want to get rid of. Note that

lim
β→∞

〈xf | e−
β
~ Ĥ |xi〉 =

∑
n

lim
β→∞

e−
β
~Enψn(xf )ψ

∗
n(xi)

= e−
βE0
~ ψ0(xf )ψ

∗
0(xi)

(
1 +O

(
e−

β(E1−E0)
~

))
,
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which cancels exactly the pieces we did not want! We can therefore write

〈0|T [x̂E(τ1) . . . x̂E(τn)] |0〉 = lim
β→∞

〈xf | e−
βĤ
2~ T [x̂E(τ1) . . . x̂E(τn)] e

−βĤ
2~ |xi〉

〈xf | e−
β
~ Ĥ |xi〉

(2.22)

= lim
β→∞

´
D[x]E e

−SE [x]

~ x(τ1) . . . x(τn)´
D[x]E e

−SE [x]

~

, (2.23)

where the path integrals’ boundary conditions are x(−β/2) = xi, x(β/2) = xf . 3

Remark:
Note that on the left-hand side, there is no dependency on xi or xf , which tells us that
the boundary conditions do not matter in the limit β → ∞. In other words, if we choose
x(−β/2) = x′i and x(β/2) = x′f and compute the path integrals with these boundary
conditions, the resulting vacuum expectation value on the left will not be changed.

It is convenient to define the Dirichlet n-point function GD as

~n/2GD(τ1, . . . , τn) ≡
〈xf = 0| e−

βĤ
2~ T [x̂E(τ1) . . . x̂E(τn)] e

−βĤ
2~ |xi = 0〉

〈xf = 0| e−
β
~ Ĥ |xi = 0〉

(2.24)

=

´
D[x]E e

−SE [x]

~ x(τ1) . . . x(τn)´
D[x]E e

−SE [x]

~

, (2.25)

where the factor ~n/2 is for later convenience. Note that we removed the limits β → ∞, and
that we set the boundary conditions to be Dirichlet B.C.: xi = xf = 0. Furthermore,
do not confuse the position eigenstate |x = 0〉 and the ground state |0〉. We find back
the vacuum expectation value by taking the limit β → ∞, since the boundary conditions
do not matter in that limit.

〈0|T [x̂E(τ1) . . . x̂E(τn)] |0〉 = lim
β→∞

~n/2GD(τ1, . . . , τn) (2.26)

Thermal n-point functions

Recall that
Z(β) =

ˆ
x(0)=x(β)

DE [x]e
−SE [x]

~ = Tr
(
e−

β
~ Ĥ
)

(2.27)

We can now compute the thermal average of the time-ordered products of x̂E(τ):

〈T [x̂E(τ1) . . . x̂E(τn)]〉β =
1

Z(β)
Tr
(
e−

β
~ ĤT [x̂E(τ1) . . . x̂E(τn)]

)
(2.28)

3Here we assumed that ψ0(xf )ψ
∗
0(xi) 6= 0.
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This again has a path integral representation, where now we have periodic boundary
conditions:

〈T [x̂E(τ1) . . . x̂E(τn)]〉β =

´
x(−β/2)=x(β/2)D[x]E e

−SE [x]

~ x(τ1) . . . x(τn)´
x(−β/2)=x(β/2)D[x]E e

−SE [x]

~

(2.29)

As before, we define the Periodic n-point function GP as

~n/2GP (τ1, . . . , τn) ≡ 〈T [x̂E(τ1) . . . x̂E(τn)]〉β (2.30)

=

´
x(−β/2)=x(β/2)D[x]E e

−SE [x]

~ x(τ1) . . . x(τn)´
x(−β/2)=x(β/2)D[x]E e

−SE [x]

~

. (2.31)

Exercise 2.2 (Ground state projector). Show that

lim
β→∞

1

Z(β)
e−

β
~ Ĥ = |0〉 〈0| (2.32)

Hint: compute matrix elements of the operators above in the energy basis.

Now as before, we would like to take the limit β → ∞. Using equation 2.32, we find

lim
β→∞

〈T [x̂E(τ1) . . . x̂E(τn)]〉β = lim
β→∞

1

Z(β)
Tr
(
e−

β
~ ĤT [x̂E(τ1) . . . x̂E(τn)]

)
(2.33)

= 〈0|T [x̂E(τ1) . . . x̂E(τn)] |0〉 , (2.34)

and therefore

〈0|T [x̂E(τ1) . . . x̂E(τn)] |0〉 = lim
β→∞

~n/2GD(τ1, . . . , τn) = lim
β→∞

~n/2GP (τ1, . . . , τn)

(2.35)
This explicitly shows that, in the β → ∞ limit, the boundary conditions with which
we compute the n-point functions does not matter; they both give the VEV of the
time-ordered product of x̂E ’s. In the next lecture, we will develop tools to compute the
functions GD and GP perturbatively.

From Euclidean to real time

For ease of notation, we now give a name to the vacuum expectation value of the
time-ordered product:

GE(τ1, . . . , τN ) = 〈0|T [x̂E(τ1) . . . x̂E(τN )] |0〉 (2.36)

How to obtain a correlation function in real (Lorentzian) time starting from this Euclidean
correlation function? One way is to consider the substitution τ → it, or more precisely
the Wick rotation

τ = eiθt, θ ∈ [0, π/2], (2.37)
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where θ = 0 corresponds to Euclidean time and θ = π/2 corresponds to real time. Doing
this transformation preserves the time-ordering, since if |τi| > |τj |, then ti > tj . The
time-ordered VEV in real time is therefore

〈0|T [x̂(t1) . . . x̂(tN )] |0〉 = GE(it1, . . . , itN ). (2.38)

The careful reader may wonder if such analytic continuation of GE is legal. Indeed, it is
important to ask what is the domain of analyticity of the Euclidean correlator. Consider
ordered τi’s, such that τ1 > . . . > τN .Then

GE(τ1, . . . , τN ) = 〈0| x̂E(τ1) . . . x̂E(τN ) |0〉 (2.39)

= e
1
~E0(τ1−τN ) 〈0| x̂Ee−

1
~ Ĥ(τ1−τ2)x̂E . . . x̂Ee

− 1
~ Ĥ(τN−1−τN )x̂E |0〉 (2.40)

= e
1
~E0(τ1−τN )

∑
m1,...,mN

e−
1
~E1(τ1−τ2) . . . e−

1
~EN−1(τN−1−τN )

· 〈0| x̂E |m1〉 〈m1| x̂E |m2〉 . . . 〈mN−1| x̂E |0〉 (2.41)

It is now easy to consider complex τi’s. We see that in order for the sums to converge,
we need Re(τk − τk+1) > 0. In the case of a Wick rotation τk → eiθtk, we must have

Re
(
eiθ(tk − tk+1)

)
= cos(θ)(tk − tk+1) > 0

Now since we assumed that the τ ’s were ordered, so must the tk’s, and since θ ∈ [0, π/2[,
the inequality above is respected. Notice that real time is at the boundary of the domain
of analyticity.

We can now look at the following limit:

lim
εk→0

ε1>...>εN

GE(ε1 + it1, . . . , εN + itN ) (2.42)

This is convergent because of the ordering of the ε’s. Furthermore, this will be equal to
the real time VEV, where the ordering is determined by the ordering of the ε’s, not the
t’s!

lim
εk→0

ε1>...>εN

GE(ε1 + it1, . . . , εN + itN ) = 〈0| x̂(t1) . . . x̂(tN ) |0〉 , ∀ ti ∈ R (2.43)

On the right-hand side, we have the out of time-order correlator that we wondered
about in lecture 3. Therefore, any ordering in real time can be obtained from this
continuation of the Euclidean correlator GE . This procedure, for the case N = 2, is
highlighted in more details in exercise 13.



Chapter 2 Functional and Euclidean methods 37

Summary of Lecture 5

• Euclidean path integral:

KE(xf , xi;β) = 〈xf | e−
β
~ Ĥ |xi〉 =

ˆ
DE [x]e

−SE
~ ,

where SE can be obtained from S by sending t→ −iτ .

• Thermal partition function:

Z(β) = Tr
(
e−

β
~ Ĥ
)
=

ˆ
dxKE(x, x;β) =

ˆ
x(0)=x(β)

DE [x]e
−SE

~

• Dirichlet and periodic n-point functions:

~n/2GD(τ1, . . . , τn) =

´ x(β/2)=0
x(−β/2)=0D[x]E e

−SE [x]

~ x(τ1) . . . x(τn)´ x(β/2)=0
x(−β/2)=0D[x]E e

−SE [x]

~

~n/2GP (τ1, . . . , τn) =

´
x(−β/2)=x(β/2)D[x]E e

−SE [x]

~ x(τ1) . . . x(τn)´
x(−β/2)=x(β/2)D[x]E e

−SE [x]

~

• Independence of boundary conditions:

lim
β→∞

~n/2GD(τ1, . . . , τn)

lim
β→∞

~n/2GP (τ1, . . . , τn)

 = 〈0|T [x̂E(τ1) . . . x̂E(τn)] |0〉 ≡ GE(τ1, . . . , τn)

• Wick rotation:

τj = eiθtj , θ ∈ [0, π/2].

{
θ = 0 : Euclidean
θ = π/2 : Minkowski

GE(τ1 = eiθt1, . . . , τn = eiθtn) −−−−→
θ→π/2

〈0|T [x̂(t1) . . . x̂(tn)] |0〉

• Out of time order correlator:

〈0| x̂(t1) . . . x̂(tN ) |0〉 = lim
εk→0

ε1>...>εN

GE(ε1 + it1, . . . , εN + itN )
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Lecture 6 - Functional methods

The main idea of functional methods is to couple the system to an external source in
order to probe the system. This idea is useful both in experimental and in theoretical
physics.

Examples:

• Magnetic field on a spin system

• Curved geometry in QFT

• EM waves on a system with charged particles

In practice:
We work in the Euclidean regime from now on. Define Z[β, J ] as the partition function
of the system coupled to an external source J(τ):

Z[β, J ] ≡
ˆ
x(−β/2)=x(β/2)

DE [x] exp

(
−1

~

ˆ β/2

−β/2
dτ [LE − x(τ)J(τ)]

)
(2.44)

This is useful because we can make the periodic n-point function GP appear by taking
derivatives with respect to J . Indeed, each derivative will bring down a factor of x(τ).
Explicitly,

~n
δ

δJ(τ1)
. . .

δ

δJ(τ1)
Z[β, J ] =

ˆ
DE [x]x(τ1) . . . x(τn)e

− 1
~
´ β/2
−β/2

dτ [LE−x(τ)J(τ)] (2.45)

Now that we have the appropriate factors of x(τ), we can set J = 0 to recover GP :

~n/2GP (τ1, . . . , τn) =
~n

Z[β, 0]

δ

δJ(τ1)
. . .

δ

δJ(τ1)
Z[β, J ]

∣∣∣∣
J=0

(2.46)

We can do the same exact process with Dirichlet (instead of periodic) boundary conditions:

KE [β, J ] ≡
ˆ x(β/2)=0

x(−β/2)=0
DE [x] exp

(
−1

~

ˆ β/2

−β/2
dτ [LE − x(τ)J(τ)]

)
(2.47)

=⇒ ~n/2GD (τ1, . . . , τn) =
~n

KE [β, 0]

δ

δJ(τ1)
. . .

δ

δJ(τ1)
KE [β, J ]

∣∣∣∣
J=0

(2.48)

We see that the n-point functions GP and GD are encoded into (derivatives of) the
partition function / propagator with the added source J . Before going on to study
general complicated systems with an external source, it is helpful to consider the usual
gaussian problem in the presence of J : the forced harmonic oscillator.
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The forced harmonic oscillator

Consider

KE [β, J ] =

ˆ x(β/2)=0

x(−β/2)=0
DE [x] exp

(
−1

~

ˆ β/2

−β/2
dτ
[
m

2

(
dx
dτ

)2

+
m

2
ω2x2 − x(τ)J(τ)

])

Note that we can express the Euclidean action in the following way:

SE =

ˆ β/2

−β/2
dτ
[
m

2

(
dx
dτ

)2

+
m

2
ω2x2

]
(2.49)

=
1

2

ˆ β/2

−β/2
dτ x(τ)

[
−m d2

dτ2 +mω2

]
x(τ) (2.50)

=
1

2

ˆ β/2

−β/2
dτ1dτ2 x(τ1)O(τ1, τ2)x(τ2), (2.51)

where
O(τ1, τ2) ≡ m

[
− ∂2

∂τ21
+ ω2

]
δ(τ1 − τ2). (2.52)

This is a “nice” form because it looks like the Gaussian integrals in n dimensions we
studied in Lecture 2. The operator O(τ1, τ2) contains a derivative acting on a delta
function, which can be dealt with by using integration by parts (more details are given
in B.2). We can now express the integral in the exponential of KE by completing the
square. We present here the conceptual reasoning, while the more rigorous version is
done in the exercises4.

The exponential in the propagator is essentially of the form

I = −1

2
xTOx+ JTx (2.53)

if we think of O as a big matrix and x, J as vectors. We would like to get rid of the
linear piece to be able to integrate using the usual Gaussian integration techniques. We
can introduce some new vector a:

I = −1

2
(xT + aT )O(x+ a) +

1

2
(aTO + JT )x+

1

2
xT (Oa+ J) +

1

2
aTOa (2.54)

At this point, we set Oa+ J = 0, or a = −O−1J . Then, as long as O is symmetric, we
get

I = −1

2
yTOy +

1

2
JTO−1J (y = x−O−1J) (2.55)

4Exercise (12) is done in Lorentzian signature and (14) in Euclidean signature. Note that they do
not immediately consider Dirichlet boundary conditions, but first perform a shift x = xc + y, which leads
to Dirichlet BC (y = 0 at the endpoints).
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In this form, the exponential splits into a Gaussian piece which will just become KE [β, 0]
after a change of variable in the path integral (DE [x] → DE [y]), and another piece which
is independent of y. This other piece can just be brought out in front of the path
integral, and we therefore expect

KE [β, J ] = KE [β, 0] · exp

(
1

2~

ˆ β/2

−β/2
dτ1dτ2 J(τ1)O−1(τ1, τ2)J(τ2)

)
, (2.56)

where now instead of using finite dimensional matrices for O and J , we went back to
the infinite dimensional case. The inverse of the operator O(τ1, τ2) will be given by its
Green’s function G(τ1, τ2) (with appropriate boundary conditions). G(τ1, τ2) satisfies

ˆ
dτ3O(τ1, τ3)G(τ3, τ2)︸ ︷︷ ︸
=m

[
− ∂2

∂τ21
+ω2

]
G(τ1,τ2)

= δ(τ1 − τ2), G(±β/2, τ2) = 0 (Dirichlet B.C.)

The Green’s function G for the operator O with Dirichlet B.C. could be written GD(τ1, τ2),
but it could be confused with the Dirichlet 2-point function that we defined in Lecture 5
(eq. 2.24). However, we will see later on that they are actually the same!

Using the shorthand notation

J ·GD · J ≡
ˆ β/2

−β/2
dτ1dτ2 J(τ1)GD(τ1, τ2)J(τ2), (2.57)

we find

KE [β, J ] = KE [β, 0]e
1
2~J ·GD·J =

√
mω

2π~ sinh(ωβ)
e

1
2~J ·GD·J (2.58)

Exercise 2.3 (Green’s function for the HO with Dirichlet B.C.).
Consider the equations verified by the Green’s function GD(τ1, τ2):

m

[
− ∂2

∂τ21
+ ω2

]
GD(τ1, τ2) = δ(τ1 − τ2), GD(±β/2, τ2) = 0. (2.59)

Show that
GD (τ1, τ2) =

1

mω

sinhω (β/2 + τ<) sinhω (β2 − τ>)

sinhωβ
, (2.60)

where τ< = min(τ1, τ2) and τ> = max(τ1, τ2).
Hint: integrate the differential equation for GD with respect to τ1 on the interval [τ2 −
ε, τ2 + ε], with infinitesimal ε in order to get a matching condition between two solutions,
where one is defined on τ1 < τ2 and the other one on τ1 > τ2.
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The same reasoning as for KE [β, J ] allows us to compute Z[β, J ]:

Z[β, J ] = Z[β, 0]e
1
2~J ·GP ·J =

1

2 sinh(ωβ/2)
e

1
2~J ·GP ·J (2.61)

where GP is the Green’s function with periodic B.C.:

m

[
− ∂2

∂τ21
+ ω2

]
GP (τ1, τ2) = δ(τ1 − τ2),

{
GP (−β/2, τ2) = GP (β/2, τ2)

∂τ1GP (−β/2, τ2) = ∂τ1GP (β/2, τ2)
.

This gives

GP (τ1, τ2) =
1

2mω

coshω
(
β
2 − |τ1 − τ2|

)
sinh ωβ

2

(2.62)

The periodic boundary conditions that we impose on GP can be understood as follows.
Consider the function f(τ1) ≡ GP (τ1, τ2). This function f(τ1) is defined on [−β/2, β/2],
and has the same value and derivative at the boundaries. We can therefore “curl up”
the interval into a circle, where the boundary points −β/2 and β/2 are identified. The
function f(τ1) is completely smooth on the circle since it is smooth when crossing from
−β/2 to β/2.

An important property of both Green’s functions GD and GP is their behaviour as
β → ∞:

lim
β→∞

GD(τ1, τ2) = lim
β→∞

GP (τ1, τ2) =
1

2mω
e−ω|τ1−τ2| (2.63)

Free n-point correlators

In QFT, the word “free” means that there are no interactions, and the action is therefore
Gaussian. In quantum physics, this is just the usual harmonic oscillator. Recall that

~n/2GP (τ1, . . . , τn) =
~n

Z[β, 0]

δ

δJ(τ1)
. . .

δ

δJ(τ1)
Z[β, J ]

∣∣∣∣
J=0

(2.64)

~n/2GD (τ1, . . . , τn) =
~n

KE [β, 0]

δ

δJ(τ1)
. . .

δ

δJ(τ1)
KE [β, J ]

∣∣∣∣
J=0

, (2.65)

where at this point GD(τ1, . . . , τn) and GP (τ1, . . . , τn) are the n-point functions we
defined in lecture 5 (equations 2.24 and 2.30), not the Green’s functions from this lecture.
However, as we hinted at previously, they will turn out to be the same when n = 2, which
is why we use the same notation for the two different concepts. Recall also that

Z[β, J ] = Z[β, 0]e
1
2~J ·GP ·J (2.66)

KE [β, J ] = KE [β, 0]e
1
2~J ·GD·J , (2.67)
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where now in the exponential we have the Green’s functions we computed in equations
(2.60) and (2.62). Since J is an arbitrary function, we are free to rescale it as J →

√
~J ,

which leads to

G (τ1, . . . , τn) =
δ

δJ(τ1)
. . .

δ

δJ(τn)
e

1
2
J ·G·J

∣∣∣∣
J=0

(2.68)

where now G can be either GP or GD. At this point we introduce a graphical notation
to compute the n derivatives acting on the exponential. Let

1

2

ˆ
dτ1dτ2J(τ1)G(τ1, τ2)J(τ2) = (2.69)

ˆ
dτ2G(τ1, τ2)J(τ2) = τ1 (2.70)

G(τ1, τ2) = τ1 τ2 (2.71)

The reason why this notation is helpful is because it represents how derivatives act on
the integral in the exponential:

δ

δJ(τ1)
= τ1 (2.72)

δ

δJ(τ2)
τ1 = τ1 τ2 (2.73)

In addition to this property, we see from equation (2.68) that we must set J = 0 after
taking the derivatives. When J = 0, any ⊗ is 0. Furthermore, the “direction” of a
diagram does not matter:

τ1 = τ1 , τ1 τ2 = τ2 τ1 (2.74)

We are now ready to prove that the 2 point functions GD(τ1, τ2) and GP (τ1, τ2) (left-
hand side of eq. 2.68) are the same as the Green’s functions GD(τ1, τ2) and GP (τ1, τ2)
(right-hand side of eq. 2.68):

G(τ1, τ2) =
δ

δJ(τ1)

δ

δJ(τ2)
e

1
2
J ·G·J

∣∣∣∣
J=0

(2.75)

=
δ

δJ(τ1)

(
τ2 · e

1
2
J ·G·J

)∣∣∣∣
J=0

(2.76)

=
(
τ2 τ1 + τ2 · τ1

)
· e

1
2
J ·G·J

∣∣∣
J=0

(2.77)

= τ2 τ1 (2.78)
= G(τ1, τ2). (2.79)

Our notation for the Green’s function is therefore justified.
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A similar graphical computation can show us that any n-point function with n odd is
0, as there will always be a ⊗ left in one of the diagrams. The interesting computation is
the 4-point function:

G(τ1, τ2, τ3, τ4) =
δ

δJ(τ1)

δ

δJ(τ2)

(
τ3 τ4 + τ3 · τ4

)
· e

1
2
J ·G·J

∣∣∣
J=0

=

τ1 τ2

τ3 τ4

+

τ4 τ2

τ3 τ1

+

τ4 τ1

τ3 τ2

=

τ1 τ2

τ3 τ4

+

τ1 τ2

τ3 τ4

+

τ1 τ2

τ3 τ4

= G(τ1, τ2)G(τ3, τ4) +G(τ1, τ3)G(τ2, τ4) +G(τ1, τ4)G(τ2, τ3) (2.80)

Wick’s theorem

The previous computation for the 4-point function shows the way to generalize to arbitrary
n:

G(τ1, . . . , τn) =


0 if n is odd∑

p∈σ(n)

G(τp(1), τp(2)) . . . G(τp(n−1), τp(n)) if n is even (2.81)

where σ(n) is the group of permutations of n elements where the permutation of two ele-
ments in a pair (G(τi, τj) = G(τj , τi)) and the permutation of two pairs (G(τ1, τ2)G(τ3, τ4) =
G(τ3, τ4)G(τ1, τ2)) is identified. It is useful to know the number of terms in the sum over
the permutations in (eq. 2.81). We have(

number of permutations
p ∈ σ(n)

)
=

n!

(n/2)!2n/2
= (n− 1)!! = (n− 1)(n− 3)(n− 5) . . .

(2.82)

Equation (2.81) is known in QFT as Wick’s theorem.

Note that what we did above was specific to the harmonic oscillator. Indeed, being
able to factorize

Z[β, J ] = Z[β, 0]e
1
2
J ·G·J

is entirely dependent on the fact that the path integral is Gaussian. Even the Green’s
functions GP and GD were found for the specific case of the harmonic oscillator, since
they were the inverse of the operator O(τ1, τ2).
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Summary of Lecture 6

• Propagators as functional derivatives of the system with a source:

~n/2GP (τ1, . . . , τn) =
~n

Z[β, 0]

δ

δJ(τ1)
. . .

δ

δJ(τ1)
Z[β, J ]

∣∣∣∣
J=0

~n/2GD (τ1, . . . , τn) =
~n

KE [β, 0]

δ

δJ(τ1)
. . .

δ

δJ(τ1)
KE [β, J ]

∣∣∣∣
J=0

• Forced harmonic oscillator:

Z0[β, J ] = Z0[β, 0]e
1
2~J ·GP ·J , GD (τ1, τ2) =

1

mω

sinhω (β/2 + τ<) sinhω (β2 − τ>)

sinhωβ

KE,0[β, J ] = KE,0[β, 0]e
1
2~J ·GD·J , GP (τ1, τ2) =

1

2mω

coshω
(
β
2 − |τ1 − τ2|

)
sinh ωβ

2

• Wick’s theorem:

G(τ1, . . . , τn) =


0 if n is odd∑

p∈σ(n)

G(τp(1), τp(2)) . . . G(τp(n−1), τp(n)) if n is even
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Lecture 7 - Feynman diagrams

Lecture 6 focused on deriving results for the harmonic oscillator. However, we would
like to expand our methods to more general systems, where the action does not only
contain quadratic terms. As you might expect, these more complicated systems will not
be solvable exactly, but they will be tractable when assuming that the deviation from
the HO is small.

Perturbation theory

Consider the case of the anharmonic oscillator, where

V (x) =
1

2
mω2x2 +∆V (x). (2.83)

∆V (x) could, for example, be a quartic term like λx4. If we denote the lagrangian of the
unperturbed HO by L0, the partition function of the perturbed system can be written as

Z[β, J ] =

ˆ
DE [x] exp

(
−1

~

ˆ β/2

−β/2
dτ [LE,0 − x(τ)J(τ) + ∆V (x)]

)
(2.84)

=

ˆ
DE [x] exp

(
−1

~

ˆ β/2

−β/2
dτ ∆V (x)

)
︸ ︷︷ ︸

W

exp

(
−1

~

ˆ β/2

−β/2
dτ [LE,0 − x(τ)J(τ)]

)
.

Expanding the exponential, we find

W =

∞∑
k=0

1

k!

(
−1

~

)k ˆ β/2

−β/2
dτ1 . . . dτk∆V (x(τ1)) . . .∆V (x(τk)). (2.85)

Since we assume ∆V (x) to be some polynomial in x, we see that W will in fact be a sum
of terms with a certain number of x(τ1), a certain number of x(τ2), etc... However, one
can replace these x(τi) by ~ δ

δJ(τi)
, since this derivative acting on the exponential on the

right will bring down factors of x(τi). We therefore can replace

W → 1

k!

(
−1

~

)k ˆ β/2

−β/2
dτ1 . . . dτk∆V

(
~

δ

δJ(τ1)

)
. . .∆V

(
~

δ

δJ(τk)

)
. (2.86)

At this point, since this sum does not depend on x anymore, we can bring the sum
outside the path integral and convert it back to an exponential. We therefore have

Z[β, J ] = exp

(
−1

~

ˆ β/2

−β/2
dτ ∆V

(
~

δ

δJ(τ)

))ˆ
D[x] exp

(
−1

~

ˆ β/2

−β/2
dτ [LE,0 − x(τ)J(τ)]

)
︸ ︷︷ ︸

≡Z0[β,J ]

This decomposition is useful because we have compute Z0[β, J ] in the previous section!
After rescaling J →

√
~J as before, we find

Z[β, J ] = Z0[β, 0] exp

(
−1

~

ˆ β/2

−β/2
dτ ∆V

(√
~

δ

δJ(τ)

))
e

1
2
J ·GP ·J (2.87)
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At this point, we can turn the source off after computing all the derivatives to get the
partition function for the perturbed system:

Z[β] = Z0[β] exp

(
−1

~

ˆ β/2

−β/2
dτ ∆V

(√
~

δ

δJ(τ)

))
e

1
2
J ·GP ·J

∣∣∣∣∣
J=0

(2.88)

Example: quartic perturbation
Consider

∆V (x) =
1

4!
λ4x

4, (2.89)

where we assume that λ4 is a small parameter. We can perform an expansion in λ4 by
expanding out the exponential in (eq. 2.88). In practice, if we consider the leading order
in λ4, we find

ZLO[β] = Z0[β]

(
1− ~

ˆ β/2

−β/2
dτ 1

4!
λ4

δ4

δJ(τ)4

)
e

1
2
J ·GP ·J

∣∣∣∣∣
J=0

(2.90)

= Z0[β]

(
1− 1

4!
~λ4
ˆ β/2

−β/2
dτ δ4

δJ(τ)4
e

1
2
J ·GP ·J

∣∣∣∣
J=0

)
(2.91)

Now in order to compute the derivatives, we can simply use Wick’s theorem to get

δ4

δJ(τ)4
e

1
2
J ·GP ·J

∣∣∣∣
J=0

= 3GP (τ, τ)
2, (2.92)

or we could use the graphical notation, which would give

δ4

δJ(τ)4
e

1
2
J ·GP ·J

∣∣∣∣
J=0

= 3 = 3GP (τ, τ)
2. (2.93)

The reason why there is a factor of 3 is because there are multiple equivalent ways to
construct this diagram. One can think of starting with the point τ in the middle, out of
which 4 legs come out (4 because we have 4 derivatives). Our task is to connect the 4
legs, which is essentially what Wick’s theorem is about: we need to sum over each way of
connecting the legs. Graphically, we pick one of the 4 legs, and we choose to connect it
with one of the 3 remaining ones: that gives 3 possibilities. Then the last two legs have no
choice but to be paired together. Therefore, the multiplicity of this diagram is 3, which is
the same as the number of terms in the sum of Wick’s theorem in this case (see eq. (2.82)).

Using this result, the partition function for the perturbed harmonic oscillator at
leading order in λ is

ZLO[β] = Z0[β]

(
1− 1

8
~λ4
ˆ β/2

−β/2
dτ GP (τ, τ)2

)
. (2.94)
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The integral can be done easily by using the definition of the periodic Green’s function
from equation (2.62):

ZLO[β] = Z0[β]

(
1− 1

32

~βλ4
m2ω2

coth2
(
ωβ

2

))
. (2.95)

Before going further with the quartic perturbation example, we can study another
object from statistical mechanics: the free energy F (β). For our purposes, it is defined
as

F (β) = −~
β
ln(Z(β)) ⇔ Z(β) = e−

β
~F (β) (2.96)

Knowing the free energy allows us to extract the ground state energy of the system:

lim
β→∞

F (β) = E0 (2.97)

If we know the partition function in perturbation theory as in equation (2.95), we can
compute the free energy and extract the ground state energy of the perturbed system
(as an expansion in the small parameter describing the perturbation).

Going back to our quartic perturbation example, we find

FLO(β) = −~
β
ln(Z0[β])−

~
β
ln

(
1− 1

32

~βλ4
m2ω2

coth2
(
ωβ

2

))
(2.98)

=
~ω
2

+
~
β
ln
(
1− e−ωβ

)
+

~
β

(
1

32

~βλ4
m2ω2

coth2
(
ωβ

2

))
(2.99)

=
~ω
2

[
1 +

2

ωβ
ln
(
1− e−ωβ

)
︸ ︷︷ ︸

=F0(β)

+
1

16

~λ4
m2ω3

coth2
(
ωβ

2

)
︸ ︷︷ ︸

perturbation

]
(2.100)

One can clearly identify here the dimensionless coupling:

λ̄ =
~λ4
m2ω3

(2.101)

This dimensionless coupling is important because it is the number that regulates the
validity of the perturbative expansion.

In the limit β → ∞, we obtain the ground state energy of the system:

E0 =
~ω
2

[
1 +

1

16
λ̄+O(λ̄2)

]
(2.102)

This result can be checked using the usual time-independent perturbation theory methods:

E0 =
~ω
2

+ 〈0| λ4
4!
x4 |0〉+O(λ24) (2.103)
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We now consider the next order in perturbation theory. The order λ24 is

1

2!

(
−~λ4

4!

)2 ˆ β/2

−β/2
dτ1dτ2

δ4

δJ(τ1)4
δ4

δJ(τ2)4
e

1
2
J ·GP ·J

∣∣∣∣∣
J=0

(2.104)

We now use the graphical notation to compute this. We have two vertices, τ1 and τ2,
which both have 4 legs. Our task now is to connect these legs and to keep track of the
associated combinatorial factors (= the multiplicities of the diagrams).

• The most obvious diagram is the disconnected diagram: just two copies of the
one we found for the leading order case. We get

3 · 3 = 9GP (τ1, τ1)
2GP (τ2, τ2)

2. (2.105)

• Another diagram is to connect all 4 legs of the vertex τ1 to the 4 legs of the vertex
τ2. There is 4! = 24 ways to connect the legs, and we therefore get a factor

24 = 24GP (τ1, τ2)
4 (2.106)

• Lastly, we can do the hybrid case:

(2.107)

The multiplicity of this diagram is a little bit harder. Consider one of the two
vertices. We must choose 2 out of 4 legs to be connected with each other, which is
equal to 6 possibilities. The same happens for the other vertex. Finally, the two
remaining legs must connect to the two remaining legs of the other vertex, which
gives an additional factor of 2 possibilities. This gives an overall multiplicity of
6 · 6 · 2 = 72, and we therefore have a factor

72 = 72 ·GP (τ1, τ1)2GP (τ1, τ2)2GP (τ2, τ2)2

A useful trick to check that we did the combinatorics correctly is to compare the sum of
the multiplicities of the diagrams to the number of terms in the sum in Wick’s theorem,
equation (2.82). In this case, we have

(8− 1)!! = 7 · 5 · 3 = 105 = 9 + 24 + 72,

which is reassuring.
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Free energy and connected diagrams

An important property of the free energy is that it can be completely written in terms
of connected diagrams, unlike the partition function which contains disconnected
diagrams. Before showing this in a general case, we compute the free energy to order λ24
(next-to-leading order) in our quartic perturbation example:

ZNLO(β) = Z0[β]

(
1− ~λ4

4!

ˆ β/2

−β/2
dτ

3
+

1

2!

(
−~λ4

4!

)2 ˆ β/2

−β/2
dτ1dτ2

·

9 · + 24 + 72


)

One can see here that the disconnected diagram term looks a lot like the leading order
term squared. Actually, it is a general result that the partition function will be the
exponential of the connected diagrams. Then, when we expand out the exponential,
we get disconnected diagrams corresponding to the squares (or higher power) of the
connected diagram. In our case, we can write

Z(β) = Z0(β) exp

(
− ~λ4

4!

ˆ β/2

−β/2
dτ

3


+
1

2!

(
−~λ4

4!

)2 ˆ β/2

−β/2
dτ1dτ2

[
24 + 72

])
(2.108)

We can get the free energy by taking the logarithm, and we therefore have the general
result that

F (β) = F0(β) +
∑

connected diagrams (2.109)

Exercise 2.4 (Second order corrections to the ground state energy).
Compute the second order correction to the ground state energy for the perturbation
∆V (x) = λ4

4! x
4. More specifically, find c in the equation

E0 =
~ω
2

[
1 +

1

16
λ̄+ cλ̄2 +O(λ̄3)

]
. (2.110)

We present now two (non rigorous) arguments to convince ourselves that the free
energy only cares about connected diagrams.



50 Chapter 2 Functional and Euclidean methods

First argument:
Assume that the free energy does in fact only consist of connected diagrams. Then,

Z(β)

Z0(β)
= e−

β
~ (F−F0) ∼ e

∑
a Ca (2.111)

where a labels the different diagrams and Ca represents a connected diagram. Therefore,
Z(β)

Z0(β)
∼
∏
a

(1 + Ca +
1

2
C2
a + . . .) (2.112)

where now C2
a is a disconnected diagram made with 2 copies of Ca, just like in equation

(2.105). We would also get different types of disconnected diagrams at higher order, such
as a term CaCb where the disconnected diagram is two different connected diagrams. In
our example, we did not encounter these but they would have appeared at order λ34. It is
fairly straightforward that the product over a becomes a sum over all possible diagrams
(not only the connected ones). Our assumption that F = F0 +

∑
aCa is therefore

reasonable, since we found all diagrams in Z starting from only connected diagrams in
F . This is not a complete proof since we have not verified that the coefficients in front of
the diagrams also correspond.

Second argument:
Consider first a connected diagram, and study its dependency on β in the β → ∞ limit:(

connected
diagram

)
∼
ˆ

dτ1 . . . dτn f(τ1, . . . , τn), (2.113)

where f is some function characterizing the diagram. Using time-translation invariance,
we can set the origin of the time axis at τ1, so that(

connected
diagram

)
∼
ˆ

dτ1
ˆ

dτ2 . . . dτn f(0, τ2, . . . , τn)︸ ︷︷ ︸
converges as β → ∞

∼ β (2.114)

The reason why the integral converges is that as β → ∞, we have GP (τi, τj) ∼
1

2mωe
−ω|τi−τj |, and therefore the integrand is exponentially suppressed as the separation

between τi and τj increases.
Similarly, a disconnected diagram will scale as(

diagram with k
connected components

)
∼
(

connected
diagram

)k
∼ βk (2.115)

because a disconnected diagram is just the products of its connected components. Now,
consider the free energy, and assume that it also contains disconnected diagrams. In that
case, we would have

F (β) = F0(β)−
~
β

∑
diagrams (2.116)

β→∞−−−→ ~ω
2

− ~
β

(
connected
diagram

)
︸ ︷︷ ︸

∼β0

−
∞∑
k=2

~
β

(
diagram with k

connected components

)
︸ ︷︷ ︸

∼βk−1
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However, we know that F (β) β→∞−−−→ E0, which is finite, therefore there cannot be discon-
nected diagrams in F (β)− F0(β).

We now present a proof of equation (2.109). Consider n decoupled copies of the
same system. Then, the full partition function is the product of the initial system’s
partition function

Zn(β) = [Z(β)]n =⇒ Fn(β) = nF (β) (2.117)

Perturbatively, we have

Zn(β)

[Z0(β)]n
= exp

(
−1

~

ˆ β/2

−β/2
dτ

n∑
i=1

∆V

(√
~

δ

δJi(τ)

))
e

1
2

∑n
i=1 Ji·GP ·Ji

∣∣∣∣∣
J=0

(2.118)

= 1 + n
∑(

connected
diagrams

)
+ n2

∑(
diagrams with 2

connected components

)
+ . . . (2.119)

We can then take the logarithm of the above to get

ln

(
Zn(β)

[Z0(β)]n

)
≈ n

∑(
connected
diagrams

)
+ n2

∑(
diagrams with 2

connected components

)
+ . . . (2.120)

since we are still doing perturbation theory (each diagram is “small compared to 1”). On
the other hand, in terms of the free energy we have

ln

(
Zn(β)

[Z0(β)]n

)
∼ n(F (β)− F0(β)) (2.121)

Therefore,

n(F (β)− F0(β)) ∼ n
∑(

connected
diagrams

)
+

∞∑
k=2

nk
∑(

diagrams with k
connected components

)
︸ ︷︷ ︸

these must vanish!

, (2.122)

where we identify terms with equal powers of n on both sides of the equation. We have
now proven that

F (β)− F0(β) ∼
∑(

connected
diagrams

)
. (2.123)

Summary of Lecture 7

• Perturbation theory:

Z[β] = Z0[β] exp

(
−1

~

ˆ β/2

−β/2
dτ ∆V

(√
~

δ

δJ(τ)

))
e

1
2
J ·GP ·J

∣∣∣∣∣
J=0
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• Free energy:

F (β) = −~
β
ln(Z(β)), lim

β→∞
F (β) = E0

• Disconnected diagrams exponentiate:

F (β) = F0(β) +
∑

connected diagrams



Chapter 3

Non-perturbative effects

Lecture 8 - The semiclassical and fixed energy propagators

When the wavelength λ of a particle is much shorter than the typical length L over which
the potential varies, we expect the dynamics to be well described by the classical motion.
Indeed, we can expect to be able to form a wave packet of size between λ and L, whose
motion should be well appoximated by that of a classical particle. This is analogous to
the geometric optics limit of the propagation of EM waves.

We have already seen in the previous chapter a method to analytically deal with
systems that cannot be solved exactly: perturbation theory, with the use of Feynman
diagrams. This method was only valid when the perturbation was small. In this chapter,
we present another approximation, the semiclassical approximation. It corresponds
to the limit ~ → 0, or more precisely

λ

L
=

~
p

V ′

V
� 1. (3.1)

Note that these methods do not have a diagrammatic representation: when a small
coupling g is involved, semiclassical contributions are typically proportional to e−1/g. For
example, we will see in lecture 10 that the separation between the ground state energy
E0 and the first excited state energy E1 in the double well potential can be computed
using semiclassical methods, which give the following energy splitting:

E1 − E0 ∝ e−2/g (3.2)

where g is a dimensionless coupling. These effects vanish faster than any power of g when
g → 0 and thus they are called non-perturbative corrections.

The semiclassical propagator

Recall the definition of the propagator in Minkowski space:

K(xf , tf ;xi, ti) =

ˆ
D[x]e

i
~S[x]. (3.3)

53
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We would like to study its behavior in the limit “~ → 0”. To do so, consider the change
of variable x(t) → x′(t) = xc(t) +

√
~y(t), where xc(t) is the classical trajectory, found

by solving the classical equation of motion

δS

δx

∣∣∣∣
x=xc

= 0. (3.4)

In the approximation of small ~, we can Taylor expand the action

S[xc +
√
~y] = S[xc] +

ˆ
dt1dt2

1

2

δ2S

δx2

∣∣∣∣
x=xc

√
~y(t1)

√
~y(t2) +O(~3/2y3) (3.5)

where the first order variation vanishes since xc is the classical solution. Therefore, we
obtain 1

K(xf , tf ;xi, ti) = e
i
~S[xc]

ˆ
D[y]e

i
2

δ2S[x]

δx2

∣∣∣∣
x=xc

y2+O(
√
~y3)

, (3.6)

It is then natural to define the semiclassical propagator as the propagator from (eq.
3.6) without the O(

√
~y3):

Ksc(xf , tf ;xi, ti) = e
i
~S[xc]I[xc], (3.7)

where I[xc] =
ˆ

D[y]e
i
2

´
dt1dt2 δ2S[x]

δx(t1)δx(t2)

∣∣∣∣
x=xc

y(t1)y(t2)

. (3.8)

If we consider the specific example

S[x] =

ˆ tf

ti

dt
[
1

2
mẋ2 − V (x)

]
, (3.9)

we find

I[xc] =

ˆ
D[y]e

i
2

´
dt

[
mẏ2−Ω2(t)y2

]
, Ω2(t) ≡ V ′′(xc(t)) (3.10)

Notice that we have found a closed form expression for I[xc] with the Gelfand-Yaglom
formula (1.107). Therefore, we can write

I[xc] = e−i
π
2
n−

√
m

2πi~|ψ0(tf )|
, (3.11)

where
[
−m∂2t − Ω2(t)

]
ψ0(t) = 0,

{
ψ0(ti) = 0

ψ̇0(ti) = 1
(3.12)

There is a lot to be said about this phase factor in front: it can be deduced in several
ways, and we present in the appendix (B.3) different ways of thinking about it. In
summary, we show that the number of negative eigenvalues n− from the Gelfand-Yaglom
formula is equal to the number of zeroes of ψ0(t). It is much easier to find the number of
zeroes than to count the negative eigenvalues, which is why this connection is interesting.

1Notice that the jacobian associated to the change of integration variable from x(t) to y(t) is just a
(divergent) constant.
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Van Vleck–Pauli–Morette formula

The goal of this formula is to give an explicit expression for ψ0(tf ) in terms of the classical
action Sc. The classical path, xc, verifies the equation of motion

mẍc + V ′(xc) = 0 (3.13)

Taking a derivative with respect to time, we find

mv̈c + V ′′(xc)vc = 0, vc = ẋc (3.14)

We now see that vc and ψ0 solve the same ODE (although with different boundary
conditions). It is then possible to relate them using an auxiliary function, the Wronskian:

W (t) ≡ vc(t)ψ̇0(t)− v̇c(t)ψ0(t) = v2c (t)
d
dt

(
ψ0(t)

vc(t)

)
(3.15)

The Wronskian is constant because of the equations of motion:

Ẇ (t) = vc(t)ψ̈0(t)− v̈c(t)ψ0(t) (3.16)

= −V
′′(xc)

m
[vc(t)ψ0(t)− vc(t)ψ0(t)] = 0 (3.17)

Therefore, W (t) =W (ti) = vc(ti). This allows us to express ψ0(tf ) as a function of vc:

ψ0(tf ) = vc(ti)vc(tf )

ˆ tf

ti

dt 1

v2c (t)
(3.18)

The goal now is to connect with the classical action Sc. At the end of lecture 3, we saw
interesting relations between derivatives of the action and the energy E and the final
momentum pf :

∂Sc
∂xf

= pf ,
∂Sc
∂tf

= −E (3.19)

Note that

pf = mvf = m

√
2

m
(E − V (xf )), vf ≡ vc(tf ) (3.20)

which implies

∂2Sc
∂xi∂xf

=
∂pf
∂xi

=
∂E

∂xi

√
m

2(E − V (x))
=
∂E

∂xi

1

vf
, (3.21)

There is a trick to easily compute ∂E
∂xi

. Take the derivative with respect to xi of the
following equation:

tf − ti =

ˆ tf

ti

dt =
ˆ xf

xi

dx
v

=

ˆ xf

xi

dx√
2
m(E − V (x))

(3.22)
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Obviously tf − ti is independent of xi, but both E and the lower bound on the integral
on the right hand side depend on xi. Therefore,

0 = − 1√
2
m(E − V (xi))

− 1

m

∂E

∂xi

ˆ xf

xi

dx
(

2

m
(E − V (x))

)−3/2

(3.23)

= − 1

vi
− 1

m

∂E

∂xi

ˆ xf

xi

dx
v3

(3.24)

=⇒ ∂E

∂xi
= − m

vi
´ xf
xi

dx
v3

, (3.25)

Plugging this back into equation (3.21) and using equation (3.18), we find
∂2Sc
∂xi∂xf

= − m

vivf
´ xf
xi

dx
v3

= − m

ψ0(tf )
(3.26)

The semiclassical propagator can therefore be written as

Ksc(xf , tf ;xi, ti) = e
i
~S[xc]e−i

π
2
n−

√
1

2πi~

∣∣∣∣ ∂2Sc∂xi∂xf

∣∣∣∣ (3.27)

This is the Van Vleck–Pauli–Morette formula.

The fixed energy propagator

The energy levels of a quantum system can also be found from the propagator, by using
the fixed energy propagator

K(E;xf , xi) ≡ lim
ε→0+

ˆ ∞

0
dt 〈xf | e−i

Ĥ−E−iε
~ t |xi〉 , (3.28)

We will show that if we think of E as a complex number and K(E;xf , xi) as a complex
function of E, the energy levels are given by poles of this function, and the energy
eigenstates are related to the residues. Furthermore, semiclassical methods can be used
to find K(E;xf , xi) in the limit of small ~, which in turn leads to finding approximate
energy levels. The goal of this section is to understand the analytic structure of the fixed
energy propagator, and to see how useful information about the system can be extracted
from it.

Note that in the definition above, the iε prescription is present to ensure the con-
vergence of the integral when t → ∞: the integrand vanishes at t → ∞ for any small
ε for real E. If we analytically continue to complex E, we must look at Im(E) > 0 to
avoid exponential growth at infinity. Furthermore, we are assuming the hamiltonian is
time-independent.

Using the definition of the usual propagator K(xf , t;xi, 0) = 〈xf | e−
i
~ Ĥt |xi〉, we can

express the above as

K(E;xf , xi) ≡
ˆ ∞

−∞
dte

i
~Etθ(t)K(xf , t;xi, 0). (3.29)
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Note that the iε prescription is implicit here. We see here that the fixed energy propagator
can be interpreted as the fourier transform of the function θ(t)K(xf , t;xi, 0), which is
called the retarded propagator.

Performing the integration explicitly in (eq. 3.28) gives us

K(E;xf , xi) = lim
ε→0+

〈xf |
i~

E − Ĥ + iε
|xi〉 , (3.30)

Inserting a basis of energy eigenstates, we find

K(E;xf , xi) = i~
∑
n

ψn(xf )ψ
∗
n(xi)

E − En
. (3.31)

Let us now think of E as a complex variable and study the analytic structure of
K(E;xf , xi). If Ĥ has a discrete spectrum, K(E;xf , xi) has simple poles at the eigen-
values of Ĥ (the energy levels En). However, it is also possible that Ĥ has a continuous
spectrum of eigenvalues, in which case a branch cut would appear in the complex E
plane (see figure 3.1).

Figure 3.1: Analytic structure of K(E;xf , xi) in the E-plane.

One can get significant information about energy levels by using this analytic structure.
Indeed, consider the integral

ˆ ∞

−∞
dx
ˆ
CΛ

dE
2πi

K(E;x, x), (3.32)

where CΛ is a contour in the complex plane that encircles all energy levels below a
threshold value Λ (see figure 3.2). Here we are assuming a discrete energy spectrum.
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Figure 3.2: Contour of integration CΛ in the E-plane picking up all the poles of
K(E;xf , xi) below E = Λ.

Using equation (3.31), we have

ˆ ∞

−∞
dx
ˆ
CΛ

dE
2πi

K(E;x, x) = i~
∑
n

ˆ ∞

−∞
dx |ψn(x)|2

ˆ
CΛ

dE
2πi

1

E − En
(3.33)

= i~
∑
En<Λ

1 ≡ i~ρ(Λ), (3.34)

where we used the residue theorem (see A.2) to compute the integral over CΛ. The
function ρ(Λ) is called the integrated density of states, and it counts how many
states have energy below Λ.

How to compute K(E;xf , xi)?

In practice, how could we actually compute the fixed energy propagator? It turns out
that it is the solution of a specific differential equation, which will be very close to the
Schrödinger equation. To find this differential equation, define the operator

K̂ =
i~

E − Ĥ + iε
(3.35)

such that

K(E;xf , xi) = 〈xf | K̂ |xi〉 , (3.36)
lim
ε→0+

(E − Ĥ + iε)K̂ = i~ (3.37)
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Taking the matrix element of the left hand side of equation (3.37) between 〈x| and |y〉
gives

〈x| lim
ε→0+

(E − Ĥ + iε)K̂ |y〉 = lim
ε→0+

(
E −

(
− ~2

2m

∂2

∂x2
+ V (x)

)
+ iε

)
〈x| K̂ |y〉︸ ︷︷ ︸
=K(E;x,y)

(3.38)

= −
(
− ~2

2m

∂2

∂x2
+ V (x)− E

)
K(E;x, y) (3.39)

The matrix element of the right hand side simply gives i~δ(x− y), and we therefore get
the differential equation(

− ~2

2m

∂2

∂x2
+ V (x)− E

)
K(E;x, y) = −i~δ(x− y) (3.40)

This equation is very reminiscent of the kind of equation verified by Green’s functions (see
for example exercise (2.3)). To solve it, consider first the case where x 6= y. Since (3.40)
is now a homogeneous second order differential equation, there are 2 linearly independent
solutions ψ1(x), ψ2(y) verifying(

− ~2

2m

∂2

∂x2
+ V (x)− E

)
ψi(x) = 0 i = 1, 2 (3.41)

For x 6= y, we can construct K(E;x, y) out of these two solutions. However, when x = y,
we have a matching condition which can be obtained by integrating (3.40) on a small
interval centered around y:

−i~ =

ˆ y+δ

y−δ
dx(−i~δ(x− y)) (3.42)

=

ˆ y+δ

y−δ
dx
(
− ~2

2m

∂2

∂x2
+ V (x)− E

)
K(E;x, y) (3.43)

≈
ˆ y+δ

y−δ
dx
(
− ~2

2m

∂2

∂x2

)
K(E;x, y) (δ � 1) (3.44)

≈ − ~2

2m

∂

∂x
K(E;x, y)

∣∣∣∣y+δ
y−δ

(3.45)

=⇒ 2mi

~
=

∂

∂x
K(E;x, y)

∣∣∣∣
y+δ

− ∂

∂x
K(E;x, y)

∣∣∣∣
y−δ

(3.46)

In other words, the derivative (with respect to x) of K(E;x, y) has a discontinuity when
x→ y. This discontinuity is a constant given by 2mi

~ .

Now we can guess the form of K(E;x, y):

K(E;x, y) = A (θ(x− y)ψ1(x)ψ2(y) + θ(y − x)ψ1(y)ψ2(x)) , (3.47)



60 Chapter 3 Non-perturbative effects

where we will fix A using the matching condition (3.46). This is a solution of the
differential equation for x 6= y since in that case it is proportional to either ψ1(x) (if
x > y) or ψ2(x) (if x < y). It is continuous at x = y since we just switch from the first
term above to the second when we cross from x < y to x > y. Lastly, we must compute
the discontinuity of the first derivative. Since the functions ψ1,2(y) are continuous, we
therefore have (using equation (3.46))

2mi

~
= A(ψ′

1(y)ψ2(y)− ψ1(y)ψ
′
2(y)︸ ︷︷ ︸

=W

) =⇒ A =
2mi

~W
. (3.48)

W is the Wronskian, which we saw already in the derivation of the VanVleck-Pauli-
Morette formula (see 3.15). The Wronskian is a constant, which can be proved using the
differential equation satisfied by ψ1,2. In the end, we have the following formula for the
fixed energy propagator:

K(E;x, y) =
2mi

~W
(θ(x− y)ψ1(x)ψ2(y) + θ(y − x)ψ1(y)ψ2(x)) , (3.49)

where ψi are solutions to the differential equation (3.41).

In order to find these functions ψi, we need to know the appropriate boundary
conditions that they verify. Equivalently, we can look at the boundary conditions of
K(E;x, y). These boundary conditions depend on the value of E, so for now we restrict
ourselves to the case

E < min
x
V (x) (3.50)

Then, equation (3.41) becomes
∂2

∂x2
ψi(x) = −2m(E − V (x))

~2︸ ︷︷ ︸
>0

ψi(x), (3.51)

from which we can see that ψi(x) are exponentially decaying/growing functions when
x→ ±∞. Furthermore, we know from (3.31) that K(E;x, y) is not divergent as x→ ±∞,
and we also know that for finite y,

lim
x→+∞

K(E;x, y) = lim
x→+∞

2mi

~W
ψ1(x)ψ2(y), (3.52)

lim
x→−∞

K(E;x, y) = lim
x→−∞

2mi

~W
ψ1(y)ψ2(x) (3.53)

so we must choose ψ1(x) to be exponentially decaying at x → +∞, while ψ2(x) must
be exponentially decaying at x → −∞ in order to have a convergent K(E;x, y). In
equations,

for E < min
x
V (x), B.C.’s are

{
ψ1(x)

x→+∞−−−−→ 0

ψ2(x)
x→−∞−−−−→ 0

(3.54)

Now that we have understood the theory, we can try out our formalism with some
examples.
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Examples

1. Free particle
We consider the case V (x) = 0, and E < minx V (x) = 0. The functions ψi(x), i = 1, 2
can be found by solving equation (3.51) with the boundary conditions (3.54). We find

ψ1(x) = A1e
−

√
−2mE
~ x (3.55)

ψ2(x) = A2e
√
−2mE
~ x (3.56)

The Wronskian can easily be computed:

W = ψ′
1(x)ψ2(x)− ψ1(x)ψ

′
2(x) = −2A1A2

√
−2mE

~
, (3.57)

and we therefore get

K(E;x, y) = −i
√

m

−2E

(
e−

√
−2mE
~ (x−y)θ(x− y) + e−

√
−2mE
~ (y−x)θ(y − x)

)
(3.58)

= −i
√

m

−2E
e−

√
−2mE
~ |x−y| (3.59)

It is now interesting to look at the analytic structure of this propagator in the complex
E plane. It has a branch cut for positive, real E due to the function

√
−E. This was ex-

pected! Indeed, we know that a free quantum particle has continuous energy levels E > 0.

The above fixed energy propagator was found by considering negative, real E but we
can analytically continue it to the whole complex plane except for the cut. We expect
a qualitative difference between the continuation above the cut (Im(E) > 0) or below
the cut (Im(E) < 0). As explained when we introduced the fixed energy propagator, we
must look at Im(E) > 0 to avoid exponential growth at infinity in general. This means
that we are going above the cut: we must consider E + iε, E > 0 in (3.59) and use the
standard square root branch cut prescription:

√
−E − iε

ε→0−−→ −i
√
E (3.60)

=⇒ K+(E;x, y) ≡
√

m

2E
eik|x−y|,

(
k =

√
2mE

~
> 0

)
(3.61)

This corresponds to

ψ1(x) ∝ eikx, ψ2(x) ∝ e−ikx (3.62)

If we interpret ψ1,2 as the wavefunctions of real particles, we see that (after re-introducing
the time-dependence from the Schrödinger equation)

ψ1(x, t) ∝ e−i
E
~ t+ikx = e

−iE~
(
t− ~k

E
x
)

(3.63)

ψ2(x, t) ∝ e−i
E
~ t−ikx = e

−iE~
(
t+ ~k

E
x
)

(3.64)
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We can now see that both wavefunctions describe outgoing waves in the limits x→ ∞
for ψ1 and x→ −∞ for ψ2. Now K(E;x, y) is proportional to ψ1 when x→ ∞ and to
ψ2 when x→ −∞, therefore K(E;x, y) always describes outgoing waves! To summarize,
we had the physical +iε prescription at the beginning, and the fixed energy propagator
was the Fourier transform of the retarded propagator. We have shown here that this
leads to outgoing waves. If instead we had continued below the cut, i.e. using a −iε
prescription (advanced propagator), we would have obtained incoming waves.

Remark:
We can compare this to electrodynamics: if we consider a distribution of charges, and
we move them around, the physical electromagnetic waves will be flowing outwards.
In electrodynamics, we also used retarded Green’s functions to model this phenomena.
Conversely, using an advanced propagator in electrodynamics corresponds to sending
waves from the past to be absorbed by the moving charges, and having no waves in the
future - this again matches with the “advanced” (−iε prescription) discussed above.

2. Barrier penetration
Consider now the case of a potential V (x) which vanishes at x→ ±∞ and has a barrier
somewhere on the x-axis (see figure 3.3). Let us now study the ψ1 and ψ2 for positive
energies. From the free particle case, we know that ψ1(x) is a purely outgoing wave at
x→ +∞, so at x→ −∞ it must be a superposition of incoming and outgoing waves2.
Similarly, ψ2(x) is purely outgoing at x→ −∞, and is a superposition of incoming and
outgoing at x→ +∞.

Figure 3.3: The potential barrier, and the wavefunctions ψ1 and ψ2.

In formulas, we can write

ψ1(x) =

{
A+e

ikx, x→ +∞
eikx +B+e

−ikx, x→ −∞
, ψ2(x) =

{
B−e

ikx + e−ikx, x→ +∞
A−e

−ikx, x→ −∞

Note that the overall normalization of the wavefunctions are not important sinceK(E;x, y)
is proportional to ψ1ψ2

W . Let us now compute the Wronskian:

W = ψ′
1ψ2 − ψ′

2ψ1 =

{
2ikA+, x→ +∞
2ikA−, x→ −∞

(3.65)

2There is a clear analogy with optics: these are the transmitted, incident and reflected waves.
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This immediately tells us that A+ = A− ≡ A, since the Wronskian is a constant. Now A
has a very clear physical interpretation: it is the transmission amplitude, from which
we can get the transmission probability:

PT = |A|2 = W 2

4k2
(3.66)

Is there a way that we could obtain this probability directly from the fixed energy
propagator? To do so, let us look at the following limit:

lim
x→+∞
y→−∞

K(E;x, y) = lim
x→+∞
y→−∞

2mi

~W
(θ(x− y)ψ1(x)ψ2(y) + θ(y − x)ψ1(y)ψ2(x)) (3.67)

= lim
x→+∞
y→−∞

m

~k
Aeik(x−y) (3.68)

Therefore, the transmission amplitude A at energy E can be extracted from the limit
x→ ∞, y → −∞ of the fixed energy propagator K(E;x, y). In the next lecture, we will
present a way to compute the fixed energy propagator in the semiclassical limit, and we
will be able to look at the prefactor to deduce the transmission amplitude.

Summary of Lecture 8

• Semiclassical propagator:

Ksc(xf , tf ;xi, ti) = e
i
~S[xc] e−i

π
2
n−

√
m

2πi~|ψ0(tf )|
,

n− = n0 is the number of negative eigenvalues of the operator − d2

dt2 − V ′′(xc(t)),
or alternatively the number of zeroes of ψ0(tf ).

• The fixed energy propagator:

K(E;x, y) =

ˆ ∞

0
dt e

i
~EtK(xf , tf ;xi, ti) = i~

∑
n

ψn(xf )ψ
∗
n(xi)

E − En

• Density of states:

ρ(Λ) =
∑
En<Λ

1 =
1

i~

ˆ ∞

−∞
dx
˛
CΛ

dE
2πi

K(E;x, x)

• Barrier penetration:

K(E;x, y)
x→+∞−−−−→
y→−∞

m

~k
Aeik(x−y), E =

~2k2

2m
> 0,

|A|2 is the transmission probability at energy E.
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Lecture 9 - The fixed energy propagator in the semiclassical limit

In lecture 8, we obtained the semiclassical approximation (“~ → 0”) of the propagator:

Ksc(xf , tf ;xi, ti) = e
i
~S[xc] e−i

π
2
n−

√
m

2πi~|ψ0(tf )|
,

Now the propagator itself appears in the definition of the fixed energy propagator
(equation 3.29), so we can define the semiclassical fixed energy propagator as

Ksc(E;xf , xi) ≡
ˆ ∞

0
dt e

i
~EtKsc(xf , t;xi, 0) (3.69)

Then, using the VanVleck-Pauli-Morette formula (3.27) for Ksc, we can write

Ksc(E;xf , xi) =

ˆ ∞

0
dt e

i
~ (S[xc]+Et)e−i

π
2
n−

√
1

2πi~

∣∣∣∣ ∂2Sc∂xi∂xf

∣∣∣∣ (3.70)

Now in the semiclassical limit ~ → 03, we expect a saddle point approximation of the
above integral to be valid.

Quick reminder of the saddle point approximation
Consider an integral of the form

I =

ˆ ∞

0
dt e

i
~g(t)f(t) (3.71)

In the limit ~ → 0, the complex exponential oscillates rapidly everywhere except at the
extrema of g(t), and the integral therefore “cancels out” in these regions (for much more
detail, see exercise 10). Therefore, assuming only one minimum t∗ for simplicity, we can
approximate

I = e
i
~g(t∗)f(t∗)

ˆ ∞

0
dt e

i
~

1
2
g′′(t∗)(t−t∗)2 (3.72)

The integral above is approximately gaussian (one only needs to extend the integration
domain to (−∞,∞), which only brings a small error since the integral is dominated by
the region near t∗). Performing the Gaussian integral, we find

I = e
i
~g(t∗)f(t∗)

√
2π~
ig′′(t∗)

(1 +O(~)) (3.73)

We therefore need to find the saddle point t∗ of S[xc] + Et. Before computing t∗,
it is important to understand which parameters are fixed and which are varied. E is
an external fixed variable since we want to compute Ksc(E;xf , xi). S[xc] is the action

3More rigorously, S[xc]/~ � 1 and E/~ � 1
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evaluated on the classical path, which is in turn determined by the boundary conditions:
xf , xi and t. Therefore, the classical energy Ec also depends on the boundary conditions:
Ec ≡ Ec(xf , t;xi, 0).

One can think that given xi and xf fixed, there are different classical paths with
different energies going from xi to xf in a time t. In the fixed-energy propagator, this
time t is not fixed, which is why there can be many classical paths with different energies
Ec.

Exercise 3.1 (Classical mechanics with boundary conditions). Consider a freely falling
ball (under the action of a gravitational force F = −mgx̂) described by the classical path
xc(t), with boundary conditions xc(0) = xi and xc(tf ) = xf . Express xc(t) and Ec in
terms of xi, xf , tf and g. Do you see how different values of tf lead to different Ec?
Which path has the smallest Ec?

Recall that at the end of lecture 3 we proved that ∂tfS[xc] = −Ec (equation 1.132).
In our case, tf = t and ti = 0. Therefore,

0 = ∂t(S[xc] + Et)|t=t∗ = −Ec(t∗) + E (3.74)

The saddle point t∗ is therefore the time such that Ec = E, i.e. the time it takes the
classical particle to go from xi to xf with fixed energy E. There are cases where there
might be multiple such points, which will be discussed later.

Single saddle point

To use the saddle point approximation, we still need to compute the second derivative.
We have

∂2t (S[xc] + Et)
∣∣
t=t∗

= − ∂tEc|t=t∗ (3.75)

Now there is a trick to easily find ∂tEc:

t =

ˆ xf

xi

dx
ẋ

=

ˆ xf

xi

dx
√

m

2(Ec − V (x))
(3.76)

=⇒ 1 = ∂t

ˆ xf

xi

dx
√

m

2(Ec − V (x))
(3.77)

= −∂tEc
ˆ xf

xi

dx 1

m

(
m

2(Ec − V (x))

)−3/2

. (3.78)

Therefore,

−∂tEc =
m´ xf

xi
dx
v3

(3.79)
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Now we have encountered the integral in the denominator before, during the derivation
of the VanVleck-Pauli-Morette formula (eq. 3.26). We can use that result to obtain

−∂tEc = −vivf
∂2Sc
∂xi∂xf

(3.80)

We now have all the ingredients to compute the saddle point approximation of the fixed
energy propagator:

Ksc(E;xf , xi) =
1

√
vivf

e
i
~ (S[xc]+Et)

∣∣∣∣
t=t∗

(3.81)

Lastly, we can write (S[xc] + Et)|t=t∗ in a simpler way:

S[xc] =

ˆ t

0
dt 1

2
mẋ2 − V (x) (3.82)

=

ˆ xf

xi

dx
ẋ

(mẋ2 − Ec) (3.83)

= −Ect+
ˆ xf

xi

dx p(x), (p = mẋ) (3.84)

Therefore, since Ec(t∗) = E, we have

Ksc(E;xf , xi) =
1

√
vivf

e
i
~
´ xf
xi

dx p(x) (3.85)

Note that this formula can be written as a product:

Ksc(E;xf , xi) = ψWKB(xf )ψ
∗
WKB(xi), (3.86)

where

ψWKB(x) =
1√
v(x)

e
i
~
´ x
x0

dx p(x) (3.87)

The value of x0 is irrelevant to us since it cancels out in the formula for Ksc. Note that
this is reminiscent of the formalism we had before taking the semiclassical limit with the
wavefunctions ψ1 and ψ2 (see eq. 3.49). These WKB wavefunctions can be computed
directly from the Schrödinger equation, which is done in exercise 24.

Before treating the case of multiple saddle points, we can analytically continue
equation (3.85) to negative energies to compare with some analytical examples we
computed in lecture 8. The velocities and momentum in the integral must be continued
carefully. Recall that

v(x) =

√
2(E − V (x))

m
(3.88)
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and that we must give a small imaginary part to the energy to fix the branch cut
ambiguity. Therefore,

v(x)
E<0−−−→ i

√
2(V (x)− E)

m
(3.89)

and we find

Ksc(E;xf , xi) =
−i
√

m
2

(V (xi)− E)1/4(V (xf )− E)1/4
e−

1
~
´ xf
xi

dx
√

2m(V (x)−E), E < 0 (3.90)

The analytic structure of this expression is what we expected: for E < minxi<x<xf V (x),
all square roots have positive arguments, and the function is analytic. For larger E, there
are branch cuts which reflect the continuous energy levels of the particle in the potential.
At the exact level (not the semiclassical approximation we are working with here), we
would expect a discrete spectrum. Intuitively, these discrete poles get closer and closer
together as ~ → 0, until they become a branch cut in the semiclassical limit.

We would like to compare our semiclassical approximation to the analytic result for
the free particle (eq. 3.59). The semiclassical approximation gives:

K(free)
sc (E;xf , xi) = −i

√
m

−2E
e−

√
−2mE
~ (xf−xi), (3.91)

which is the same expression as the analytic solution. In this case, the semiclassical
approximation is exact!

Multiple saddle points

In the previous section, we considered the case of a single saddle point t∗. Could there
be multiple different classical trajectories with fixed energy E, which take different times
t∗ to go from xi to xf? Consider the case where there is a “valley” in the potential, and
the classical trajectories are oscillating in that valley, as shown in figure 3.4.

Figure 3.4: Two possible classical paths from xi to xf with energy E. The green path
goes directly to xf , while the pink path starts by reaching the turning point a and then
goes to xf .
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Figure 3.5: Two categories of path are shown: in green, the paths that initially go towards
xf , and in pink the paths initially going away from xf . The saddle points t(n)∗ are present
whenever a path reaches xf .

The paths oscillate between the turning points a and b where V (a) = V (b) = E. Now
given a ≤ xi, xf ≤ b, there can be many paths going from xi to xf . First of all, the path
can start by going towards xf (shown in green) or away (in pink). There is an infinite
number of saddle points since a path can oscillate arbitrarily many times between a and
b. These paths are shown in figure 3.5, and we label them by the integer n.

We can now compute Ksc(E;xf , xi) by summing over the saddle points. The first
modification comes from the integral in the exponential:

´ xf
xi

dx p(x) naively does not
take into account the oscillation “history” of a path. To include it, we can write

ˆ xf

xi

dx(n) p(x) ≡
ˆ t

(n)
∗

0
dtmẋ2, (3.92)

where dx(n) is a notational tool to remind us to consider the “n”-th path. We would
therefore have

Ksc(E;xf , xi) =
∑
n

1√
v(xi)v(xf )

e
i
~
´ xf
xi

dx(n) p(x) (3.93)

Note however that v(xf ) changes sign depending on which path we are considering.
For example, if the simplest green path has v(xf ) > 0, but the second green path has
v(xf ) < 0. These lead to complex phases, similar to the discussion “Phases from analytic
continuation” of lecture 8. As explained previously, we should consider the times to have
a small negative imaginary part, i.e. t→ t− iε. Therefore,

v(xf ) → v(t
(n)
∗ − iε) = v(t

(n)
∗ )− iεv̇(t

(n)
∗ ) (3.94)
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Now v(t) is an oscillatory function, and therefore v(t(n)∗ − iε) goes counter-clockwise
around the branch point (v(xf ) = 0) as n increases. For this reason, the rigorous formula
for the semiclassical fixed energy propagator with multiple saddle points (for E > 0) is

Ksc(E;xf , xi) =
∑
n

e−i
π
2
Nn√

|v(xi)v(xf )|
e

i
~
´ xf
xi

dx(n) p(x) , (3.95)

where Nn is the number of turning points (points where v = 0) for a given path labeled
by n. For example, the simplest green path has N1 = 0, the next one has N1 = 1, and
the simplest pink path (labelled by 3 in figure (3.5)) has N3 = 1 as well.

Application 1: barrier penetration

Consider a potential that vanishes at ±∞ with a barrier somewhere on the x-axis, as
in the example from lecture 8. We would like to compute the limit x → ∞, y → −∞
of Ksc(E;x, y) in order to extract the transmission probability in the semiclassical
approximation. First, we consider negative E and we will then continue to physical
energies. Using equation (3.90), we have

lim
x→+∞
y→−∞

Ksc(E;x, y) = lim
x→+∞
y→−∞

−i
√

m

−2E
e−

1
~
´ x
y dz

√
2m(V (z)−E) (3.96)

Now we go to physical energies, with the +iε prescription to be above the cut

E → ~2k2

2m
+ iε (3.97)

=⇒
√
−E → −i ~k√

2m
(3.98)

Therefore, for physical energies we have

lim
x→+∞
y→−∞

Ksc(E;x, y) = lim
x→+∞
y→−∞

m

~k
e−

1
~
´ x
y dz

√
2m(V (z)−E) (3.99)

Now the integral in the exponential can be split into 5 different integration regions (see
figure 3.6)
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Figure 3.6: Definition of important regions of integration: y0 < z < x0 is the region
where the potential cannot be neglected, while a and b are the classical turning points.

Let us first do the integrals on the extreme edges of the interval [y, x]:ˆ y0

y
dz
√

2m (V (z)− E) =
√
−2mE(y0 − y) = −i~k(y0 − y) (3.100)

ˆ x

x0

dz
√

2m (V (z)− E) =
√
−2mE(x− x0) = −i~k(x− x0) (3.101)

Then, there are the integrals where E > V (z) but V (z) is not negligible:ˆ a

y0

dz
√

2m (V (z)− E) = −i
ˆ a

y0

dz
√
2m (E − V (z)) (3.102)

ˆ x0

b
dz
√

2m (V (z)− E) = −i
ˆ x0

b
dz
√
2m (E − V (z)) (3.103)

Finally, there is the classically forbidden region between the turning points, where the
integral does not need to be changed. We end up with

lim
x→+∞
y→−∞

Ksc(E;x, y) = lim
x→+∞
y→−∞

m

~k
e

i
~Φe−

1
~
´ b
a dz

√
2m(V (z)−E)︸ ︷︷ ︸

=A

eik(x−y) (3.104)

where we defined

Φ =

ˆ a

y0

dz
√

2m (E − V (z)) +

ˆ x0

b
dz
√

2m (E − V (z)) + ~k(y0 − x0) (3.105)

and A is the transmission amplitude, which we obtained by comparing with equation
(3.68) from lecture 8. The value of Φ is irrelevant for physical probabilities since we
want to compute the transmission probability |A|2. We have therefore found an explicit
expression for the transmission probability in the semiclassical approximation Psc:

Psc = exp

(
−2

~

ˆ b

a
dz
√

2m (V (z)− E)

)
(3.106)
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Application 2: spectral density

We would now like to use the semiclassical fixed energy propagator to get information
about the energy levels. To do so, we will compute the semiclassical spectral density
ρsc(Λ). Recall that in lecture 8 (equation 3.34) we proved that

ρ(Λ) =
∑
En<Λ

1 =
1

i~

ˆ ∞

−∞
dx
ˆ
CΛ

dE
2πi

K(E;x, x), (3.107)

where CΛ was some contour that encircled all energy levels En < Λ. Now to adapt this
to the semiclassical case, we have to be careful since Ksc(E;x, x) has a branch cut for
E > V (x): using equation (3.90), we have

Ksc(E;x, x) = −i
√

m

2(V (x)− E)
, E < 0 (3.108)

since the integral in the exponential gives 0 when xi = xf = x.

There is a subtle issue associated with this branch cut. We are considering the case
of a potential well (see figure 3.7), which means that the energy levels (E > 0) are
discretized. However, our semiclassical approximation, when analytically continued to
E > 0, gives us a continuous spectrum of energy levels corresponding to the branch cut.
This subtlety comes from the fact that for positive E, we are in the case of multiple
saddle points as described earlier. By simply taking the single saddle point Ksc with
E < 0 and continuing it to E > 0, we are missing this subtlety and will therefore also
miss the discrete nature of the energy spectrum. However, the answer we will get is a
kind of “average” of the more precise solution obtained by using multiple saddle points,
which is still relevant physically. The more complex discussion using multiple saddle
points can be found in the appendix B.4. We will now present a method for finding ρsc
in the case of a branch cut at E > 0.

Because of the branch cut, the integration contour CΛ crosses the branch cut if
Λ > V (x) and the resulting integral is therefore ill-defined. To remedy this, consider
approximating the original contour of integration in (3.107) by removing an infinitesimal
interval near E = Λ, so that we do not cross the real axis (we are now considering an
open contour, denoted C̃Λ). At the exact level, i.e. before taking the semiclassical limit,
this should not have a large effect on the result. However, it makes the semiclassical
integration much more tractable. By deforming the contour (see figure 3.8), we can
perform the integration for the semiclassical spectral density easily. We have

ρsc(Λ) ≡ −1

~

√
m

2

ˆ ∞

−∞
dx
ˆ
C̄Λ

dE
2πi

1√
V (x)− E

(3.109)

Now the integral over C̄Λ can be done by summing the integral from Λ to V (x) above the
cut, denoted I+, and the integral from V (x) to Λ below the cut, denoted I−. In practice,
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Figure 3.7: Potential well where a and b correspond to the turning points for a particle
with energy Λ.

Figure 3.8: In red, the branch cut starting from V (x). To avoid the branch cut, we
remove the part of the contour CΛ near E = Λ, giving us the new contour C̃Λ. After
deformation, we integrate over C̄Λ.
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we have

I+ =

ˆ V (x)

Λ

dE
2πi

1√
V (x)− E − iε

(3.110)

= −i
ˆ Λ

V (x)

dE
2πi

1√
E − V (x)

(3.111)

I− =

ˆ Λ

V (x)

dE
2πi

1√
V (x)− E + iε

(3.112)

= −i
ˆ Λ

V (x)

dE
2πi

1√
E − V (x)

, (3.113)

so both integrals contribute the same. We end up with

ρsc(Λ) =
2i

~

√
m

2

ˆ ∞

−∞
dx
ˆ Λ

V (x)

dE
2πi

1√
E − V (x)

θ(Λ− V (x)), (3.114)

where we added a theta function to ensure that Λ > V (x). If we had considered Λ < V (x),
the spectral density would be 0 since the integrand would be analytic inside the contour
(alternatively, there would be no discontinuity across the branch cut so I+ and I− would
cancel out). Now, the rest of the computation is simple real analysis:

ρsc(Λ) =
1

π~

ˆ ∞

−∞
dx
√

2m(Λ− V (x))θ(Λ− V (x)) (3.115)

The theta function reduces the integration over x to an integration between the
turning points:

ρsc(Λ) =
1

π~

ˆ b

a
dx
√
2m(Λ− V (x)) (3.116)

=
1

π~

ˆ b

a
dx p(x), (3.117)

where p(x) is the momenta of the particle with energy Λ.

There is a nice interpretation of this formula in terms of classical phase space. A
particle of energy less or equal to Λ verifies the inequality

p2

2m
+ V (x) ≤ Λ (3.118)

The inequality above corresponds to a surface in the (x, p) plane, which is drawn in
figure (3.9). In that plane, the turning points a and b are at (a, 0) and (b, 0) since the
momentum vanishes at the turning points. These are on the boundary of the surface
carved out by the inequality since V (a) = V (b) = Λ. We can therefore relate the area of
this surface, Ω(Λ), to the integral in ρsc(Λ) from equation (3.117):

Ω(Λ) ≡ area of phase space with E < Λ = 2

ˆ b

a
p(x)dx (3.119)
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Figure 3.9: In light blue, the region described by the inequality (3.118). The turning
points a and b are on the edge of the region.

Therefore, we have

ρsc(Λ) =
Ω(Λ)

2π~
(3.120)

The exact spectral density counts the number of states with energy less than Λ, and
therefore we have ρ(En + ε) = n+ 1 for a small ε (we start with the ground state energy
E0). In the semiclassical case, we are missing the feature of discrete jumps at each
energy levels, and we instead have a smoothed out function that we can approximate as
ρsc(En) = n+ 1

2 . Expressing this equation in terms of phase space volume, we find the
Bohr-Sommerfeld quantization condition

Ω(En) = (n+ 1/2)h, (3.121)

which tells us that the unit volume of the classical phase space corresponding to a
quantum state is equal to h. This semiclassical approximation is really only valid for
large n, since for small n we are very sensitive to quantum effects.



Chapter 3 Non-perturbative effects 75

Summary of Lecture 9

• Semiclassical fixed energy propagator, single saddle point:

Ksc(E;xf , xi) =
1

√
vivf

e
i
~
´ xf
xi

dx p(x)

• Multiple saddle points (Nn = number of turning points):

Ksc(E;xf , xi) =
∑
n

e−i
π
2
Nn√

|v(xi)v(xf )|
e

i
~
´ xf
xi

dx(n) p(x)

• Semiclassical approximation to the transmission probability

Psc = exp

(
−2

~

ˆ b

a
dz
√
2m (V (z)− E)

)
• Semiclassical approximation to the spectral density:

ρsc(Λ) =
Ω(Λ)

2π~
,

where Ω(Λ) is the phase space volume with E < Λ, or in formulas Ω(Λ) =

2
´ b
a p(x)dx.

• Bohr-Sommerfeld quantization condition:

Ω(En) =

(
n+

1

2

)
h
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Lecture 10 - Instantons

In quantum physics, perturbation theory can miss crucial effects. As a first example, let
us look at the simple example of the metastable state.

Example 1: Metastable state
Consider the potential V (x) = 1

2mω
2x2 + λx3, where λ is small. For λ = 0, we know

that the ground state with energy E0 =
~ω
2 is localized at x = 0. If we now set λ to be

small but nonzero, there will be a probability of tunneling to the unbounded region at
x < 0 (see figure 3.10), which means that the ground state becomes unstable.

Figure 3.10: The ground state localized around the local minimum of V (x) is unstable
due to the nonzero tunneling probability.

If we consider perturbation theory in λ, we would find the following energy levels:

En = ~ω(n+ 1/2) + λE(1)
n + λ2E(2)

n + . . . (3.122)

There will be no sign of the instability of the ground state. In order to explain this, recall
the tunneling probability formula from last week:

P = exp

(
−2

~

ˆ b

a
dx
√
2m(V (x)− E)

)
, (3.123)

where a and b are the classical turning points. In order to see the dependency on λ,
consider a particle with E = 0. Then, V (x) = 0 has two solutions:

x2
(
1

2
mω2 + λx

)
= 0 =⇒ x = 0, x = a ≡ −mω

2

2λ
(3.124)

Therefore, the tunneling probability is given by

P = exp

(
−2

~

ˆ 0

a
dx
√
m2ω2x2 + 2mλx3

)
(3.125)
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We would now like to take the perturbative limit λ→ 0. In order to compute the integral,
we would naively remove the second term in the square root, but this is not correct.
Indeed, as λ→ 0, a→ −∞ and there is therefore a region of integration where x ∼ a is
very large, meaning that both terms in the square root are actually of the same order.
In fact, the integral can be computed exactly without taking any limits! To see this
more clearly, we compute the integral by changing variables using x = ay to have a
dimensionless and tractable integral.

I ≡
ˆ 0

a
dx
√
m2ω2x2 + 2mλx3 (3.126)

=
m3ω5

4λ2

ˆ 1

0
dy y

√
1− y (3.127)

=
m3ω5

4λ2

(ˆ 1

0
dz z1/2 −

ˆ 1

0
dz z3/2

)
(z = 1− y) (3.128)

=
m3ω5

15λ2
(3.129)

Therefore, the tunneling probability explicitly reads

P = exp

(
−2

~
m3ω5

15λ2

)
≡ exp

(
− c

λ2

)
(3.130)

for some constant c.
In the limit λ→ 0, P goes to 0 faster than any polynomial function of λ! This

is why the instability is non-perturbative: the effect is invisible in perturbation theory
since it is smaller than any perturbative effect (λk).

Example 2: Double well potential
Consider the potential V (x) = λ

4!(x
2 − a2)2. In 1d quantum mechanics, there can be no

degeneracies in energy levels, so we expect the first two energy levels to verify E1 > E0

(for a proof, see appendix B.1). In practice, the ground state wavefunction will not have
zeros and the first excited wavefunction will have one zero. However, perturbation theory
gives us a different picture. We expand the potential around the minima x = a:

V (a+ y) =
λ

6
a2y2 +

λ

6
ay3 +

λ

4!
y4 (3.131)

We can think of this as a regular harmonic oscillator with 1
2mω

2 = λ
6a

2, with some cubic
and quartic perturbation. For small λ, we can compute the corrections to the lowest
energy levels to arbitrary orders in λ without having any direct evidence that there is
another minimum with its own localized levels! By symmetry 4, the same can be done
in the other minimum, which will find the same energy levels, but with wavefunctions
localized around −a. If we consider the whole system in perturbation theory, we will see
2-fold degeneracy in the energy levels coming from the wavefunctions localized in either

4The expansion around the other minimum is done using x = −a− y′, but by reflection symmetry
V (−a− y′) = V (a+ y′).
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Figure 3.11: The double well potential with the first two energy eigenstate wavefunctions.

potential, which contradicts the initial statement E1 > E0! This problem is resolved by
non-perturbative effects, which will save us and split the degeneracy.

Let us setup some notation. We define ω as

ω =

√
λ

3m
a (3.132)

so that

V (a+ y) =
1

2
mω2y2 +

1

2
ω

√
mλ

3
y3 +

λ

4!
y4 (3.133)

Now we clearly see the harmonic oscillator potential, and the perturbations: the cubic
perturbation is proportional to λ1/2 and the quartic is proportional to λ. The potential
depends on two parameters: λ and a. Alternatively, we can express our results in terms
of λ and ω which is sometimes more convenient.

In perturbation theory (in one of the wells),

En = ~ω(n+ 1/2)
(
1 + λ̄E(1)

n + λ̄2E(2)
n + . . .

)
(3.134)

where λ̄ is the dimensionless expansion parameter,

λ̄ =
~λ
m2ω3

. (3.135)

As explained previously, in perturbation theory there are two states for each energy level,
localized at a and −a respectively. The splitting E1 −E0 vanishes to all orders in λ̄, but
we will prove later that

E1 − E0 ∝ e−
2
λ̄ , (3.136)

which is a non-perturbative effect: it cannot be obtained by simple perturbation theory.
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Instantons in the double well potential

We want to study in depth the ground state of the double well potential V (x) =
λ
4!(x

2 − a2)2. To do so, we will go back to the Euclidean propagator:

K(xf , xi;β) = 〈xf | e−
β
~H |xi〉 (3.137)

After inserting a basis of energy eigenstates, we find

K(xf , xi;β) =
∑
n

e−
β
~Enψn(xf )ψ

∗
n(xi) =

ˆ x(β/2)=xf

x(−β/2)=xi
D[x]e−

1
~SE [x] (3.138)

At large β, we will pick up the lowest energy states, and will therefore be able to see the
splitting explicitly. In order to perform the computation, we will use the semiclassical
approximation for the path integral.

The Euclidean action for the double well potential is given by

SE =

ˆ β/2

−β/2
dτ 1

2
mẋ2 +

λ

4!
(x2 − a2)2 (3.139)

In order to make the dependencies on the different parameters more explicit, consider
τ = cη, x = aq:

SE =

ˆ β
2c

− β
2c

dη
(
ma2

c

1

2
q̇2 +

λa4c

4!
(q2 − 1)2

)
. (3.140)

Now we want to choose the constant c so that both terms in parenthesis have the same
prefactor:

ma2

c
= λa4c =⇒ c =

√
m

λa2
=

1√
3ω

(3.141)

we therefore end up with

SE = a3
√
mλ

ˆ √
3βω
2

−
√
3βω
2

dη
(
1

2
q̇2 +

1

4!
(q2 − 1)2

)
. (3.142)

Now the integral is an O(1) dimensionless number, and therefore the semiclassical
approximation is

1 � SE
~

=
a3
√
mλ

~
(3.143)

We reformulate this condition in terms of λ̄ (see eqs. 3.132 and 3.135):

1 � a3
√
mλ

~
=

33/2

λ̄
⇔ λ̄� 1 (3.144)
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As expected, the semiclassical approximation is justified when λ̄ is small, which
is the same requirement as regular perturbation theory. However, the resulting
effects are much smaller than perturbation theory since we are considering e−

SE
~ ∼ e−

1
λ̄

in the path integral.

Let us now do the saddle point approximation of the path integral.

K(xf , xi;β) =

ˆ x(β/2)=xf

x(−β/2)=xi
D[x]e−

1
~SE [x] (3.145)

=
∑
k

Ike
− 1

~SE [xk] (3.146)

where k labels the saddle points, and Ik is some prefactor which we will consider later.
The saddle points are paths xk(τ) on which the Euclidean action is stationary, i.e.

δSE
δx

∣∣∣∣
x=xk

= 0 ⇔ mẍk = V ′(xk) (Euclidean equation of motion) (3.147)

Note now that the Euclidean equation of motion above corresponds to the real time
equation of motion with a reversed potential VE(x) = −V (x) (see figure 3.12), which will
allow us to use our physical intuition to find the saddle points.

Figure 3.12: Saddle points of the Euclidean path integral can be interpreted as classical
trajectories in the inverted potential VE(x) = −V (x).

Until now we have been general in our choice of xi and xf . However, we will now
focus on the special cases of xi = ±a and xf = ±a, since those will be the easiest to
compute. By symmetry,

K(a, a;β) = 〈a| e−
β
~H |a〉 = 〈−a| e−

β
~H |−a〉 (3.148)

K(a,−a;β) = 〈a| e−
β
~H |−a〉 = 〈−a| e−

β
~H |a〉 (3.149)
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As said previously, we will look at the large β limit to study the lowest energy states.
The potential admits the trivial solutions x(τ) = ±a (staying at the top of either hills),
which will be the leading contribution to the a→ a and the −a→ −a propagators.

However, there are also nontrivial solutions, which are called instantons. The
instanton is a solution which starts at x = −a at τ = −∞ (this solution will be exact
in the β → ∞ limit since we want the boundary conditions to be at τ = ±∞), rolls
down the hill and reaches x = a at τ = +∞. The anti-instanton does the opposite:
it goes from a at τ = −∞ to −a at τ = +∞. These trajectories both have Euclidean
energy EE = 1

2mẋ
2 + VE(x) = 0, as they start with zero velocity at x = ±a and arrive

at x = ∓a with zero velocity. Therefore, we can be more quantitative and arrive at the
expression:

1

2
mẋ2 − V (x) = 0 =⇒ ẋ = ±

√
2V (x)

m
, (3.150)

where the ± sign corresponds to the instanton and anti-instanton. We can then compute
the Euclidean action for the instanton SI :

SI =

ˆ ∞

−∞
dτ 1

2
mẋ2 + V (x) =

ˆ ∞

−∞
dτ mẋ2 − EE (3.151)

=

ˆ a

−a
dx
√
2mV (x) (3.152)

Note that the anti-instanton action is exactly the same: SI = SA.

In the case of the double well potential V (x) = λ
4!(x

2−a2)2, we can find the instanton
trajectory xI(τ) explicitly:

ẋI(τ) = +

√
λ

12m
(a2 − x2I(τ)) (3.153)

=⇒ x(τ) = a tanh
(ω
2
(τ − τ0)

)
(3.154)

where in the first line we used
√
(x2 − a2)2 = a2 − x2 since the instanton is always

between the two hills (−a ≤ x ≤ a), and τ0 is just an integration constant. This reflects
the time-translation invariance of the problem: the instanton goes from −a to a at τ ≈ τ0,
which is arbitrary. The trajectory is presented in figure 3.13.

Figure 3.13: The double-well potential instanton trajectory in the β → ∞ limit.
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The instanton action can also be explicitly computed:

SI
~

=
1

~

ˆ a

−a
dx
√
mλ

12
(a2 − x2) (3.155)

=
2

λ̄
(3.156)

Therefore, the saddle point approximation exhibits the nonperturbative effect:

e−
SI
~ = e−

2
λ̄ (3.157)

Note now that since we are taking the β → ∞ limit, we are working on time scales
that are much larger than 1

ω (the only parameter in the problem with units of time).
Now in the |τ − τ0| � 1

ω limit, we expect to be very close to ±a and indeed,

∣∣x2I(τ)− a2
∣∣ = a2

1

cosh2
(
ω
2 (τ − τ0)

) (3.158)

ω|τ−τ0|�1−−−−−−−→ a2e−ω|τ−τ0| (3.159)

We are therefore exponentially close to a (or −a in the past) at time scales much bigger
than 1

ω . For this reason, our trajectory really looks like a step function. In a sense, since
we are considering large time scales, we are looking at a “zoomed-out” version of figure
3.13. This is where the name instanton comes from: they exist for a very brief period
of time ∆τ ∼ 1

ω .

Because instantons go from −a to a in such a short time, we should also consider
multi-instanton solutions to the Euclidean equations of motion5. It is possible to have a
solution going from −a to a at a time τ1, then back to −a at τ2, and finally back to a at τ3.

Let us setup the notation: we label by I the instantons (going from −a to a) and by
A the anti-instantons (from a to −a). We have

xI(τ) = af(τ − τ1) (3.160)
xA(τ) = af(τ2 − τ), (3.161)

where f is a function interpolating from −1 to 1 in general (for the double well, we
found f(τ) = tanh(ωτ/2)) and τ1 and τ2 are for now arbitrary times at which the
instanton/anti-instanton exist. Then, we can define

xIA(τ) = af(τ − τ1)f(τ2 − τ), (3.162)

with τ1 < τ2. This is only an approximate solution to the Euclidean EOM

δSE
δx

= mẍ− V ′(x) = 0, (3.163)

5Note that these are only approximate solutions.
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although a very good one. Indeed, it can be shown that 6

δSE
δx

∣∣∣∣
x=xIA

∼ maω2e−ω|τ1−τ2| (3.164)

Therefore, if the instanton and anti-instanton are well-separated (|τ1 − τ2| � 1
ω ), xIA is

an approximate solution of the Euclidean EOM. In fact, we shall see that

ω|τ1 − τ2| ∼ e
SI
~ � 1, (3.165)

so the error we are making is doubly exponentially small:

δSE
δx

∣∣∣∣
x=xIA

∼ maω2 exp
(
−e

SI
~

)
(3.166)

As long as we only need to consider situations where the above exponential is smaller
than any effect we are trying to compute, then we should by all means consider the
configuration xIA as a stationary point of the action. In other words, we know that
we are making a small error when considering xIA as a solution, but since this error is
smaller than other effects we have previously neglected, we should still consider xIA as
an important saddle point.

Dilute instanton gas approximation

In this section we will assemble the pieces to compute the saddle point approximation
propagator. As explained above, we will need to sum the contributions from many
classical paths made of instanton and anti-instantons appearing at different euclidean
times.

Consider the propagator from −a to a. We need to sum the contribution from the
single instanton, and the contributions from going back and forth with instantons and
anti-instantons. Schematically,

〈a| e−
β
~H |−a〉 = #e−

SI
~ +#e−

SIAI
~ + . . . (3.167)

Similarly, for a to a, we need to compute

〈a| e−
β
~H |a〉 = #e−

SAI
~ +#e−

SAIAI
~ + . . . (3.168)

Let’s go step by step:

• Action: a given saddle point has in general NI instantons and NA anti-instantons.
Since SI = SA, the action for such a trajectory is S = NSI

7, with N = NI +NA.
6To see this notice that f(z) ≈ ±(1− e−ω|z|) for ω|z| � 1. If we assume ω|τ1 − τ2| � 1 then for any

τ we can use this approximation for at least one of the functions f in (3.162).
7Since the action is just the integral over time, we can split it into different regions corresponding to

each instanton and anti-instanton, which is why the action “factorizes”.
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Now normally in the saddle-point approximation, the “lowest” point gives the
biggest contribution, but here we are considering “large” saddle points when N is
large. The reason we must keep those larger saddle points which naively contribute
less is because of some other contribution discussed below (the sum over kink
locations), which enhances the large N saddle points by a factor βN . In the
very large β limit, the multi-instanton saddle points with S = NSI are therefore
important!

• Prefactor: recall that the prefactor was given by

prefactor = Ñ det

(
δ2S

δx2

)−1/2

(3.169)

It is straightforward to show that

δ2S

δx2
= −m d2

dτ2 + V ′′(x) (3.170)

Note now that most of the time, x(τ) = ±a, so we can approximate V ′′(x) ≈
V ′′(±a) = mω2, which is the harmonic oscillator. Therefore, “most of the time”,
the prefactor is the same as the one for the harmonic oscillator. This prefactor, in
the limit ωβ → ∞, can be easily extracted from the Euclidean harmonic oscillator
propagator (eq. 2.17):

HO prefactor =
(mω
π~

)1/2
e−

ωβ
2 (3.171)

However, we know that this is just an approximation. In order to account for our
error, we introduce some factor R for each instanton and anti-instanton:

prefactor =
(mω
π~

)1/2
e−

ωβ
2 RN , (N = NI +NA) (3.172)

In other words, for every “jump”, there is an additional factor R. Finding the
expression for R is very time-consuming and is not necessary for our discussion,
but the computation is done in the appendix (B.5). Again, the reason why R is the
same for each jump comes from the factorization property of the propagator: going
from x to y is the same as going from x to z and from z to y, so we can isolate the
contribution from each jump.

• Sum over kink locations: each trajectory is characterized by the number of
instantons NI and anti-instantons NA, but also by the times τk, k = 1, . . . , N at
which the jumps happen. In order to sum over all trajectories, we must multiply
by a factor corresponding to these possibilities8. We call this factor M , and it is
given by

M =

ˆ β/2

−β/2
dτN
ˆ τN

−β/2
dτN1 . . .

ˆ τ2

−β/2
dτ1 =

βN

N !
(3.173)

8Because of time-translation invariance, the exact times τk do not affect other parts of the overall
computation. However, an overall multiplicative factor needs to be included to account for the large
(infinite) number of possible trajectories
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Note the integration bounds specified above to respect the ordering τN > . . . > τ1.
The value of M can be obtained by computing the integrals explicitly, or simply by
computing the overall volume without the ordering, giving the βN factor, and then
dividing by N ! to select the proper ordering.

• Instanton/anti-instanton ordering: this contribution is trivial for the double-
well potential, but it becomes relevant for more general potentials. Since we are only
allowed to go from a to −a and vice-versa, all our trajectories alternate between
instanton and anti-instanton. However, in general, one might have to compute
the multiplicity coming from different trajectories with the same NI and NA. For
example, in the triple well potential (3 hills at −a, 0 and a), the trajectories IAIA
and IIAA are both relevant to go from −a to a, and we would need to account for
this multiplicity. In our computation however, this is not important, since for a
given N = NI +NA, there is only one allowed configuration of I’s and A’s.

Now that we have all the pieces, we can compute:

〈a| e−
β
~H |−a〉 =

(mω
π~

)1/2
e−

ωβ
2

∑
Nodd

1

N !

(
βRe−

SI
~

)N
(3.174)

〈a| e−
β
~H |a〉 =

(mω
π~

)1/2
e−

ωβ
2

∑
Neven

1

N !

(
βRe−

SI
~

)N
(3.175)

Therefore, we have the final result for both propagators:

〈a| e−
β
~H |±a〉 =

(mω
π~

)1/2
e−

ωβ
2
1

2

(
eβRe

−SI
~ ± e−βRe

−SI
~
)

(3.176)

This allows us to extract the energy levels! Indeed, we know (eq. 3.138) that

〈a| e−
β
~H |±a〉 =

∑
n

e−
β
~Enψn(a)ψ

∗
n(±a), (3.177)

and therefore we can extract the energy levels from equation (3.176) by looking at the
exponentials (they are the only place where β appears). The first two energy levels are:

E0 =
~ω
2

− ~Re−SI/~ (3.178)

E1 =
~ω
2

+ ~Re−SI/~. (3.179)

The energy splitting is non-perturbative as expected:

E1 − E0 = 2~Re−
2
λ̄ (3.180)

Furthermore, we can directly extract

|ψ0(a)|2 = ψ0(a)ψ
∗
0(a) =

1

2

(mω
π~

)1/2
(3.181)

|ψ1(a)|2 = ψ1(a)ψ
∗
1(a) =

1

2

(mω
π~

)1/2
(3.182)
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from 〈a| e−
β
~H |a〉. The fact that the ground state wavefunction has zero nodes (ψ0 is

even ψ0(a) = ψ0(−a)) and the first excited state has one node (ψ1 is odd) can also be
seen from the ± sign in front of the second exponential in parenthesis in equation (3.176).
All of the above comments are compatible with the idea that the ground state and first
excited state of the double well potential are in fact even and odd linear combinations of
harmonic oscillator ground states in each well:

ψ
(DW)
0 (x) =

1√
2

(
ψHO
0 (x+ a) + ψHO

0 (x− a)
)

(3.183)

ψ
(DW)
1 (x) =

1√
2

(
ψHO
0 (x+ a)− ψHO

0 (x− a)
)

(3.184)

Remarks:

• Perturbative corrections: in our derivation, we neglected the perturbative cor-
rections. Schematically, we have done a saddle point approximation where e−SI/~

led to the e−
2
λ̄ term, the quadratic order led to the prefactor, and we dropped any

higher order δkS
δxk

. These higher order terms are actually just the usual perturbation
theory from chapter 2, which we compute using Feynman diagrams. In practice,
since the instantons spend most of the time at the minima ±a, we can simply do
the usual perturbation theory computation in the anharmonic potential (eq. 3.133).

For this reason, equations (3.178) and (3.179) are wrong! We wrote the nonpertur-
bative effects due to e−

2
λ̄ , but not the much bigger perturbative effects. We should

have written

E0 =
~ω
2
(1 +O(λ̄) + . . .)− ~Re−SI/~(1 +O(λ̄) + . . .) (3.185)

E1 =
~ω
2
(1 +O(λ̄) + . . .) + ~Re−SI/~(1 +O(λ̄) + . . .). (3.186)

The important punchline is that these perturbative corrections are the same for
E0 and E1, which is why the splitting E1 − E0 vanishes when considering only
perturbation theory!

• Validity of the dilute instanton gas approximation:
Recall that we used sums of the type∑

N

1

N !

(
βRe−SI/~

)N
(3.187)

Each term in the sum contributes a different value to the final result, but you
can convince yourself that the dominant contribution comes from the terms near
N ∼ βRe−SI/~. This is a useful tool to estimate the typical time separation ∆τ
between instantons. Assuming they are uniformly distributed, we see that

∆τ =
β

N
∼ 1

R
e

SI
~ (3.188)
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This justifies our assumption from equation (3.165).

In order for the dilute instanton gas approximation to be valid, the time separation
between instantons should be much larger than the instanton duration 1

ω , i.e.

β

N
∼ 1

R
e

SI
~ � 1

ω
. (3.189)

This is automatically verified since we assumed SI
~ � 1 to do the semiclassical

approximation.

• Avoiding multi-instantons:
Consider the following range of values of β:

1

ω
� β � 1

R
eSI/~ (3.190)

The first requirement 1
ω � β is present to project onto the lowest energy states.

We can think of Ĥ as a 2 × 2 matrix acting on the subspace {|a〉 , |−a〉}. Then,
consider the matrix elements (3.174) and (3.175), but since β � 1

Re
SI/~ we only

keep the leading term in each sum:

〈a| e−
β
~ Ĥ |−a〉 =

(mω
π~

)1/2
e−

ωβ
2

(
βRe−

SI
~

)
+ . . . (3.191)

〈a| e−
β
~ Ĥ |a〉 =

(mω
π~

)1/2
e−

ωβ
2 + . . . (3.192)

where the . . . symbolize perturbative corrections as explained earlier. Then we can
write9

e−
β
~ Ĥ = e−

ωβ
2

(
1 + . . . βRe−

SI
~ + . . .

βRe−
SI
~ + . . . 1 + . . .

)
(3.193)

Again, because of the assumption β � 1
Re

SI/~, we can exponentiate the matrix!

e−
β
~ Ĥ ≈ exp

[
−β
~

(
ω~
2
(1 +O(λ̄))

(
1 0
0 1

)
+ ~Re−

SI
~ (1 +O(λ̄))

(
0 1
1 0

))]
(3.194)

We can then read off the effective Hamiltonian Ĥeff on the 2-level subspace:

Ĥeff =
ω~
2
(1 +O(λ̄))

(
1 0
0 1

)
+ ~Re−

SI
~ (1 +O(λ̄))

(
0 1
1 0

)
(3.195)

It is straightforward to find the 2 eigenvalues of Ĥeff, E0 and E1, and to see that

E1 − E0 = 2~Re−SI/~, (3.196)

9The overall factor
(
mω
π~
)1/2 can simply be included in the definitions of |±a〉 and is irrelevant for

this discussion.
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which is what we had obtained earlier by summing contributions from multi-
instanton trajectories. Using this result, we can reformulate our initial assumption
on β (eq. 3.190) as

βω � 1 and β

~
(E1 − E0) � 1 (3.197)

As a last comment, there is a simple intuition behind the choice β � 1
Re

SI/~: since
we argued 1

Re
SI/~ is the typical time separation between different instantons, the

requirement β � 1
Re

SI/~ means that we only have time for one instanton, which
corresponds to the simplifications made above.

In appendix B.5 we compute the instanton pre-factor. This leads to the final formula:

E1 − E0 ≈ 2~ωe−
1
~SI

(
mωa2

π~

)1/2

exp

(
−
ˆ a

0
dx
[

1

a− x
−

√
mω2

2V (x)

])
(3.198)

For the case V (x) = λ
4!(x

2 − a2)2, with λa2

3 = mω2, the last integral reads

I ≡
ˆ a

0
dx
[

1

a− x
−

√
mω2

2V (x)

]
(3.199)

=

ˆ a

0
dx
[

1

a− x
− 2a

a2 − x2

]
= − ln(2) (3.200)

which implies

E1 − E0 = 4~ω
√

3

πλ̄
e−

2
λ̄ , (3.201)

where λ̄ is the dimensionless coupling defined in (3.135).
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Summary of Lecture 10

• Particle in the double-well potential

V (x) = λ(x2 − a2)2

has non-degenerate energy levels, so E1 − E0 > 0.

• Computation in dilute instanton gas approximation:

E1 − E0 ≈ 2~Re−
SI
~ = 2~Re−

2
λ̄ ≈,

where R is a prefactor coming from the saddle point approximation (schematically
∼ det δ

2S
δx2

). This is a non-perturbative energy splitting.

• Single instanton dominates for

width of instanton =
1

ω
�β � 1

R
e

SI
~ = typical separation between instantons

Equivalently,

βω � 1 and β

~
(E1 − E0) � 1

• The final formula (for V (x) = V (−x)) is

E1 − E0 ≈ 2~ωe−
1
~SI

(
mωa2

π~

)1/2

exp

(
−
ˆ a

0
dx
[

1

a− x
−

√
mω2

2V (x)

])



Chapter 4

Interaction with an external electromagnetic
field

Lecture 11 - Quantum particle in an EM field

Classical physics

Let us begin with a quick review of classical physics. The Minkowski metric is given by

ds2 = c2dt2 − dx2 = c2dτ2, (4.1)

where τ is the proper time. The action for a relativistic point particle on a trajectory γ is

S = −mc2
ˆ
γ

dτ = −mc2
ˆ
γ

dt
√
1− ẋ2

c2
. (4.2)

Now consider an external electromagnetic field which can be described using the 4-
potential Aµ = (Φ,−cA). The action can now be written (using xµ = (ct,x))

S = −mc2
ˆ
γ

dτ − e

c

ˆ
γ
Aµdxµ (4.3)

= −
ˆ
γ

dt
[
mc2

√
1− ẋ2

c2
+ eΦ− eA · ẋ

]
, (4.4)

where e is the charge of the particle.

Electromagnetism is invariant under gauge transformations Aµ → Aµ + c∂µα,
where α is an arbitrary function of spacetime. Under a gauge transformation, the action
above changes by a boundary term:

S → S − e(α(xf , tf )− α(xi, ti)), (4.5)

where (xf , tf ) and (xi, ti) are the endpoints of the trajectory γ. However, the equations
of motion are unaffected! In fact, the equations of motion only depend on a local gauge
invariant function of Aµ: Fµν = ∂µAν − ∂νAµ.

90
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The conjugate momentum is given by

p =
∂L
∂ẋ

=
mẋ√
1− ẋ2

c2

+ eA (4.6)

Exercise 4.1 (Hamiltonian of charged particle in EM field). Show that the Hamiltonian
of the particle is given by

H = p · ẋ− L =
√
(p− eA)2c2 +m2c4 + eΦ (4.7)

How do gauge transformations affect p and H? Recall that under gauge transforma-
tions, the components of the 4-potential transform as:

φ
G.T.−−−→ φ+ ∂tα (4.8)

A
G.T.−−−→ A−∇α (4.9)

Therefore, we can extract the gauge transformation properties of the momentum and the
hamiltonian from their definitions (eq. 4.6 and 4.7):

p
G.T.−−−→ p− e∇α (4.10)

H
G.T.−−−→ H + e∂tα. (4.11)

The momentum and hamiltonian are therefore not gauge invariant! The above is instead
an example of a canonical transformation (which preserve the Poisson brackets). In other
words, the gauge transformation of the electromagnetic 4-potential Aµ corresponds
to a canonical transformation of the hamiltonian variables:

Aµ
G.T.−−−→ Aµ + c∂µα (4.12)

xi

pi

H

C.T.−−−→


xi

pi − e∂iα

H + e∂tα

(4.13)

Moreover, we can define a gauge invariant quantity, the kinetic momentum Π, as

Π = p− eA (4.14)

Using equation (4.6), one can see that in the nonrelativistic limit, Π = mẋ, i.e. it is
related to the velocity of the particle.

Let us now move on to quantum physics.
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Quantum physics

We have seen in equation (4.5) that the action changes by a boundary term under a
gauge transformation. Therefore, the propagator changes by a phase:

K(xf , tf ;xi, ti) =

ˆ
D[x]e

i
~S (4.15)

=⇒ K(xf , tf ;xi, ti)
G.T.−−−→ K(xf , tf ;xi, ti)e

− ie
~ (α(xf ,tf )−α(xi,ti)) (4.16)

Now recall as well that

ψ(xf , tf ) =

ˆ ∞

−∞
dti K(xf , tf ;xi, ti)ψ(xi, ti). (4.17)

In order for the above equation to be gauge invariant, the wavefunction must transform
as well, according to

ψ(x, t)
G.T.−−−→ e−

ie
~ α(x,t)ψ(x, t) (4.18)

The quantum mechanical analogy of canonical transformations are unitary transformations
ψ → Uψ, with U †U = UU † = 1. Indeed, matrix elements of operators transform as

〈ψ1| Ô |ψ2〉
U.T.−−−→ 〈ψ1| Û †ÔÛ |ψ2〉 . (4.19)

Similarly to the Heisenberg picture, one can say that unitary transformations leave the
states invariant but transform operators as Ô → Û †ÔÛ . This transformation leaves
commutation relations invariant, which is the definition of a canonical transformation:

[x̂, p̂] = i~ U.T.−−−→ [Û †x̂Û , Û †p̂Û ] = Û †[x̂, p̂]Û = i~ (4.20)

To summarize, the gauge transformation of the wavefunction is an example of a unitary
transformation, which is the quantum version of a canonical transformation in classical
physics.

We would now like to take the non-relativistic limit (ẋ� c) of the Hamiltonian:

Hnon-rel = mc2 +
1

2m
(p− eA)2 + eΦ. (4.21)

Note that the constant mc2 has no physical consequences, so we drop it from now on.
After quantization, the Hamiltonian can be written as

Ĥ ≡ 1

2m
(p̂− eA(x̂))2 + eΦ(x̂) . (4.22)

Now we would like to see how the matrix element of p̂ transform under a gauge transfor-
mation. Using (eq. 4.18), we have

〈ψ1| p̂ |ψ2〉 =
ˆ

d3xψ∗
1(x)(−i~∇)ψ2(x) (4.23)

G.T.−−−→
ˆ

d3xψ∗
1(x)e

ie
~ α(−i~∇)e−

ie
~ αψ2(x) (4.24)

= 〈ψ1| p̂ |ψ2〉 − e 〈ψ1|∇α |ψ2〉 (4.25)
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However, the matrix elements of the kinetic momentum operator are gauge invariant:

〈ψ1| Π̂ |ψ2〉 =
ˆ

d3xψ∗
1(x)(−i~∇− eA)ψ2(x) (4.26)

G.T.−−−→
ˆ

d3xψ∗
1(x)e

ie
~ α(−i~∇− eA+ e∇α)e−

ie
~ αψ2(x) (4.27)

= 〈ψ1| Π̂ |ψ2〉 (4.28)

Exercise 4.2 (Gauge covariant derivative).
Show that, under a gauge transformation,

Π̂ = −i~∇− eA (4.29)

is a covariant derivative, i.e. Π̂ψ transforms as ψ.

Exercise 4.3 (Gauge covariance of Schrödinger equation).
Under a gauge transformation parametrized by α, the Hamiltonian transforms as

Ĥ
G.T.−−−→ Hα =

1

2m
(p̂− eA+ e∇α)2 + eΦ+ e∂tα. (4.30)

Show that if ψ solves the Schrödinger equation for H ( i~∂tψ = Ĥψ) then ψα ≡ e−
ie
~ αψ

solves the Schrödinger equation for Hα. In other words, prove the gauge covariance of
the Schrödinger equation.

The probability density |ψ|2 is gauge invariant. In Quantum Mechanics, one can
define a probability current J such that the following continuity equation holds:

∂|ψ|2

∂t
+∇ · J = 0 (4.31)

In regular quantum mechanics without an external EM field, we usually define the current

J̃ ≡ ~
2mi

(ψ∗∇ψ − ψ∇ψ∗) =
1

2m
(ψ∗p̂ψ + ψ(p̂ψ)∗) (4.32)

In the presence of an EM field, one can substitute p̂ with Π̂, the kinetic momentum, and
see whether the continuity equation holds with

J ≡ 1

2m

(
ψ∗Π̂ψ + ψ(Π̂ψ)∗

)
=

~
2mi

(ψ∗∇ψ − ψ∇ψ∗)− e

m
A|ψ|2 (4.33)

Using the Schrödinger equation,

i~
∂ψ

∂t
= Hψ =

(
1

2m
Π̂2 + eΦ

)
ψ, (4.34)
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we have

i~
∂|ψ|2

∂t
= ψ∗

(
i~
∂ψ

∂t

)
− ψ

(
i~
∂ψ

∂t

)∗
(4.35)

= ψ∗
(

1

2m
Π̂2 + eΦ

)
ψ − ψ

((
1

2m
Π̂2 + eΦ

)
ψ

)∗
(4.36)

=
1

2m

[
ψ∗Π̂2ψ − ψ

(
Π̂2ψ

)∗]
(4.37)

= − ~2

2m

[
ψ∗
(
∇− ie

~
A

)2

ψ − ψ

((
∇− ie

~
A

)2

ψ

)∗]
(4.38)

Note now that(
∇− ie

~
A

)2

ψ = ∇2ψ − e2

~2
A2ψ − ie

~
A · ∇ψ − ie

~
∇ · (Aψ), (4.39)

Using the above results, it can be shown that

∂|ψ|2

∂t
= − ~

2mi

[
ψ∗∇2ψ − ψ∇2ψ∗ − 2ie

~
A · ∇|ψ|2 − 2ie

~
|ψ|2∇ ·A

]
(4.40)

= − ~
2mi

∇ · [ψ∗∇ψ − ψ∇ψ∗]− e

m
∇ · (A|ψ|2) (4.41)

This is exactly −∇ · J ! The continuity equation is therefore verified if we replace p̂ in
the usual density current with the gauge-invariant kinetic momentum Π̂.

Charged particle in a constant magnetic field

Consider a constant magnetic field in the e3 direction: B = (0, 0, B). Recall that B is the
curl of the vector potential A. There are many solutions for A that satisfy this equation,
which corresponds to the freedom to choose the gauge. A possible choice for A is

A =

(
−By

2
,
Bx

2
, 0

)
(4.42)

Since we only want a constant B field, we can set Φ = 0 from now on.

Given this potential, we have the following Hamiltonian:

H =
1

2m

[(
p̂1 +

eB

2
ŷ

)2

+

(
p̂2 −

eB

2
x̂

)2

+ p̂23

]
(4.43)

Clearly, translations along the x and y directions are a symmetry of the system since the
B field is in the z direction. Moreover, translations are usually realized at the quantum
level by considering p̂ to be the generator of translations, i.e. e

i
~ap̂ψ(x) = ψ(x + a).

Without the magnetic field, we call “momentum” both the generator of translation and
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the conjugate variable to the position (from [x̂i, p̂j ] = i~δij). In the rest of this section,
we call “momenta” p̂i the conjugate variable to the position, and we will see that the
generators of translation will be different.

Indeed, note that in this case the momenta p̂x and p̂y do not commute with the
Hamiltonian, since Ĥ depends on x̂ and ŷ1. Therefore, the momenta p̂ do not generate
any symmetry, and we need to find other translation generators T̂i. These generators will
need to commute with the Hamiltonian in order to correspond to the physical translation
symmetry.

A sufficient condition to impose is

[T̂i, Π̂j ] = 0, (4.44)

since the Hamiltonian is built out of the kinetic momenta Π̂. A more intuitive reasoning
for the above equation is that in the classical, nonrelativistic limit, Π = mẋ. A transla-
tion should not change the velocity of the particle, hence the vanishing commutator above.

If we set the magnetic field to 0, we know that T̂i = p̂i, so we can define the Ansatz

T̂ ≡ Π̂+ F(x̂). (4.45)

The constraint (4.44) leads to

0 = [p̂i − eAi + Fi, p̂j − eAj ] (4.46)
= ie~(∂iAj − ∂jAi︸ ︷︷ ︸

=εijkBk

) + i~∂jFi (4.47)

=⇒ Fi = −eεijkxjBk + ci. (4.48)

Note that the constants ci are irrelevant. Indeed, they correspond to multiplying the
state by a phase when translating it, which does not have a physical impact:

eiα·(T̂+c) |ψ〉 = eiα·c︸︷︷︸
phase

eiα·T̂ |ψ〉 (4.49)

Therefore, we have found the generators of translations!

T̂ = p̂− e(A+ (x ∧B)) (4.50)

A very important consequence is that translations do not commute:

[T̂i, T̂j ] = [T̂i, Π̂j ]︸ ︷︷ ︸
=0

+[T̂i, Fj ] = −i~∂iFj = −i~eεijkBk (4.51)

1Note that even if we had chosen a different gauge for A, it would still depend on x̂ or ŷ.



96 Chapter 4 Interaction with an external electromagnetic field

In particular, for our example with B = (0, 0, B), the translations along x and y do not
commute:

[T̂x, T̂y] = −i~eB (4.52)

One can think of T̂x and T̂y as conjugate variables, just like x̂ and p̂ in standard quantum
mechanics. In particular, since their commutator is a fixed complex number, they have
an uncertainty relation. Furthermore, we can also show that

[p̂x, p̂y] = +i~eB, (4.53)

which means that the momenta2 along x and y can also be interpreted as a conjugate
pair of variables.

What does the non-commutativity of translations mean? We have a symmetry group
of translations which is obviously commutative, but the operators representing the group
on the Hilbert space, the generators T̂i, are not commutative. In order to understand how
this can occur, consider translating by a in the x direction, then by b in the y direction,
then by −a in the x direction, and finally by −b in the y direction. In other words,
our consecutive translations form a rectangle in the x− y plane. This is realized at the
quantum level as

Û ≡ e
ib
~ T̂ye

ia
~ T̂xe−

ib
~ T̂ye−

ia
~ T̂x . (4.54)

Using the BCH formula (A.1), we can write

Û = exp

[
− ib

~
T̂y −

ia

~
T̂x +

1

2

ab

~2
[T̂x, T̂y]

]
exp

[
ib

~
T̂y +

ia

~
T̂x +

1

2

ab

~2
[T̂x, T̂y]

]
(4.55)

= exp

[
− i

~
eBab

]
. (4.56)

This has a nice interpretation: Φ ⇔ Bab is the magnetic flux through the rectangle.
Classically, Û should be the identity, since we did 4 translations in a row to come back
to the same place. However, in quantum mechanics, it is just a phase that only depends
on the magnetic flux through the rectangle. Mathematically, we say that the group of
translations is realized projectively. To summarize, if a quantum particle moves around
a loop that borders a surface S, its phase changes by an angle equal to − e

~Φ, where Φ is
the magnetic flux through S.

Classical motion:
The classical equation of motion is

mẍ = eẋ ∧B, (4.57)

2Note that these are not the velocity of the particle: classically, mẋ = Π 6= p.
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and the solution can be written as{
x(t) = xc +R cos(ωct)

y(t) = yc −R sin(ωct)
, ωc =

eB

m
. (4.58)

ωc is called the cyclotron frequency. Now the translation generators Tx and Ty become

Tx = πx − eyB = mẋ−mωcy = −mωcyc (4.59)
Ty = πy + exB = mẏ +mωcx = mωcxc. (4.60)

Classically, (Tx, Ty) measure the position of the center of the circular orbits.

In the next lecture, we will look at two main consequences of the effects we discussed
here: Landau Levels and the Aharonov-Bohm effect.
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Summary of Lecture 11

• Charged particle in background EM field:

S = −mc2
ˆ
γ

dτ − e

c

ˆ
γ
Aµdxµ = −

ˆ
dt
[
mc2

√
1− ẋ2

c2
+ eΦ− eA · ẋ

]

• Gauge transformation:

Aµ → Aµ + c∂µα

S → S − e [α(xf , tf )− α(xi, ti)]

ψ(x, t) → e−
ie
~ α(x,t)ψ(x, t)

• Hamiltonian and non-relativistic limit:

H =
√
(p− eA)2c2 +m2c4 + eΦ

Hnon-rel =
1

2m
(p− eA︸ ︷︷ ︸

=Π

)2 + eΦ,

where Π is the kinetic momentum.

• Charged particle in constant magnetic field B = (0, 0, B). Generators of transla-
tions:

T̂ = p̂− e(A+ (x ∧B))

Classically, Tx and Ty can be interpreted as the center of the circular orbits of the
particle.

• Generators of translations and conjugate momentum do not commute among
themselves:

[T̂x, T̂y] = −i~eB
[p̂x, p̂y] = +i~eB

Intuitively, translating a state around a closed path multiplies it by a phase e− ie
~ Φ,

where Φ is the flux of the magnetic field passing through the closed path.
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Lecture 12 - Landau Levels and Aharonov-Bohm effect

Landau Levels

We would now like to study the energy levels of a charged particle in a constant mag-
netic field. We will show that the energy levels are discrete, although they have a high
degeneracy.

For simplicity, we choose the potential to be

A = (−By, 0, 0), Φ = 0 =⇒ B = (0, 0, B) (4.61)

Using the definition of the non-relativistic hamiltonian (4.22), we can write

Ĥ =
1

2m

(
(p̂1 + eBŷ)2 + p̂22 + p̂23

)
(4.62)

Translation invariance is manifest along x and z, but not along y since Ĥ depends
explicitly on ŷ. In order to compute the spectrum of this Hamiltonian, we can construct
explicit energy eigenfunctions ψ(x, y, z). We define the Ansatz

ψ(x, y, z) = e
i
~ (p1x+p3z)F (y) (4.63)

=⇒ Ĥψ =

12m( eB

m︸︷︷︸
ωc

)2 (
ŷ +

p1
eB

)2
+

p̂22
2m

+
p23
2m

ψ (4.64)

Reorganizing the above and enforcing ψ to be an eigenfunction of Ĥ with energy E, we
find [

p̂22
2m

+
1

2
mω2

c

(
ŷ +

p1
eB

)2]
︸ ︷︷ ︸

ĤHO

ψ +
p23
2m

ψ = Eψ (4.65)

Note that the left-hand side corresponds to a (shifted3) harmonic oscillator in the
y-direction! Therefore, the energy levels are

En = ~ωc
(
n+

1

2

)
+

p23
2m

(4.66)

Furthermore, the functions F (y) are simply the energy wavefunctions of the harmonic
oscillator, but centered at yc = − p1

eB . Therefore, we can write

ψ(x, y, z) = e
i
~ (p1x+p3z)ψn (y − yc) , (4.67)

3Notice that the potential is centered around y = − p1
eB

.
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where

ψn(x) =
1√
2nn!

(mω
π~

)1/4
e−

mωx2

2~ Hn

(√
mω

~
x

)
(4.68)

and Hn(x) are the Hermite polynomials. In order to visualize these states, we can
compute |ψ|2:

|ψ|2 = |ψn(y − yc)|2, (4.69)

which is just the probability density of the n-th level of the harmonic oscillator, but
centered around yc.

Figure 4.1: Probability density |ψ| as a function of x, y for the case n = 0.

This seems to break the y-translation symmetry. However, if the Hamiltonian is
degenerate (there are linearly independent states with the same energy), the y-translation
symmetry only needs to hold in each subspace. We will discuss below that we can super-
pose states with different centers yc but with the same energy to recover a y-translation
symmetric state.

In order to study the degeneracy of the system, recall which quantum numbers we
had to fix. We first set the momenta in the x and z direction, p1 and p3. Then, we had
to use n to describe the energy level of the harmonic oscillator centered at yc in the
y-direction. We saw that yc depends on the momentum in the x-direction as yc = − p1

eB .
Therefore, if we fix (p1, p3, n) or alternatively (yc, p3, n), we have completely defined our
wavefunction.

However, in the expression for the energy levels, p1 (or alternatively yc) does not
appear. There is therefore a very large degeneracy corresponding to the fact that different
states with the same p3 and n, but centered at different yc have the same energy. A
general state in the n-th Landau level, with momentum p3 along z is therefore given by

ψ(x, y, z) = e
i
~p3z

ˆ
dp1 f(p1)e

i
~p1xψn

(
y +

p1
eB

)
(4.70)

Choosing f(p) carefully, one can construct ψ(x, y, z) to be an eigenstate of translations
along x, y, but not both, since [T̂1, T̂2] 6= 0! Note that it is also possible to construct
eigenstates of rotations around the z-axis.
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Lastly, we can ask how many states are in a Landau level. Obviously, if we consider
an infinite x− y plane, there is infinitely many states in a level, one for each p1 as argued
above. However, if we consider the rectangle of side Lx and Ly, the momentum becomes
quantized:

p1 =
2π~
Lx

m, m ∈ Z (periodic B.C.) (4.71)

Therefore,

yc = − 2π~
eBLx︸ ︷︷ ︸
≡∆yc

m. (4.72)

The centers are discrete! This is independent of the fact that Ly is fixed. If we had
considered an infinite strip with Ly → ∞, the centers would still be discretized in this way.

The number of states in the rectangle is then given by the length of the rectangle
of the y-direction, divided by the space each state takes (assuming the rectangle to be
much bigger than the spacing between states) :

N =
Ly
∆yc

=
eBLxLy
2π~

=
Φ

2Φ0
, (4.73)

where Φ is the magnetic flux, Φ = BLxLy, and Φ0 is the magnetic flux “quantum”, π~
e .

Aharonov-Bohm Effect

In classical electromagnetism, we learn that knowing the electric and magnetic fields in a
region of interest gives a complete description of the physics in that region. However,
using the formalism developed so far, we will show that this fails at the quantum level:
some additional information about the system must be specified.

Consider a particle moving in R3, but with an infinite cylinder “removed” - the particle
cannot go inside the cylinder. Mathematically, one could consider wavefunctions obeying
the Schrödinger equation with boundary conditions ψ(x, y, z) = 0 at the boundary of
the cylinder. Therefore, when computing the propagator, we must sum over paths which
remain outside the cylinder:

K(xf , tf ;xi, ti) =

ˆ
outside
cylinder

D[x] e
i
~S[x] (4.74)

Now imagine that we hide an infinite, continuous solenoid inside this cylinder. Classically,
the magnetic field is uniform inside the solenoid, and vanishes outside. Therefore, since
the particle is always outside the solenoid, it never “feels” any magnetic field, and we
naively expect that the presence of a solenoid does not matter.
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However, although the magnetic field vanishes outside the solenoid, the potential
does not! Indeed, consider a surface S cutting through the solenoid, with boundary γ
(see figure 4.2).

Figure 4.2: Infinite cylinder with constant uniform magnetic field inside. The path γ
goes around the cylinder, and encloses a surface S through which there is a non-zero
magnetic flux.

We can compute the circulation of the vector potential around γ in terms of the
magnetic flux Φ inside the solenoid:ˆ

γ=∂S
A · dx =

ˆ
S
B · dS = Φ. (4.75)

Therefore, even though B = 0 outside the cylinder, A 6= 0! Classically, this does not
have any effect since the system is entirely described by the E and B field, which are 0
outside the cylinder. Let us then investigate what happens at the quantum level.

Recall that the non-relativistic action for a charged particle in an EM field is given by

S =

ˆ
dt
[1
2
mẋ2 − eΦ+ eẋ ·A

]
(4.76)

In our case, Φ = 0 and we can write

S = S0 + e

ˆ
A · dx, (4.77)

where S0 is the free action. Therefore, if the charged particle is moving on a path γ, we
have

e
i
~S[γ] = e

i
~S0[γ]+

ie
~
´
γ A·dx (4.78)
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In the path integral, we sum these phases over different paths γ. Consider then the paths
drawn in figure 4.3

Figure 4.3: Different paths going from xi to xf that cannot be continuously deformed
into each other due to the cylinder.

As a first example, we can compute the phase difference between the contribution
from γ1 and the contribution from γ2:

∆Φ12 =
e

~

[ˆ
γ1

A · dx−
ˆ
γ2

A · dx
]
, (4.79)

where S0[γ1] and S0[γ2] cancel out by symmetry (we choose γ1 and γ2 to be reflections
of each other). Now the integral can be viewed as the circulation of A over the closed
contour going from xi to xf following γ1 and then back to xi following γ2. This circulation,
as before, is the flux Φ!

∆Φ12 =
eΦ

~
(4.80)

Fundamentally, this arises because γ1 and γ2 are topologically inequivalent paths:
they cannot be continuously deformed into each other due to the cylinder. Let us now
look at topologically equivalent paths, γ1 and γ3. The phase difference ∆Φ13 is now 0,
since there is no magnetic flux through the surface enclosed by the path γ1 − γ3. Finally,
we can study more complicated paths such as γ4, and compute the phase difference ∆Φ42.
The closed path γ4 − γ2 goes around the solenoid twice, and therefore

∆Φ42 =
2eΦ

~
(4.81)

With these examples, we have understood that topologically inequivalent paths contribute
different factors to the path integral.

To make this statement more precise, we associate a winding number n to each
path. We will always compare paths to a basic “base” path, which we call γ0 (this would
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be γ1 in figure 4.3). Then, if γn is a path with winding number n, we define

˛
γn−γ0

A · dx ≡ nΦ (4.82)

Note that it is important to keep track of the orientation of the closed path to distinguish
between positive and negative winding numbers.

Exercise 4.4 (Winding numbers).
Convince yourself that in the example drawn in figure 4.3, γ2 has winding number n = −1,
γ3 has n = 0 and γ4 has n = +1.

Using this formalism, we can write

i

~
S[γn] =

i

~
S0[γn] +

ie

~

ˆ
γn

A · dx (4.83)

=
i

~
S0[γn] +

ie

~
nΦ+ i

e

~

ˆ
γ0

A · dx︸ ︷︷ ︸
≡C

, (4.84)

where C is just a constant real number depending on which γ0 we choose.

The propagator can now be written as

K(xf , tf ;xi, ti) =
∑
n

ˆ
γn

D[x] e
i
~S0[x]+in

eΦ
~ , (4.85)

where we discarded the overall phase corresponding to the base path (eiC) as it does not
have any observable effect on the wavefunction. Here,

´
γn

denotes the path integral over
trajectories with fixed winding number n.

Note that this effect is periodic in Φ: if we increase Φ by 2π~
e , the physics is unaffected.

In order to maximize this effect, we should therefore set Φ = π~
e ≡ Φ0. This factor is

exactly the same as the one that appeared when counting the number of states in a
Landau level.

The modified double-slit experiment:
Let us now study one system where this effect becomes physically evident: our favorite
example, the double-slit experiment. Consider placing the solenoid between the two slits,
so that there is a magnetic flux as indicated in figure 4.4
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Figure 4.4: The experimental setup to test the Aharonov-Bohm effect. The double-slit
experiment is modified to include a magnetic flux between the two slits, leading to
topologically inequivalent trajectories γ1 and γ2.

Using equation (4.85), we can write

K(xf , tf ;xi, ti) = K1(xf , tf ;xi, ti) +K2(xf , tf ;xi, ti)e
−i eΦ~ + higher windings (4.86)

where Ki is the free propagator associated to the path γi. The higher windings contribute
a negligible amount since they correspond to trajectories where the electron goes through
the slits multiple times4. Then,

|K|2 = |K1|2 + |K2|2 + 2Re
(
K∗

1K2e
−i eΦ~

)
(4.87)

In the limit where b � a � z, we are really looking at the center of the interference
pattern and we can neglect the decay of the amplitudes on the edges of the pattern. In
this regime, we can assume free propagation and write

K1 = Aeiqz, K2 = Ae−iqz, (4.88)

where q is the momentum of the plane waves along z and the sign difference in the
exponential comes from the fact that γ1 comes from −a and has positive momentum along
z, while γ2 comes from a and has negative momentum along z. In this approximation,
we find

|K|2 = 2|A|2
(
1 + cos

(
2qz +

eΦ

~

))
. (4.89)

Therefore, we expect the interference fringes shift with Φ! The effect is periodic under
Φ → Φ+ 2Φ0n, n ∈ Z.

Through the Aharonov-Bohm effect, we have seen that Fµν is not sufficient to describe
electromagnetism. Indeed, different physical situations in a region can have the same

4We also neglected these trajectories in the original double slit experiment without the solenoid.
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Fµν in that region. We need to specify some other object as well to completely describe
the physics, and that object must be gauge-invariant. As we have shown,

˛
A · dx (4.90)

is gauge invariant, but it overdescribes electromagnetism! The right choice is the phase
factor that appears in the path integral:

exp

(
i
e

~

˛
A · dx

)
(4.91)

Together with Fµν , the above phase factor gives a complete description of electromag-
netism! This formalism is used in lattice gauge theory, where there are phases eiϕ on
every link of the lattice.

Particle on a ring

As another example, consider a particle moving on a ring of radius R, with a solenoid at
the center creating a magnetic flux Φ as showed in figure (4.5).

Figure 4.5: Particle moving around a solenoid with magnetic flux Φ.

Then,

Φ =

ˆ
σ
B · dσ =

ˆ
∂σ

A · dx = 2πRAθ (4.92)

where σ is a surface whose boundary ∂σ is the ring. Now the Hamiltonian can be written
as

H =
1

2m
[pθ − eAθ]

2 (4.93)

=
1

2m

[
− i~
R
∂θ −

eΦ

2πR

]2
, (4.94)
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where we used ∇ in polar coordinates. Now since θ is periodic, we must have

ψn(θ) = einθ, n ∈ Z, (4.95)

which implies

En =
~2

2mR2

[
n− eΦ

2π~

]2
(4.96)

=
~2

2mR2

[
n− Φ

2Φ0

]2
(4.97)

Therefore, the energy shift is periodic: the magnetic fluxes Φ and Φ+ 2kΦ0, for k ∈ Z,
give the same energy levels.

To summarize, the presence of the solenoid affects the energy levels of the particle
in the ring, but this effect is periodic. The physics is therefore described by the phase
factor eiπ

Φ
Φ0 !

Exercise 4.5 (Generalization of the particle on the ring). Consider again a particle on
a ring, but with position-dependent EM potential 5:

H =
1

2m
[−i~∂x − eA(x)]2 , (4.98)

with fixed magnetic flux

Φ =

ˆ L

0
A(x)dx (4.99)

Compute the energy eigenstates of the Hamiltonian (4.98). Hint: use the gauge transfor-
mation properties of the wavefunction ψ and A.

Magnetic Monopoles

This is based on an idea from Dirac [3]. Consider a semi-infinite thin solenoid as depicted
in figure 4.6. At some point, the solenoid ends and the magnetic field “spreads out”, as if
it was created by a magnetic charge, which is called a magnetic monopole. Note that
Maxwell’s second law, ∇ ·B = 0, is still satisfied as there is a non-zero magnetic flux
coming from the solenoid.

5This time, we consider the variable x ∈ [0, L], with L = 2πR, but the system is the same as before if
you identify x = θR. In this notation, periodicity implies ψ(x) = ψ(x+ L)
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Figure 4.6: Semi-infinite thin solenoid acting as a magnetic monopole.

We call the semi-infinite thin solenoid a Dirac string, with magnetic field BS inside
the solenoid. The magnetic field of the monopole is denoted BM , and thus

B = BS +BM (4.100)

Now we can use the Aharonov-Bohm effect to investigate whether the string is observable.
If the charge of every particle verifies

eΦ

~
= 2πn, (4.101)

then the string is unobservable! Indeed, one can only “see” the string by using the
Aharonov-Bohm effect and seeing interference pattern, since BS vanishes everywhere
outside the string. In other words, if the charges are quantized as in equation (4.101),
then only the magnetic monopole field is observable. BM behaves exactly like the electric
field coming from a single charge:

BM =
gM
4πr2

eR, (4.102)

where gM = Φ is the magnetic charge.

Now the fact that ∇ · B = 0 is a kinematic fact: it only comes from B = ∇ ∧ A.
Therefore, if a single monopole is observed, then all electric charges must be quantized:

e =
2π~
gM

n (4.103)

This quantization condition can also be obtained in another way, which is the topic of
exercise 34.
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In nature, we observe every particle’s charge to be integer multiple of the electron
charge 6. This is surprising, as there is no “group-theoretic” explanation for this
quantization. For example, the quantization of the angular momentum directly comes
from the structure of the associated SU(2) algebra. In electromagnetism, the symmetry
group is abelian and it does not impose any quantization.

Weak vs. Strong Coupling:
The strength of the electromagnetic interaction is set by the fine-structure constant:

α =
e2

4π~c
≈ 1

137
� 1 (4.104)

The EM interactions are therefore “weak”. This means atoms are

• Weakly bound: Ebinding ∼ α2me � me.

• Large: rB ∼ 1
αme

� 1
me

.

• Non-relativistic: ve ∼ αc� c.

By charge quantization, the minimum possible gM is

gmin ≡ 2π~
e
, (4.105)

and therefore the analog of the fine-structure constant for magnetic monopoles would be
very large:

αM ≡
g2Mc

4π~
≥ g2minc

4π~
=
π~c
e2

=
1

4α
≈ 34 � 1 (4.106)

Therefore magnetic monopoles must be strongly coupled!

6More precisely, every charge is an integer multiple of the down quark charge, which is equal to 1
3

of
the electron charge.
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Summary of Lecture 12

• Landau levels: constant B = (0, 0, B) implies energy levels

En = ~ωc
(
n+

1

2

)
+

p23
2m

.

High degeneracy: many states with the same energy but centered at different yc.
Eigenstates of translations along x or y (but not both!) can be constructed by
careful superposition.

• Number of states in a Landau level (on a finite rectangle with sides Lx, Ly):

N =
Φ

2Φ0
, Φ = BLxLy, Φ0 =

π~
e
.

• Aharonov-Bohm effect: topologically inequivalent paths give rise to interference
patterns. In modified double-slit experiment,

|K|2 = 2|A|2
(
1 + cos

(
2qz +

eΦ

~

))
→ fringes shift with Φ.

• Particle in a ring: solenoid at center affects energy levels, but effect is periodic →
described by a phase factor

exp

(
iπ

Φ

Φ0

)
• Magnetic monopoles: if a single monopole is observed, all electric charges must be

quantized

e =
2π~
gM

n

Minimum possible gM leads to strong coupling constant αM .

Lecture 13 - Quantum Monte Carlo

We discuss the basic idea behind quantum Monte-Carlo and emphasize its relation to
the path integral formulation of quantum mechanics.



Appendix A

Mathematics

In this appendix, we summarize some of the mathematical tools used in the main text.

A.1 Baker-Campbell-Hausdorff and Zassenhaus formulas

For two non-commuting operators X and Y , we have the BCH formula:

eXeY = eZ , (A.1)

where
Z = X + Y +

1

2
[X,Y ] +

1

12
[X, [X,Y ]]− 1

12
[Y, [X,Y ]] + . . . (A.2)

The Zassenhaus formula gives the reverse direction:

et(X+Y ) = etXetY e−
t2

2
[X,Y ]e

t3

6
(2[Y,[X,Y ]]+[X,[X,Y ]]), t ∈ C (A.3)

A.2 Complex analysis theorems

Cauchy’s theorem
Let U ∈ C be a simply connected region U ⊂ C and f(z) a holomorphic function on U .
Then, for any closed curve γ ⊂ U , we have˛

γ
dz f(z) = 0 (A.4)

Residue theorem
Let U ∈ C be a simply connected region U ⊂ C and f(z) a holomorphic function
on U\ {z1, z2, . . . , zn}. Then, for any closed curve γ ⊂ U avoiding the singular points
z1, z2, . . . , zn, we have ˛

γ
dz f(z) = 2πi

n∑
k=1

Res(f, zk) . (A.5)

If the singular point zk is a pole of order q then the residue is given by

Res(f, zk) =
1

(q − 1)!
lim
z→zk

dq−1

dzq−1
(z − zk)

q f(z) (A.6)
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A.3 Fourier transform

In our conventions, the Fourier transform of a function f(x), where x ∈ Rn is given by

f̃(k) =

ˆ
Rn

dnx f(x)e−ik·x , (A.7)

where k · x is the Euclidean scalar product. The inverse transform is then

f(x) =

ˆ
Rn

dnk
(2π)n

f̃(k)eik·x . (A.8)

For functions of space and time (spacetime) we shall use the convention

f̃(k, ω) =

ˆ
R4

d3x dt f(x, t)eiωt−ik·x

f(x, t) =

ˆ
R4

d3k

(2π)3
dω
2π

f̃(k, ω)e−iωt+ik·x
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Appendix B

Computational details

B.1 No degenerate energy levels in 1D quantum mechanics

Given a time-independent potential V (x), the wavefunctions verify the Schrödinger
equation

− ~2

2m

d2ψ

dx2
+ V ψ = Eψ (B.1)

Assume there are 2 independent solutions with energy E, ψ1 and ψ2. We can compute
the Wronskian

W = ψ1ψ
′
2 − ψ′

1ψ2 = constant (B.2)

Assuming that the wavefunctions are normalized and well behaved, we can take the
x → ∞ limit of the above and both ψ1 and ψ2 will vanish. Therefore, W = 0 and we
have

ψ′
1

ψ1
=
ψ′
2

ψ2
(B.3)

=⇒ ln(ψ1) = ln(ψ2) + c (B.4)
=⇒ ψ2 = c̃ψ1, (B.5)

which shows us that the two wavefunctions are proportional to one another. These do
not differ physically, and we have thus proven that there are no degenerate states in 1D
quantum mechanics (for a time-independent potential).

B.2 Derivatives acting on δ functions

In the study of Feynman diagrams, one often encounters integrals containing derivatives
acting on delta functions. Although this can seem confusing at first, they are actually
easy to deal with, as they can always be removed through integration by parts. For
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example, we used this trick in equation (2.51):

SE =
1

2

ˆ β/2

−β/2
dτ1dτ2 x(τ1)O(τ1, τ2)x(τ2)

=
1

2

ˆ β/2

−β/2
dτ1dτ2 x(τ1)

[
−m ∂2

∂τ21
+mω2

]
δ(τ1 − τ2)x(τ2)

= −m
2

ˆ β/2

−β/2
dτ1dτ2 x(τ1)

∂2

∂τ21
δ(τ1 − τ2)x(τ2) +

1

2

ˆ β/2

−β/2
dτ mω2x2(τ)

= −m
2

ˆ β/2

−β/2
dτ1dτ2

∂2x(τ1)

∂τ21
δ(τ1 − τ2)x(τ2) +

1

2

ˆ β/2

−β/2
dτ mω2x2(τ)

=
1

2

ˆ β/2

−β/2
dτ x(τ)

[
−m d2

dτ2 +mω2

]
x(τ)

B.3 Phases from analytic continuation

We show below that the number of negative eigenvalues n− from the Gelfand-Yaglom
formula is equal to the number of zeroes of ψ0(t), using complex analysis methods.

• Naively, we could have written

I[xc] =

√
m

2πi~ψ0(tf )
, (B.6)

for tf very close to ti. Indeed, in that regime, ψ0(tf ) > 0 because of the initial
conditions ψ0(ti) = 0 and ψ̇0(ti) = 1.

You can think of tf as being an external parameter that we can modify, and for
each value of tf we will get a value of I[xc]. Since I[xc] can be complex, increasing
tf (starting from tf = ti+δ, δ � 1) will give us “trajectories” in the complex plane.

Now for general tf , we expect ψ0(t) to be an oscillatory function by analogy with the
harmonic oscillator case (here the frequency is time-dependent but the oscillatory
behavior remains). As we increase tf , we therefore expect that for some value
of tf , ψ0(tf ) = 0. If we keep increasing tf , we expect ψ0(tf ) to be negative by
continuity. This means that there will be a phase e−iπ2 appearing in front, which is
very reminiscent of equation (3.11).

• Let us be more precise. Given some tf , we know that ψ0(t) is an oscillatory function
in the range [ti, tf ]. Let us label by tk, k = 1, . . . its zeros. In formula (B.6), we see
that this leads to the divergence of I[xc], which is problematic. More precisely,

I[xc] ∝
1√
ψ0(tf )

, (B.7)
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which means that if we think of I[xc] as a function of tf , it has a branch point at
each tk (the zeros of ψ0(t)). However, we should be thinking of Minkowski “real”
time as the Wick rotation of Euclidean time, with τ = it(1− iε)1. Therefore, we
do not technically hit the branch points at tf = tk (see figure B.1).

Figure B.1

• Given this, we can make our formulas more precise by sending

ψ0(tf ) → ψ0(tf (1− iε)) ≈ ψ0(tf )− iεψ̇0(tf ) (B.8)

Therefore, as we increase tf , we do not hit the branch points of I[xc], but we rather
go around it (see figure B.2). Indeed, for very small tf , we have ψ0(tf ) ≈ ψ0(ti) = 0
and ψ̇0(tf ) ≈ ψ̇0(ti) = 1, so with the iε prescription we have ψ0(tf ) ≈ −iε. Now as
we increase tf , the real part increases, and we reach the real line when the imaginary
part is 0, i.e. at the first maximum of ψ0(tf ). Then, the real part decreases again
until we reach ψ0(tf ) = 0, which was causing problems before. However now there
is a nonzero imaginary part due to the −iεψ̇0(tf )!

1For more details about the iε prescription, recall the discussion at the end of Lecture 5.
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Figure B.2

• We can now finally understand the phase factor! We know that I[xc] ∝ 1√
ψ0(tf )

, so
let us study what happens when we go around the branch point. The function

√
z

has a branch cut (we can choose it to be on the negative real axis for convenience,
which means that complex numbers have argument θ ∈]− π, π[), which leads to
a discontinuity. Indeed, let x± be complex numbers with negative real parts and
small positive/negative imaginary parts:

x± = −r ± iε, r > 0 (B.9)

Then,

1
√
x+

= (−r + iε)−1/2 = (|r|ei(π−ε̃))−1/2 ≈ e−i
π
2√
|r|

(B.10)

1
√
x−

= (−r − iε)−1/2 = (|r|ei(−π+ε̃))−1/2 ≈ ei
π
2√
|r|

(B.11)

we therefore see that crossing the branch cut (from above) leads to a multiplication
by a phase eiπ.

The number of times this happens can be related to the number of zeros of ψ0(t)
in [ti, tf ] for a given tf . Indeed, we cross the branch cut for each minimum of ψ0,
and the number of minima (nmin) of ψ0 is half the number of zeros (n0) of ψ0.
Therefore, we find the phase factor

eiπnmin = ei
π
2
n0 (B.12)
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Therefore, we have

1√
ψ0(tf )

ei
π
2
n0 =

1√
|ψ0(tf )|

(B.13)

which gives us back the original formula we found using Gelfand-Yaglom:

I[xc] = e−i
π
2
n0

√
m

2πi~|ψ0(tf )|
(B.14)

where now the integer in the exponential is the number of zeroes of ψ0 instead of
the number of negative eigenvalues of the differential operator.
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B.4 Multiple saddle points semiclassical spectral density computation

We want to compute the semiclassical approximation for the spectral density by using
formula (3.95):

Ksc(E;xf , xi) =
∑
n

e−i
π
2
Nn√

|v(xi)v(xf )|
e

i
~
´ xf
xi

dx(n) p(x) (B.15)

To clarify the notation, we consider the trajectories shown in figure (B.3). We will first
compute the contribution from the green paths, which are initially going towards xf , and
then the contribution from pink paths:

Ksc(E;xf , xi) = Kgreen
sc (E;xf , xi) +Kpink

sc (E;xf , xi) (B.16)

Figure B.3: Different oscillating paths corresponding to different saddle points. Green
paths are labelled by integers independently from pink paths.

Since the paths are oscillating, we can deduce the contribution from the (n+ 2)’th
path from the n’th path. Indeed, we have the following recursive identity:ˆ xf

xi

p(x) dx(n+2) =

ˆ xf

xi

p(x)dx(n) + 2

ˆ b

a
p(x) dx︸ ︷︷ ︸

=Ω(E)

(B.17)

Furthermore, we can relate the second path to the first asˆ xf

xi

p(x) dx(2) =
ˆ xf

xi

p(x)dx+ 2

ˆ b

xf

p(x)dx (B.18)
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Therefore, we have different formulas for even or odd n:

n = 2m+ 2 =⇒
ˆ xf

xi

p(x) dx(n) =
ˆ xf

xi

p(x)dx+ 2

ˆ b

xf

p(x)dx+mΩ(E) (B.19)

n = 2m+ 1 =⇒
ˆ xf

xi

p(x) dx(n) =
ˆ xf

xi

p(x)dx+mΩ(E) (B.20)

Before writing the semiclassical fixed energy propagator more explicitly, we should find
the number of turning points Nn for the even and odd cases. For the green paths,
Nn = n− 1 by inspection.

Kgreen
sc (E;xf , xi) =

∞∑
m=0

e−i
π
2
(2m+1)√

|v(xi)v(xf )|
e

i
~

(´ xf
xi

p(x)dx+2
´ b
xf
p(x)dx+mΩ(E)

)
(even)

+
∞∑
m=0

e−i
π
2
(2m)√

|v(xi)v(xf )|
e

i
~

(´ xf
xi

p(x)dx+mΩ(E)
)

(odd) (B.21)

=
e−i

π
2√

|v(xi)v(xf )|
e

i
~

(´ xf
xi

p(x)dx+2
´ b
xf
p(x)dx

)
1

1 + e
i
~Ω(E)

+
1√

|v(xi)v(xf )|
e

i
~
´ xf
xi

p(x)dx 1

1 + e
i
~Ω(E)

, (B.22)

where we used the geometric series as
∞∑
m=0

(−1)me
i
~mΩ(E) =

1

1 + e
i
~Ω(E)

(B.23)

Hence,

Kgreen
sc (E;xf , xi) =

1√
|v(xi)v(xf )|

e
i
~
´ xf
xi

p(x)dx

1 + e
i
~Ω(E)

(
1 + e−i

π
2 e

2i
~
´ b
xf
p(x)dx

)
(B.24)

We can perform a similar computation for the pink paths. We have, as for the green
path, the recursion relation (B.17), as well as the first 2 integrals:

ˆ xf

xi

p(x) dx(1) =
ˆ xf

xi

p(x) dx+ 2

ˆ xi

a
p(x) dx (B.25)

ˆ xf

xi

p(x) dx(2) =
ˆ xf

xi

p(x) dx+ 2

ˆ xi

a
p(x) dx+ 2

ˆ b

xf

p(x) dx (B.26)

Therefore, we have

n = 2m+ 2 =⇒
ˆ xf

xi

p(x) dx(n) =
ˆ xf

xi

p(x) dx+ 2

ˆ xi

a
p(x) dx+ 2

ˆ b

xf

p(x)dx+mΩ(E)

n = 2m+ 1 =⇒
ˆ xf

xi

p(x) dx(n) =
ˆ xf

xi

p(x) dx+ 2

ˆ xi

a
p(x) dx+mΩ(E)
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By the same computation as previously (this time Nn = n), we find

Kpink
sc (E;xf , xi) =

∞∑
m=0

e−i
π
2
(2m+2)√

|v(xi)v(xf )|
e

i
~

(´ xf
xi

p(x) dx+2
´ xi
a p(x) dx+2

´ b
xf
p(x) dx+mΩ(E)

)
(even)

+

∞∑
m=0

e−i
π
2
(2m+1)√

|v(xi)v(xf )|
e

i
~

(´ xf
xi

p(x) dx+2
´ xi
a p(x) dx+mΩ(E)

)
(odd)

=
−1√

|v(xi)v(xf )|
e

i
~

(´ xf
xi

p(x) dx+2
´ xi
a p(x)dx+2

´ b
xf
p(x)dx

)
1

1 + e
i
~Ω(E)

+
e−i

π
2√

|v(xi)v(xf )|
e

i
~

(´ xf
xi

p(x) dx+2
´ xi
a p(x)dx

)
1

1 + e
i
~Ω(E)

(B.27)

Therefore, the pink path contribution to the fixed energy propagator is given by

Kpink
sc (E;xf , xi) =

e−i
π
2√

|v(xi)v(xf )|
e

i
~

(´ xf
xi

p(x) dx+2
´ xi
a p(x) dx

)
1 + e

i
~Ω(E)

(
1 + e−i

π
2 e

2i
~
´ b
xf
p(x)dx

)
This allows us to compute the full fixed energy propagator in the semiclassical approxi-
mation:

Ksc(E;xf , xi) =
1√

|v(xi)v(xf )|
e

i
~
´ xf
xi

p(x)dx

1 + e
i
~Ω(E)

(
1 + e−i

π
2 e

2i
~
´ b
xf
p(x)dx

)(
1 + e−i

π
2 e

2i
~
´ xi
a p(x)dx

)
Notice now that we can write

ˆ xf

xi

p(x)dx =

ˆ b

a
p(x)dx︸ ︷︷ ︸

= 1
2
Ω(E)

−
ˆ xi

a
p(x)dx−

ˆ b

xf

p(x)dx (B.28)

which allows us to write

Ksc(E;xf , xi) =
1√

|v(xi)v(xf )|
e

i
~

Ω(E)
2

1 + e
i
~Ω(E)

·
(
e
− i

~
´ b
xf
p(x)dx

+ e−i
π
2 e

i
~
´ b
xf
p(x)dx

)(
e−

i
~
´ xi
a p(x)dx + e−i

π
2 e

i
~
´ xi
a p(x)dx

)
=

4e−i
π
2 e

i
~

Ω(E)
2

1 + e
i
~Ω(E)

·
cos
(
1
~
´ b
xf
p(x)dx− π

4

)
cos
(
1
~
´ xi
a p(x)dx− π

4

)√
|v(xi)v(xf )|

(B.29)

In order to understand the analytic structure of this propagator, consider the denominator
1 + e

i
~Ω(E). This vanishes when

Ω(E) = π~(2n+ 1) =

(
n+

1

2

)
h, (B.30)
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which is exactly the Bohr-Sommerfeld quantization condition. Our semiclassical propa-
gator now exhibits poles whenever E = En, where En are defined such that Ω(En) =
(n+ 1/2)h. This method therefore allows us to see the discrete structure of the energy
levels, unlike the more approximate method from the main text.

Moreover, we can extract the wavefunctions from the residue at the poles. Recall
equation (3.31), which tells us that

Res(K(E;xf , xi), E = En) = i~ψn(xf )ψ∗
n(xi). (B.31)

In order to compute the residues from (B.29), notice that

cos

(
1

~

ˆ b

xf

p(x)dx− π

4

)
= cos

(
Ω(E)

2~
− 1

~

ˆ xf

a
p(x)dx− π

4

)
(B.32)

E→En−−−−→ cos

(
πn− 1

~

ˆ xf

a
p(x)dx+

π

4

)
(B.33)

= (−1)n cos

(
1

~

ˆ xf

a
p(x)dx− π

4

)
(B.34)

Furthermore,

1 + e
i
~Ω(E) = 1 + e

i
~Ω(En)︸ ︷︷ ︸
=0

+
i

~
∂Ω

∂E
e

i
~Ω(En)(E − En) +O((E − En)

2) (B.35)

= − i

~
∂Ω

∂E
(E − En) +O((E − En)

2) (B.36)

Now ∂Ω
∂E can be computed as follows:

∂Ω

∂E
= 2

∂

∂E

ˆ b

a

√
2m(E − V (x))dx (B.37)

= 2
∂b

∂E
p(b)− 2

∂a

∂E
p(a) + 2

ˆ b

a

dx
v(x)

(B.38)

= T, (B.39)

where we used the fact that p(a) = p(b) = 0 by definition of the turning points, and we
defined T to be the period of trajectories with energy E. Therefore,

1

1 + e
i
~Ω(E)

E→En−−−−→ i~
T (E − En)

(B.40)

and we can write

Ksc(E;xf , xi)
E→En−−−−→ 4eiπn

i~
T (E − En)

·
(−1)n cos

(
1
~
´ xf
a p(x)dx− π

4

)
cos
(
1
~
´ xi
a p(x)dx− π

4

)√
|v(xi)v(xf )|

=
i~

E − En

2 cos
(
1
~
´ xf
a p(x)dx− π

4

)√
|v(xf )T |

2 cos
(
1
~
´ xi
a p(x)dx− π

4

)√
|v(xi)T |

(B.41)
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We can therefore read off the wavefunctions!

Res(Ksc(E;xf , xi), E = En) = i~ψWKB
n (xf )ψ

∗,WKB
n (xi), (B.42)

where ψWKB
n (x) =

2√
|v(x)T |

cos

(
1

~

ˆ x

a
p(x)dx− π

4

)
(B.43)

This corresponds to the usual WKB wavefunctions obtained from the Schrödinger equa-
tion.

As a last comment, note that these wavefunctions are already normalized:
ˆ ∞

−∞
dx |ψWKB

n (x)|2 ≈
ˆ b

a
dx 4

|v(x)T |
cos2

(
1

~

ˆ x

a
p(x)dx− π

4

)
, (B.44)

where we approximate the integration over the real numbers by the integration between
the turning points since the WKB wavefunction is exponentially decaying outside the
classically allowed region. Furthermore, the cosine in the integrand oscillates very
fast since we are considering the semiclassical limit where “p � ~”. We can therefore
approximate cos2 by 1

2 , which leads to the desired normalization:
ˆ ∞

−∞
dx |ψWKB

n (x)|2 ≈ 1

T

ˆ b

a
dx 2

|v(x)|
= 1, (B.45)

since v(x) > 0 between a and b and T = 2
´ b
a dt.
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B.5 The instanton prefactor

The goal of this section is to compute the prefactor R that appeared in lecture 10.

First, we introduce the twisted partition function Za:

Za[β] = Tr
(
P̂ e−

β
~ Ĥ
)
, (B.46)

where P̂ is the operator that sends x→ −x, and a stands for “anti-periodic”. Computing
the trace in the complete basis of energy eigenstates, we have

Za[β] =
∑
n

〈n| P̂ |n〉 e−
β
~En (B.47)

Now we know that

P̂ |n〉 =

{
+ |n〉 , n = even
− |n〉 , n = odd

, (B.48)

simply because ψn(x) = ψn(−x) for even n and ψn(x) = −ψn(−x) for odd n. Therefore,

Za[β] =
∑
n

(−1)ne−
β
~En (B.49)

Let us now consider the range of β for which a single instanton dominates:

βω � 1 and β

~
(E1 − E0) � 1 (B.50)

We can then write the twisted partition function as

Za[β] = e−
β
~E0

(
1− e−

β
~ (E1−E0) + e−

β
~ (E2−E0) + . . .

)
(B.51)

≈ e−
β
~E0

(
β

~
(E1 − E0)

)
(B.52)

where we used both assumptions from (B.50), as well as the fact that Ek − E0 ∼ ~ω for
k ≥ 2 (the non-perturbative splitting only occurs between E1 and E0, the others are
computed using usual HO perturbative arguments). Since Ek − E0 ∼ ~ω, all the terms
in . . . are exponentially suppressed in the βω � 1 limit.

Finally, we can write E0 =
~ω
2 up to O(λ):

Za[β] ≈ e−
βω
2
β

~
(E1 − E0) (B.53)

The reason why the twisted partition function is useful is because in the limit (B.50), it
is proportional to the energy splitting E1 − E0. Note that this result was obtained after
making two approximations: the βω � 1 approximation to drop the terms in (B.51),
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and the leading order in λ to write equation (B.53).

In these limits, one can refine the result above by using the harmonic oscillator twisted
partition function. Indeed,

ZHO
a [β] =

∑
n

(−1)ne−βω(n+1/2) βω�1−−−−→ e−
βω
2 + . . . , (B.54)

which means that

Za[β]

ZHO
a [β]

→ β

~
(E1 − E0) (B.55)

in the limits βω � 1 and β
~ (E1 − E0) � 1.

Path integral representation of Za
Using the definition of Za, but evaluating the trace in the position basis, we find

Za[β] = Tr
(
P̂ e−

β
~ Ĥ
)
=

ˆ
dx 〈x| P̂ e−

β
~ Ĥ |x〉 (B.56)

=

ˆ
dx 〈−x| e−

β
~ Ĥ |x〉 =

ˆ
dxKE(−x, x;β) (B.57)

=

ˆ
x(τ+β)=−x(τ)

D[x]e−
1
~SE [x] (B.58)

The boundary conditions are antiperiodic: x(τ + β) = −x(τ), which is where the
name “twisted” partition function comes from. We can now perform the saddle point
approximation, where the saddles are paths verifying the Euclidean equation of motion

δSE
δx

= 0 ⇔ mẍ = V ′(x), (B.59)

which is simply classical motion in the inverted potential. The main difference is that
now the boundary conditions are antiperiodic, which is equivalent to periodic BC over
the interval 2β:

x(τ + β) = −x(τ) =⇒ x(τ + 2β) = −x(τ + β) = x(τ) (B.60)

For a given energy E < 0, there are classical turning points in the inverted potential at
±x(E) (with 0 < x(E) < a). Paths with this energy oscillate between the turning points
with period T (E), which means that

β =

(
1

2
+ n

)
T (E), n = 0, 1, 2, . . . (B.61)

Indeed, one can add any integer periods to β and still verify the anti-periodic BC. At this
level, we have multi-instanton solutions, since there are many paths in this potential with
these boundary conditions. However, in the regime (B.50), the n = 0 path dominates.
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Euclidean action
Consider first the expression of β with the period written explicitly:

β =

(
1

2
+ n

)
2

ˆ x(E)

−x(E)

dx
ẋ

=

(
1

2
+ n

)ˆ x(E)

−x(E)
dx
√

2m

E + V (x)
, (B.62)

where we used E = 1
2mẋ

2 − V (x) = const. We can then use this to find a convenient
expression for the Euclidean action:

SE =

ˆ β/2

−β/2
dτ 1

2
mẋ2 + V (x) =

ˆ β/2

−β/2
dτ (mẋ2 − E) (B.63)

= −βE +

ˆ β/2

−β/2
dτ ẋ

√
2m(E + V (x)) (B.64)

Note now that we can convert the integral over τ to an integral over x, but we have to
be careful about the sign of ẋ. Indeed, for n > 1, β corresponds to multiple half periods.
For example, n = 1 corresponds to 3 half periods, so we can write

SE = −βE + (2n+ 1)

ˆ x(E)

−x(E)
dx
√
2m(E + V (x)) (B.65)

Using the explicit expression for β from (B.62), we find

SE =

(
1

2
+ n

)[
−E
ˆ x(E)

−x(E)
dx
√

2m

E + V (x)
+ 2

ˆ x(E)

−x(E)
dx
√
2m(E + V (x))

]
(B.66)

In the limit β � 1
ω , we are equivalently interested at large periods of oscillations, i.e. the

limit E → 0−. In that limit, the turning points become ±a and

SE ≈ (2n+ 1)

ˆ a

−a
dx
√
2mV (x) ≡ (2n+ 1)SI , (B.67)

where we used the definition of SI (eq. 3.152).

The zero mode
We want to evaluate the exponential in the Euclidean path integral on the classical
trajectory, with some small perturbation. To quadratic order,

1

~
SE

[
xc +

√
~
m
y

]
≈ 1

~
SE [xc] +

ˆ β/2

−β/2
dτ 1

2
ẏ2 +

1

2m
V ′′(xc)y

2 (B.68)

≈ 1

~
SE [xc] +

1

2

ˆ β/2

−β/2
dτ1dτ2 y(τ1)O(τ1, τ2)y(τ2),

where

O(τ1, τ2) = δ(τ1 − τ2)

(
− d2

dτ22
+

1

m
V ′′(xc(τ2))

)
. (B.69)
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Before plugging this result into the path integral, we should think about what are the
classical solutions we should consider when performing the saddle point approximation.
It turns out that both the instanton and the anti-instanton verify x(τ + β) = −x(τ).
Therefore, when using the saddle point approximation we should add a factor of 2
to account for the 2 distinct classical solutions: the twisted partition function can be
approximated as

Za[β] =

ˆ
x(τ+β)=−x(τ)

D[x]e−
1
~SE [x] (B.70)

≈ 2e−
1
~SI

ˆ
y(τ+β)=−y(τ)

D[x]e−
1
2
y·O·y, (B.71)

where we now write SE [xc] = SI for simplicity since the action for both classical paths
(the instanton and anti-instanton) are the same. Schematically, the path integral over y
can be related to the determinant of O, up to some normalization N :

Za[β] ≈ 2e−
1
~SIN (detaO)−1/2, (B.72)

where by deta we denote the determinant over antiperiodic paths.

The first problem we encounter is that this determinant is formally 0. This is because
O has a zero mode (a zero eigenvalue). Indeed, if we take the derivative of the Euclidean
EOM, we find that ẋc(τ) is an eigenfunction of O with eigenvalue 0:

mẍc = V ′(xc) =⇒ m
d2

dτ2 ẋc = V ′′(xc)ẋc =⇒ O · ẋc(τ) = 0, (B.73)

where we used the definition of O:

O = − d2

dτ2 +
1

m
V ′′(xc(τ)) (B.74)

What to do now? Let us decompose y(τ) in eigenfunctions yn of O. These functions
verify the following relations

O · yn(τ) = λnyn(τ), yn(τ + β) = −yn(τ) (B.75)ˆ β/2

−β/2
dτ yn(τ)ym(τ) = δnm (B.76)

We can now use these eigenfunctions to write

x(τ) = xc(τ) +

√
~
m

∞∑
n=0

cnyn(τ). (B.77)

We know that there must be a mode proportional to ẋc(τ), which we call the zero mode.
Without loss of generality, we set

y0(τ) ≡ Aẋc(τ), (B.78)
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where now λ0 = 0. We can determine A by enforcing normalization:

1 =

ˆ β/2

−β/2
y0(τ)

2 = A2

ˆ β/2

−β/2
ẋ2c (B.79)

= A2

ˆ x(E)

−x(E)
dx
√

2(V (x) + E)

m

E→0−−−−−→ A2SI
m
, (B.80)

where SI was defined in equation (3.152). Therefore, A ≡
√

m
SI

. In this basis, we find

Za[β] ≈ 2e−
1
~SI

ˆ
y(τ+β)=−y(τ)

D[x]e−y·O·y (B.81)

≈ 2e−
1
~SIN

ˆ ∞∏
n=0

dcn√
2π
e−

1
2
λnc2n (B.82)

One can now see that the c0 integral will diverge since there is no c0 appearing in the
exponent (λ0 = 0). However, we have isolated the problematic piece and can now write

Za[β] ≈ 2e−
1
~SI

ˆ dc0√
2π

N

( ∞∏
n=1

λn

)−1/2

(B.83)

We now define the following determinant:

det′aO ≡
∞∏
n=1

λn, (B.84)

where the prime means that the zero-mode was removed from the product of eigenvalues.
This determinant can be expressed as a derivative of a deformed determinant:

det′aO = ∂θdeta(O + θ)|θ=0 (B.85)

Indeed, the eigenvalues of O + θ are simply λn + θ, so

deta(O + θ) =

∞∏
n=0

(λn + θ) (B.86)

=
∞∏
n=0

λn︸ ︷︷ ︸
=0

+θ
∞∏
n=1

λn +O(θ2), (B.87)

which directly proves (B.85).

Now, we should understand how to deal with the integral over c0. To do so, we can
think of another way to express x(τ) in terms of xc and yn’s. We can write

x(τ) = xc(τ + τ0) +

√
~
m

∞∑
n=1

cnyn(τ), (B.88)
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where now τ0 is a new variable of integration which “replaces” the old variable c0. From
an infinitesimal point of view, this is sensible as for small τ0, we have xc(τ + τ0) ≈
xc(τ)+ ẋc(τ)τ0, and we know that y0 is proportional to ẋc. More explicitly, upon varying
the parameters τ0 and ck in equations (B.77) and (B.88) we find

δx(τ) =

√
~
m

∞∑
n=0

δcnyn(τ) (B.89)

and δx(τ) = δτ0ẋc(τ) +

√
~
m

∞∑
n=0

δcnyn(τ). (B.90)

We can therefore identify

δc0 =

√
SI
~
δτ0, (B.91)

where we used A ≡
√

m
SI

. The integral over c0 can now be understood!

ˆ dc0√
2π

=

√
SI
2π~

ˆ β/2

−β/2
dτ0 =

√
SI
2π~

β, (B.92)

and therefore

Za[β] = 2e−
1
~SI

√
SI
2π~

βN
(
∂

∂θ
deta(O + θ)

∣∣∣∣
θ=0

)−1/2

(B.93)

More practically, we saw that the zero modes are related to the positions of the
instanton (τ0), and that (B.88) was a better parametrization than our naive first guess.
Instead of a strange integral over c0, we obtained an integral over the position of the
instanton, which has a finite range.

Removing N with the help of our friend the harmonic oscillator
Since the action of the harmonic oscillator is already gaussian, we can simply write

ZHO
a [β] =

ˆ
x(τ+β)=−x(τ)

D[x]e−
1
~SE [x] =

ˆ
y(τ+β)=−y(τ)

D[y]e−
1
2
y·OHO·y (B.94)

= N (detaOHO)
−1/2 , (B.95)

where we used x =
√

~
my as before and we defined

OHO = − d2

dτ2 + ω2. (B.96)

Note that this operator is exactly what we would have found using equation (B.74) with
V (x) = 1

2mω
2x2. Therefore, we have

Za[β]

ZHO
a [β]

= 2e−
1
~SI

√
SI
2π~

β

(
∂

∂θ

deta(O + θ)

deta(OHO)

∣∣∣∣
θ=0

)−1/2

, (B.97)
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where the operators O and OHO were defined in equations (B.96) and (B.74) Comparing
this expression with equation (B.55), we have an expression for the energy splitting!

E1 − E0 = 2~e−
1
~SI

√
SI
2π~

(
∂

∂θ

deta(O + θ)

deta(OHO)

∣∣∣∣
θ=0

)−1/2

(B.98)

In the lecture, we had defined some temporary variable R to account for the prefactor.
Here, we can compare with the result from the lecture (3.180) to obtain an expression
for R:

R ≡
√

SI
2π~

(
∂

∂θ

deta(O + θ)

deta(OHO)

∣∣∣∣
θ=0

)−1/2

(B.99)

In order to compute these determinants, we will need to use a formalism similar to the
one developed in Lecture 3 with the Gelfand-Yaglom formula. The antiperiodic boundary
conditions require us to modify the argument, which is presented below.

Gelfand-Yaglom reloaded
We are interested in the eigenvalue equation[

− d2

dτ2 +W (τ)

]
ψ(τ) = λψ(τ), ψ(τ + β) = −ψ(τ), (B.100)

where W now plays the role of V ′′(xc(τ)). Consider now 2 linearly independent solutions
ψ1,2(τ). Define then the matrix Mλ(τ) as

Mλ(τ) ≡
(
ψ1(τ) ψ2(τ)

ψ̇1(τ) ψ̇2(τ)

)
, with initial condition Mλ(−β/2) =

(
1 0
0 1

)
(B.101)

The subscript λ is present because the functions ψ1 and ψ2 solve the differential equation
that depends on λ.

The determinant of M(τ) is the Wronskian, which is constant in time. Therefore,
evaluating it at τ = −β/2 we find

detMλ(τ) = 1, ∀τ (B.102)

Now we know that the most general solution to equation (B.100) can be written as a
linear combination of ψ1 and ψ2 with constant coefficients:

ψ(τ) = Aψ1(τ) +Bψ2(τ) (B.103)
ψ̇(τ) = Aψ̇1(τ) +Bψ̇2(τ) (B.104)

Evaluating at τ = −β/2 leads to an expression of A and B in terms of the initial
conditions of ψ:

ψ(−β/2) = A, ψ̇(−β/2) = B (B.105)
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Therefore, (
ψ(τ)

ψ̇(τ)

)
=Mλ(τ)

(
ψ(−β/2)
ψ̇(−β/2)

)
(B.106)

If λ is an eigenvalue of O, then ψ is an antiperiodic solution of (B.100) and we can
therefore write

(Mλ(β/2) + 1)

(
ψ(−β/2)
ψ̇(−β/2)

)
= 0 (B.107)

This tells us that the matrix Mλ(β/2) + 1 is not invertible, or equivalently that it has
vanishing determinant. This condition is very useful:

0 = det(Mλ(β/2) + 1) = det

(
ψ1(β/2) + 1 ψ2(β/2)

ψ̇1(β/2) ψ̇2(β/2) + 1

)
(B.108)

= detMλ(β/2) + TrMλ(β/2) + 1, (B.109)

where the determinant of the 2× 2 matrix was computed explicitly. Now we know that
detMλ(β/2), so we obtain

Tr [Mλ(β/2) + 1] = 0 (B.110)

This has significant consequences for our computation. We claim that

det
[
− d2

dτ2 +W (τ)− λ
]

det
[
− d2

dτ2 + W̃ (τ)− λ
] =

Tr [Mλ(β/2) + 1]

Tr
[
M̃λ(β/2) + 1

] . (B.111)

In order to justify this claim, we invoke the following mathematical result: if two complex
functions have the same zeroes and poles, and the same asymptotic behavior as |z| → ∞,
then they are the same function.

Using this result, we can think of the left and right-hand side above as complex
functions of λ ∈ C and compare their properties:

• Zeroes: when λ is an eigenvalue of O = − d2

dτ2 +W (τ), both sides vanish.

• Poles: when λ is an eigenvalue of Õ = − d2

dτ2 + W̃ (τ), both sides have a pole.

• Asymptotic behavior: as λ→ ∞, both sides tend to 1.

Our claim is therefore verified.
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Back to business
The goal is to determine

∂

∂θ

deta(O + θ)

deta(OHO)

∣∣∣∣
θ=0

. (B.112)

Using equation (B.111) with λ = 0, W (τ) = V ′′(xc(τ)) + θ and W̃ (τ) = ω2, we find

∂

∂θ

deta(O + θ)

deta(OHO)

∣∣∣∣
θ=0

=
∂

∂θ

ψθ1(β/2) + ψ̇θ2(β/2) + 2

ψHO
1 (β/2) + ψ̇HO

2 (β/2) + 2

∣∣∣∣∣
θ=0

(B.113)

Computing the denominator: we want to solve the equation[
− d2

dτ2 + ω2

]
ψHO(τ) = 0 =⇒ ψHO(τ) = Aeωτ +Be−ωτ (B.114)

The initial conditions on ψ1 and ψ2 are:{
ψ1(−β/2) = 1

ψ̇1(−β/2) = 0
and

{
ψ2(−β/2) = 0

ψ̇2(−β/2) = 1
(B.115)

Therefore, {
A1e

−ωβ/2 +B1e
ωβ/2 = 1

A1e
−ωβ/2 −B1e

ωβ/2 = 0
=⇒ ψ1(τ) = cosh(ω(τ + β/2))A2e

−ωβ/2 +B2e
ωβ/2 = 0

A2e
−ωβ/2 −B2e

ωβ/2 =
1

ω

=⇒ ψ2(τ) =
1

ω
sinh(ω(τ + β/2))

The denominator therefore reads

ψHO
1 (β/2) + ψ̇HO

2 (β/2) + 2 = 2 cosh(ωβ)) + 2
ωβ�1−−−−→ eωβ (B.116)

Computing the numerator: we want to solve the equation[
− d2

dτ2 + V ′′(xc(τ)) + θ

]
ψθ(τ) = 0 (B.117)

with initial conditions given by (B.115). At first glance, this is a difficult problem.
However, we only need to know ψ1,2 to leading order in θ since we want to take one
derivative and then set θ to 0. At θ = 0, we already have a solution: ẋc (see B.73). Using
the usual Wronskian trick, we can find an independent solution (still for θ = 0), and we
can then treat the problem as a perturbative problem in θ.

Consider then first the case θ = 0. We know that a solution of the differential equation
(B.117) is ẋc(τ). Therefore,

ψ
(0)
1 (τ) ≡ ẋc(τ)

ẋc(−β/2)
(B.118)
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In order to see that ψ̇(0)
1 (−β/2) = 0, it is good to turn back to the physics and use our

intuition. Since we want ψ(0)
1 to be antiperiodic, we should choose an energy E such

that ẋc(τ) has a period T (E) = 2β.

We then consider paths xc(τ) which start at −β/2 at x = 0, go to the turning point of
maximal x at τ = 0, and fall back to x = 0 at β/2. These paths are well defined classical
solutions which have the correct anti-periodic behaviour. It is now straightforward to
see that at −β/2, xc has maximum velocity, and therefore ẍc(−β/2) = 0, which trivially
implies that ψ̇(0)

1 (−β/2) = 0. Furthermore, we see that since xc(τ) is even, ψ(0)
1 (τ) is an

odd function:

ψ
(0)
1 (τ) = −ψ(0)

1 (−τ) (B.119)

To summarize, we construct ψ(0)
1 (τ) in terms of a classical path xc(τ) which verifies

xc(−β/2) = xc(β/2) = 0, so that ψ(0)
1 solves the differential equation and has the correct

initial conditions. Now we also need ψ
(0)
2 (τ), but we can obtain it easily using the usual

Wronskian formalism:

ψ1ψ̇2 − ψ2ψ̇1 = 1 =⇒ d
dτ

ψ2

ψ1
=

1

ψ2
1(τ)

=⇒ ψ2(τ) = ψ1(τ)

ˆ τ

−β/2

dτ ′
ψ2
1(τ

′)
(B.120)

We now want to go to first order in θ, i.e. we want to find the functions ψ(1)
1,2(τ) that

appear in the following expansion:

ψθ1,2(τ) = ψ
(0)
1,2(τ) + θψ

(1)
1,2(τ) +O(θ2) (B.121)

Although it is hard to guess a solution for ψ(1)
1,2(τ), it is easy to verify whether a given

expression works by plugging it into (B.117).

Exercise B.1 (Verifying the perturbative solution).
Verify that

ψθ1,2(τ) = ψ
(0)
1,2(τ) + θψ

(1)
1,2(τ) +O(θ2) (B.122)

with
ψ
(1)
1,2(τ) =

ˆ τ

−β/2
dτ ′
[
ψ
(0)
2 (τ)ψ

(0)
1 (τ ′)− ψ

(0)
1 (τ)ψ

(0)
2 (τ ′)

]
ψ
(0)
1,2(τ

′) (B.123)

verifies the differential equation (B.117) to first order in θ.

Equation (B.123) then leads to

∂

∂θ

deta(O + θ)

deta(OHO)

∣∣∣∣
θ=0

= e−ωβ
(
ψ
(1)
1 (β/2) + ψ̇

(1)
2 (β/2)

)
(B.124)
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Computing ψ
(1)
1 and ψ̇

(1)
2 at β/2

We can compute

ψ
(1)
1 (β/2) =

ˆ τ

−β/2
dτ ′
[
ψ
(0)
2 (β/2)ψ

(0)
1 (τ ′) + ψ

(0)
2 (τ ′)

]
ψ
(0)
1 (τ ′), (B.125)

where we used the oddness of ψ(0)
1 (B.119) to obtain ψ

(0)
1 (β/2) = −1. Then, notice that

ψ̇
(1)
2 (τ) =

d
dτ

ˆ τ

−β/2
dτ ′
[
ψ
(0)
2 (τ)ψ

(0)
1 (τ ′)− ψ

(0)
1 (τ)ψ

(0)
2 (τ ′)

]
ψ
(0)
2 (τ ′) (B.126)

=
[
ψ
(0)
2 (τ)ψ

(0)
1 (τ)− ψ

(0)
1 (τ)ψ

(0)
2 (τ)

]
︸ ︷︷ ︸

=0

ψ
(0)
2 (τ)

+

ˆ τ

−β/2
dτ ′
[
ψ̇
(0)
2 (τ)ψ

(0)
1 (τ ′)− ψ̇

(0)
1 (τ)ψ

(0)
2 (τ ′)

]
ψ
(0)
2 (τ ′) (B.127)

which implies

ψ̇
(1)
2 (β/2) =

ˆ β/2

−β/2
dτ ′
ψ̇(0)

2 (β/2)ψ
(0)
1 (τ ′)− ψ̇

(0)
1 (β/2)︸ ︷︷ ︸

=0

ψ
(0)
2 (τ ′)

ψ(0)
2 (τ ′) (B.128)

In order to compute ψ̇(0)
2 (β/2), we use the definition (B.120):

ψ̇2(τ) =
1

ψ1(τ)
+ ψ̇1(τ)

ˆ τ

−β/2

dτ ′
ψ2
1(τ

′)
(B.129)

=⇒ ψ̇2(β/2) = −1 (B.130)

Therefore, we have

ψ
(1)
1 (β/2) =

ˆ β/2

−β/2
dτ ′
[
ψ
(0)
2 (β/2)ψ

(0)
1 (τ ′) + ψ

(0)
2 (τ ′)

]
ψ
(0)
1 (τ ′), (B.131)

ψ̇
(1)
2 (β/2) =

ˆ τ

−β/2
dτ ′
[
−ψ(0)

1 (τ ′)
]
ψ
(0)
2 (τ ′) (B.132)

which implies finally that

∂

∂θ

deta(O + θ)

deta(OHO)

∣∣∣∣
θ=0

= e−ωβψ
(0)
2 (β/2)

ˆ β/2

−β/2
dτ ′
[
ψ
(0)
1 (τ ′)

]2
(B.133)

We can however simplify this further. First, notice that in the limit E → 0−,

Sc =

ˆ β/2

−β/2
dτ
[
1

2
mẋ2c + V (xc)

]
=

ˆ β/2

−β/2
dτ
[
mẋ2c − E

] E→0−−−−−→= m

ˆ β/2

−β/2
dτ ẋ2c (B.134)
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In that limit, the action Sc is simply the instanton action SI . Using the definition of
ψ
(0)
1 , we have

ˆ β/2

−β/2
dτ
[
ψ
(0)
1 (τ)

]2
=

1

m [ẋc(−β/2)]2
· SI (B.135)

In the next paragraphs, we will show that

ψ
(0)
2 (β/2) = m [ẋc(−β/2)]2

∂β

∂E
, (B.136)

which directly gives us

∂

∂θ

deta(O + θ)

deta(OHO)

∣∣∣∣
θ=0

= e−ωβ
∂β

∂E
SI (B.137)

Computing ψ
(0)
2 (β/2):

The first thing to notice is that we have been lying to you and hiding problems under
the rug. The definition of ψ(0)

2 (τ) from eq. (B.120),

ψ
(0)
2 (τ) = ψ

(0)
1 (τ)

ˆ τ

−β/2

dτ ′[
ψ
(0)
1 (τ ′)

]2 , (B.138)

is only valid for negative τ . Indeed, ψ(0)
1 (τ) vanishes at τ = 0, which is the turning

point of the associated classical trajectory. At τ → 0−, we are “saved” since the prefac-
tor goes to 0 while the integral diverges. However, at τ > 0, ψ(0)

2 is simply not well defined.

There is a trick to express ψ(0)
2 (β/2) in a different way. Define a even function ψeven(τ)

such that

ψ
(0)
2 (τ) = ψeven(τ) + Cψ

(0)
1 (τ) (B.139)

This has the following nice properties:

• Evaluating the above equation (B.139) at τ = ±β/2, we find

ψ
(0)
2 (β/2) = −2C. (B.140)

Therefore, if we find C, we have solved our problem.

• Using boundary properties of ψ(0)
1,2(τ), one can show that

ψ̇even(−β/2) = 1 (B.141)

Furthermore, since ψeven is even, its derivative is odd and therefore

ψ̇even(0) = 0. (B.142)
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• Taking the derivative of (B.139), we find

ψ̇
(0)
2 (τ) = ψ̇even(τ) + Cψ̇

(0)
1 (τ) (B.143)

and by definition (B.120),

ψ̇
(0)
2 (τ) = ψ̇

(0)
1 (τ)

ˆ τ

−β/2

dτ ′

[ψ
(0)
1 (τ ′)]2

+
1

ψ
(0)
1 (τ)

(B.144)

We can then compute:

C =

ˆ τ

−β/2

dτ ′

[ψ
(0)
1 (τ ′)]2

+
1

ψ
(0)
1 (τ)ψ̇

(0)
1 (τ)

− ψ̇even(τ)

ψ̇
(0)
1 (τ)

(B.145)

This is valid at any τ < 0, and in particular we can take the limit τ → 0−. The last
term above vanishes since ψ̇even is odd and is therefore 0 at τ = 0, and ψ̇

(0)
1 (0) 6= 0. We

therefore have

C = lim
τ→0−

[ˆ τ

−β/2

dτ ′

[ψ
(0)
1 (τ ′)]2

+
1

ψ
(0)
1 (τ)ψ̇

(0)
1 (τ)

]
(B.146)

Both terms diverge in the limit τ → 0−, but their sum is finite. Using the definition of
ψ
(0)
1 (τ) in terms of xc(τ), we have

C = [ẋc(−β/2)]2 lim
τ→0−

[ˆ τ

−β/2

dτ ′
[ẋc(τ ′)]2

+
1

ẋc(τ)ẍc(τ)

]
(B.147)

Using the properties of xc, we find

C = [ẋc(−β/2)]2 lim
τ→0−

ˆ xc(τ)

0

dx[
2(E+V (x))

m

]3/2 +
1

ẋc(τ)ẍc(τ)

 (B.148)

Finally, we can relate this to β by noticing that

β = 2

ˆ 0

−β/2
dτ = lim

y→0−
2

ˆ x(E)+y

0

dx
ẋc

(B.149)

(B.150)

where x(E) is the turning point, and we introduced the limit y → 0− since the integrand
diverges at xc = x(E). The turning point verifies

V (x(E)) = −E =⇒ V ′(x(E))
∂x(E)

∂E
= −1, (B.151)

and by taking the τ derivative of the equation of motion, we find

V ′(xc(τ)) = mẍc(τ) (B.152)
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Evaluating at τ → 0−, we finally have
∂x(E)

∂E
= − 1

mẍc(0)
(B.153)

Taking the derivative of β with respect to E, we find

∂β

∂E
= 2 lim

y→0−

∂

∂E

ˆ x(E)+y

0

dx√
2(E+V (x))

m

(B.154)

= 2 lim
y→0−

∂x(E)

∂E

1√
2(E+V (x(E)+y))

m

− 1

m

ˆ x(E)+y

0

dx[
2(E+V (x))

m

]3/2
 (B.155)

= − 2

m
lim
τ→0−

 1

ẍc(τ)ẋc(τ)
+

ˆ xc(τ)

0

dx[
2(E+V (x))

m

]3/2
 (B.156)

(B.157)

where we identified

xc(τ) = x(E) + y (B.158)

in the limits τ → 0− and y → 0−. This then tells us that

ψ
(0)
2 (β/2) = −2C = m[ẋc(−β/2)]2

∂β

∂E
(B.159)

as promised in equation (B.136)! We therefore indeed have equation (B.137):

∂

∂θ

deta(O + θ)

deta(OHO)

∣∣∣∣
θ=0

= e−ωβ
∂β

∂E
SI (B.160)

We now have an expression for the energy splitting (see all the way back to equation
B.98):

E1 − E0 = 2~e−
1
~SI

√
SI
2π~

(
e−ωβ

∂β

∂E
SI

)−1/2

, (B.161)

where we are as usual working in the large β limit, and therefore the E → 0− limit.
Therefore, we can write the energy splitting as

E1 − E0 = 2~e−
1
~SI

(
−2π~

ω

∂

∂E
e−ωβ(E)

)−1/2

(B.162)

Finally, we can simplify this expression in the specific case of our potential by computing
β(E) in the E → 0− limit. Here is what will happen: in the limit E → 0−, β diverges
and therefore e−ωβ goes to 0. However, if β diverges logarithmically with E, we would
have e−ωβ(E) ∼ E · (finite piece). In that case, taking the derivative would get rid of the
factor of E and we would get a nice closed form expression for the energy splitting. In
the next paragraph we present the asymptotic behavior of β(E) as E → 0−.

136



Computing β(E) in the E → 0− limit:
We have

β(E) = 2

ˆ x(E)

0
dx
√

m

2(E + V (x))
(B.163)

In the limit E → 0−, x(E) → a and the integral diverges since V (a) = 0. We would like
to understand how exactly this integral diverges. To do so, we isolate the divergence by
adding and subtracting the harmonic approximation of the potential near a (shown in
green in figure B.4).

Figure B.4: Inverted potential −V (x). Near x = a, the potential is approximated by the
quadratic function −1

2mω
2(x− a)2, shown in green.

In equations, we have

β(E) =
√
2m

ˆ x(E)

0
dx

 1√
E + V (x)

− 1√
E + 1

2mω
2(x− a)2

+
1√

E + 1
2mω

2(x− a)2


(B.164)

=
√
2m

ˆ x(E)

0
dx

 1√
E + V (x)

− 1√
E + 1

2mω
2(x− a)2


+
√
2m

ˆ x(E)

0
dx

 1√
E + 1

2mω
2(x− a)2

 (B.165)

Now the first term above is no longer divergent at E → 0−, since we subtracted a term
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that behaves exactly like 1√
V (x)

near x = a. Therefore, it can be written as

I1 ≡
√
2m

ˆ x(E)

0
dx

 1√
E + V (x)

− 1√
E + 1

2mω
2(x− a)2

 (B.166)

=

ˆ a

0
dx
[√

2m

V (x)
− 2

ω(a− x)

]
+O(E) (B.167)

= − 2

ω

ˆ a

0
dx
[
−

√
mω2

2V (x)
+

1

a− x

]
︸ ︷︷ ︸

finite

+O(E) (B.168)

The divergence is therefore contained in the second term of (B.165). We can use the
relation

E = −V (x(E)) = −1

2
mω2(x(E)− a)2 +O((x(E)− a)3) (B.169)

From this we deduce that E and (x(E)− a)2 have the same behaviour as E → 0, which
implies O((x(E)− a)3) = O(E3/2), and therefore

I2 ≡
√
2m

ˆ x(E)

0
dx

 1√
E + 1

2mω
2(x− a)2

 (B.170)

=
2

ω

ˆ x(E)

0
dx
[

1√
(x− a)2 − (x(E)− a)2 +O(E3/2)

]
(B.171)

Exercise B.2 (Computing the integral).
Show that
ˆ x(E)

0

dx√
(x− a)2 − (x(E)− a)2 +O(E3/2)

= ln

(
2a

a− x(E)

)
+O(E1/4) (B.172)

Therefore, we have

I2
E→0−−−−−→ 1

ω
ln

(
2mω2a2

−E

)
(B.173)

and we find

β(E)
E→0−−−−−→ 1

ω
ln

(
2mω2a2

−E

)
− 2

ω

ˆ a

0
dx
[

1

a− x
−

√
mω2

2V (x)

]
. (B.174)
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Hence,

∂

∂E
e−ωβ(E) E→0−−−−−→ −1

2mω2a2
exp

(
2

ˆ a

0
dx
[

1

a− x
−

√
mω2

2V (x)

])
(B.175)

which finally implies

E1 − E0 = 2~ωe−
1
~SI

(
mωa2

π~

)1/2

exp

(
−
ˆ a

0
dx
[

1

a− x
−

√
mω2

2V (x)

])
(B.176)

Application to the double well potential
For the case V (x) = λ

4!(x
2 − a2)2, with λa2

3 = mω2, the integral in the exponential reads

I ≡
ˆ a

0
dx
[

1

a− x
−

√
mω2

2V (x)

]
(B.177)

=

ˆ a

0
dx
[

1

a− x
− 2a

a2 − x2

]
= − ln(2) (B.178)

which implies

E1 − E0 = 4~ω
√

3

πλ̄
e−

2
λ̄ , (B.179)

where λ̄ is the dimensionless coupling defined in (3.135).
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Appendix C

Exercises
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Quantum Physics IV, Exercises 1

Exercise 1 (Gaussian integral):
For all integrals below: α > 0.

• Compute the value of the real Gaussian integral1

GRe =

ˆ +∞

−∞
dx e−αx2

• Now we will compute the Gaussian integral

G±
Im =

ˆ +∞

−∞
dx e±ı̇αx2 (C.1.1)

– By considering the complex version of the function above and by applying
Cauchy’s Theorem we can relate the previous two integrals. Consider the
integral over the closed contour shown below2. Take the limit R→ ∞,

R-R

i C1

C2

C3

C4

– Find appropriate parametrizations for the curves C1,2,3,4.
– Show that the integrals over C2 and C4 vanish for R→ ∞.3

– Use these results to compute G±
Im.

• Compute, for all n ∈ N+, α > 04

ˆ ∞

−∞
xne−αx

2 (C.1.2)
1Hint: Take the square and change to polar coordinates.
2Hint: For the exponent with −α you should take a different contour. Which one?
3Hint: Show that the absolute value vanishes. Use Euler’s formula.
4Hint: You can exchange integration and derivation when integrating a continuous function with a

continuous first derivative.
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• Estimate the error when approximating the two integrals below by sending L→ ∞:

GLRe =

ˆ +L

−L
dx e−αx2 and GLIm =

ˆ +L

−L
dx e+ı̇αx2

– Rewrite the first integral as
´
g(x) ddxe

−x2 and apply partial integration to
show that you get an order e−αL2

/L term.
– Show that the other term(s) are of higher order in 1/L (this can be done by

repeatedly applying the method of the previous step and finding a smaller
and smaller extra term).

– How does this change if we take the imaginary integral? What does this mean
for its rate of convergence.

Exercise 2 (Multi-dimensional Gaussian integral):
A is a n-dimensional symmetric positive definite matrix. Compute the n dimensional
real Gaussian integral: 5

GA(0) =

ˆ +∞

−∞
dnx e−

∑
i,j Aijxixj

and the imaginary Gaussian integral:

GA(0) =

ˆ +∞

−∞
dnx eı̇

∑
i,j Aijxixj (C.1.3)

What changes?
Now generalize this for when there is an linear "current" term (repeated indices are

summed over). 6

GA(J) =

ˆ +∞

−∞
dnx e−iAijxixj+ı̇Jixi (C.1.4)

Exercise 3 (Double slit experiment):

x

ysource

a

d

b

L

sc
re

en

5Hint: You will need to diagonalize A.
6Hint: Complete the square so that you can apply the previous result.
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In this exercise you are going to be guided through a quantitative discussion of the double
slit experiment. The main goal of the exercise is to determine for which ranges of values
of the parameters of the experiment (size of the slits, distance to the screen, etc.) will
you be able to successfully observe the interference pattern of the electron wavefunctions.
Assume the electrons are emitted from a thermionic lamp with a temperature T , and
answer the following questions:

1. For a physical lamp, the electrons can be treated non-relativistically. Why is that?
And what does that mean quantitatively?7

2. What are the two conditions that the length scales in the problem need to satisfy
for the wavefunctions to be well approximated by spherical waves after passing
through the slits?

3. Assume L� b. Show that, in this regime, the wavefunction evaluated on the screen
is

|ψtot(x, t)|2 ∝ cos2(αx) , (C.1.5)
using that

ψi(x, t) =
Ai

|x− xi|
e
i
(

p|x−xi|
~ −Et

~ +φi

)
(C.1.6)

are the components of the wavefunction represented as spherical waves centered
in xi, the position of the two slits. The electron momentum is p, E is the energy
and φi the phase of each component wavefunction. The origin x = 0 is taken to
be the middle point of the screen. Compute α and derive the position of the first
maximum.

4. Let’s say we want the position of the first maximum to be more than x = 2mm
away from the main maximum, such that we can observe it. For which values of L,
in terms of the other scales in the problem, is this condition satisfied?

Exercise 4 (Splitting an exponential of non-commuting operators):
The exponent of a sum of non-commuting operators is not simply the product of the
exponents of the individual operators. (How can you instantly see that this cannot be
correct?). Instead we can split the exponent using the Zasserhaus formula8

et(X+Y ) = etX etY e−
t2

2
[X,Y ] e

t3

6
(2[Y,[X,Y ]]+[X,[X,Y ]]) · · · (C.1.7)

Use this to show that

〈p|eε
(
T̂+V̂

)
|x〉 = eε(T (p)−iV (x)) 〈p|e−ε2C |x〉 = eε(T (p)−iV (x)) 〈p|x〉+O(ε2) , (C.1.8)

assuming T̂ = T (p̂) = −ip̂2
2m , and that V̂ = −iV (x̂) is a function x̂ only.

7Hint: Use Boltzmann’s constant kB = 0.86 × 10−4 eV/K and the electron energy at rest mec
2 =

0.511MeV .
8This formula is often referred to as the Baker-Campbell-Hausdorff formula, from which it is actually

derived.
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In the lecture we will encounter this term when we consider the transition amplitude
for going from x to x′ 〈

x′
∣∣e−iHε∣∣x〉 = ˆ dp

〈
x′
∣∣p〉 〈p|e−iHε|x〉 (C.1.9)

Neglecting the higher order epsilon corrections we can rewrite this integral into the
following form ˆ

dp

2π~
exp

[
−iε

(
p2

2m
+ V (x)− mẋ2

2

)]
(C.1.10)

At which order in ε the corrections neglected in (C.1.8) will contribute to the integral
(C.1.9)? 9

9Hint: Notice that p ∝ ε−1/2.
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Quantum Physics IV, Exercises 2

Exercise 5 (Free particle propagator):
In this exercise, you will compute the free particle (L = mẋ2/2) propagator using the
path integral approach.

a) As a first step, compute the free particle propagator using basic quantum mechanics
methods: starting from the definition

K(xf , t;xi, 0) = 〈xf | e−
i
~Ht |xi〉 , (C.2.1)

insert the identity in momentum space, and compute the resulting gaussian integral
to show that

K(xf , tf , xi, ti) =

√
m

2πi~(tf − ti)
exp

[
im

2~(tf − ti)
(xf − xi)

2

]
(C.2.2)

b) Now, we can look at the problem from the path integral point of view. As you saw
in the lecture, the propagator can be expressed as

K(xf , tf , xi, ti) = lim
ε→0

1

A

ˆ N−1∏
k=1

dxk
A
e

i
~S , (C.2.3)

where A =
√

2πiε~
m and where the time interval was split into steps of size ε = tf−ti

N

(this is the same as what was done in the lecture).

Take x0 ≡ xi and xN ≡ xf . Show that S =
∑N−1

k=0
m
2

(xk+1−xk)2
ε and perform the x1

integral10. To recognize the pattern of these integrals you may also want to do the
x2 integral. Then show that the n-th integral will give

ˆ
dxn exp

[
im

2ε~

(
1

n
(xn − x0)

2 + (xn+1 − xn)
2

)]
=√

2πiε~
m

n

n+ 1
exp

[
im

2ε~

(
1

n+ 1
(xn+1 − x0)

2

)]
(C.2.4)

Using all these results, check that your result for the propagator matches with part
A).

10Hint: there are two terms in which x1 occurs. One involving x0 and one involving x2. After
integrating out x1 you find an exponent involving the difference between x2 and x0.
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Exercise 6 (Schrodinger equation):
Given a wave function ψ(x0, t0) at a time t0, the following equation gives the wave
function at a time t:

ψ(x, t) =

ˆ +∞

−∞
dx0K(x, t;x0, t0)ψ(x0, t0) (C.2.5)

1. Show this by using K(x, t, x0, t0) = 〈x| e−iH(t−t0) |x0〉.

In the rest of this exercise, you will show that this equation holds the same information
as the Schrodinger equation. To see that, consider the evolution over an infinitesimal
time interval ε. By matching the small ε expansion of the left hand side and the right
hand side of (C.2.5), you will rediscover Schrodinger’s equation.

2. Take t to be t0 + ε. For small ε we can approximate the integral over all paths in
K by the contribution of a small straight path over a single time step of size ε.
Compute the action

S =

ˆ t0+ε

t0

dt
( 1

2
mẋ2 − V (x)

)
(C.2.6)

for a straight path with boundary conditions x(t0) = x0 and x(t0 + ε) = x. With
this action in hand, convince yourself that the propagator should take the form:

K(x, t0 + ε, x0, t0) ≈
1

N
e

i
~

[
m
2

(x−x0)
2

ε
−εV

(
x+x0

2

)]
, (C.2.7)

where we keep N as a variable to be determined.

3. Show that, after making a change of variables, equation (C.2.5) leads to

ψ(x, t0 + ε) ≈ 1

N

ˆ +∞

−∞
dδ e

i
~

[
m
2

δ2

2ε
−εV

(
x+ δ

2

)]
ψ(x+ δ, t0). (C.2.8)

4. Argue that we can expand around δ = 0 and do so. To what order should you
expand? Pay attention to the relation between orders of ε and orders of δ. This
relation can best be seen after integrating the Gaussian integral(s) over δ.

5. Matching the order ε0 terms on both sides, find N

6. Matching the order ε terms on both sides, rediscover the Schrodinger Equation.

Exercise 7 (A Primer in Variational Calculus):
Functional integrals are maps from the space of functions to the set of real (or complex)
numbers. Functional derivatives are defined as follows

δF

δf(x0)
= lim

ε→0

F [f(x) + εδ(x− x0)]− F [f(x)]

ε
, (C.2.9)
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where x is the variable of integration. Use this definition to compute the functional
derivatives of the following functional integrals

F1[f ] =

ˆ
f(x)dx , F2[f ] =

ˆ
(f(x))pφ(x)dx ,

F3[f ] =

ˆ
g[f(x)]dx , F4[x] =

ˆ (
dx

dt

)2

dt ,

F5[f ] =

ˆ
G(x, y)f(x)dx , F6[J ] = e−

1
2

´
dxdyJ(x)∆(x−y)J(y) .

(C.2.10)

Use these tools to determine whether the classical trajectories of the free particle and of
the harmonic oscillator are minimal, maxima or saddle points of the action. To do so,
you need to examine the second order functional derivative of the action δ2S[x, ẋ] .11

11Hint: You will need to integrate by parts δẋ, and then appropriately expand δx in eigenfunctions of
the differential operator you will obtain.
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Quantum Physics IV, Exercises 3

Exercise 8 (Free particle propagator):
Remember the following identities/definitions:

K(xf , tf ;xi, ti) =

ˆ
x(ti)=xi, x(tf )=xf

D[x] exp

(
i

~
S

)
, (C.3.1)

D[x] =
1

A

N−1∏
i=1

dxi
A
, A = e−iπ/4

√
m

2π~ε
, ε =

tf − ti
N

. (C.3.2)

a) We will once more compute the propagator K(xf , tf ;xi, ti) for a free particle. But
this time we will use determinant methods.

• Start by showing that

K(xf , tf ;xi, ti) = exp

[
im

2~
(xf − xi)

2

tf − ti

]
K(0, tf ; 0, ti). (C.3.3)

Hint: write S[x(t)] as S[xcl(t) + y(t)] with xcl the solution to the equations
of motion so that you can express the exponent in K as S[xcl] + S[y] with
y(ti) = y(tf ) = 0.

• Next we need to compute K(0, tf , 0, ti). We could do this explicitly by dis-
cretizing time, but in this exercise you will use a different and arguably faster
method: using Gelfand-Yaglom’s theorem.

As you have seen during lecture 3, Gelfand-Yaglom’s theorem is a formula
to compute the propagator for a harmonic oscillator with time-dependent
frequency12.

The theorem tells us that

K(0, tf , 0, ti) =

√
m

2πi~ϕ(tf )
(C.3.4)

where ϕ is the solution to ϕ̈(t) + ω2(t)ϕ(t) = 0, such that ϕ(ti) = 0 and
ϕ̇(ti) = 1 (ω2(t) is the time-dependent frequency of the harmonic oscillator).

Use this to compute K(0, tf , 0, ti) in the case of free particle.
12More generally, any quadratic action can be cast into a form suitable for the use of Gelfand-Yaglom’s

theorem
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b) Using the free particle propagator determine the evolution of a gaussian wave-packet

ψ(x, t = 0) = N exp
(
−x2/2σ20

)
exp(−ipx/~) (C.3.5)

What happens to the mean and the variance of the probability density |ψ(x, t)|2?

c) We want to interpret K(x, t; 0, 0) as a wave function ψ(x, t). This will help us
develop an better intuition about this object.

• What is the corresponding wave-function at time t = 0? Can you guess the
probability density in the momentum space?

• Determine the associated probability density both in coordinate and in mo-
mentum space?

Exercise 9 (Some analytical mechanics and path integral identities):
Prove the following statements :

a)
dtfScl = −E and dxfScl = P, (C.3.6)

where Scl is the action evaluated on the classical trajectory and fixed end-point
variations are assumed.

Hint: write xcl(t) = f(xf , tf , xi, ti, t): the classical path xcl(t) depends implicitly
on xf , xi, tf , ti, and the function f makes that dependence explicit. Then,

f(xf , tf , xi, ti, t = ti) = xi (C.3.7)
f(xf , tf , xi, ti, t = tf ) = xf (C.3.8)

The trick is then to take total derivatives of the above relations with respect to
xi, ti, xf , tf . As a reminder, recall that for a function g(x, y), we have

d

dx
g(x, y = x) =

[∂g
∂x

+
∂g

∂y

∂y

∂x︸︷︷︸
=1

]
y=x

(C.3.9)

b) ˆ
D[x(t)]

(
dL
dx − d

dt
dL
dẋ

)
e

ı̇
~S[x] = 0 (C.3.10)

Hint: consider a small, fixed deviation δ(t) which vanishes at the boundary. Then,
do a change of variables in the path integral: x(t) = y(t) + δ(t). What happens to
the measure D[x(t)]? You should be able to conclude after computing the quantity
S[y + δ] to leading order.

Exercise 10 (Saddle point approximation):
Consider the integral :

I(α) =

ˆ
C
eαf(z)g(z)dz (C.3.11)
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where α is real, f and g are analytic in some region of the complex plane containing the
contour C. We would like to compute an approximation to this integral when α is large.
Often such integrals can be approximated using the saddle point (or steepest descent)
method:13

I(α) ≈ g(z0)e
αf(z0)

√
2π

α

eı̇θ1√
|f ′′(z0)|

(C.3.12)

where z0 satisfies f ′(z0) = 0 and θ1 is the angle of the path passing through z0, chosen
such that 0 ≤ θ1 < π, 2θ1 + θ2 = π or 3π, where θ2 is the phase of f ′′(z0).

1. Apply this approximation to two examples :

• Stirling formula for large N :

N ! = Γ(N + 1) =

ˆ ∞

0
dx e−xxN

• Hankel function for large α:

H(1)
ν (α) =

1

ı̇π

ˆ
C

eα
1
2 (z−1/z)

zν+1
dz

where the contour C is :
Im z

Re z

C

iπ

You are now going to be guided through the general proof of this approximation.

2. To start, argue that the integral

I(α) =

ˆ
C
eαf(z)g(z)dz (C.3.13)

is dominated by the contribution coming from the point z0 in the path such that
Ref(z0) is a maximum. Argue that we need to choose a contour along which Imf(z)
is constant close to z0. 14

3. Argue that a point of the contour that maximizes Ref(z) and has Imf(z) constant
is a saddle point of f(z) (by this we mean a saddle point of both Ref(z) and of
Imf(z)). That is why this is called the saddle point approximation.

13A condition for these methods to work is that f(z) has a saddle point. Further comments on the
conditions at the end of this exercise.

14Remember that two contours are equivalent if you can deform one into the other without crossing
any singularity. That means that in the quest to approximate I(α) we are free of choosing the contour
that optimizes our approximation.
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4. Taylor expand f(z) to second order around this saddle point z0. Call z − z0 ≡
r1e

iθ1 and 1
2f

′′(z0) ≡ r2e
iθ2 . Show that, close to z0, the path along which

Im[f(z)]−Im[f(z0)] is constant is also the path along which Re[f(z)]−Re[f(z0)] is
maximized. That is the path we want. By requiring the constancy of Imf(z) we
have fixed θ1 in terms of θ2, which by definition is the phase of f ′′(z0). That is why
this method is also called "of steepest descent".

5. Having made this choice, we now have

f(z)− f(z0) = −r21r2 ≡ −t2 = 1

2
(z − z0)

2f ′′(z0) . (C.3.14)

Taylor expand g(z) around z0 and perform a change of variable from z to t. You
then should obtain the so-called asymptotic expansion of I(α):

I(α) ≈ eαf(z0)
∞∑
k=0

2k+
1
2 ei(2k+1)θ1

|f ′′(z0)|k+
1
2 (2k)!

g(2k)(z0)Γ

(
k +

1

2

)
α−k− 1

2 . (C.3.15)

Check that the first term in this expansion is exactly the saddle point approximation
(C.3.12) . We have used that

ˆ ∞

−∞
e−αt

2
tndt = α−n+1

2 Γ

(
n+ 1

2

)
. (C.3.16)

Here are some extra comments on the saddle point approximation and its applicability:

• To properly understand the large α behaviour of the integral (C.3.11) one should
start by doing a contour plot of Re f(z) for z ∈ C. Then one can deform the
integration contour towards the minimal values of Re f(z) until the contour is
always orthogonal to the lines of constant Re f(z). 15

• Sometimes it can happen that the maximum of Ref(z) is not at a saddle point of
f(z), but at the end-points of the contour. In addition, it is possible that while
deforming towards the optimal contour one encounters a singularity of g. In this
case, the integral may be dominated by this singularity. Often the function Re f(z)
has several saddle points and drawing the optimal contour is important to identify
what is the relevant saddle point.

15One may think of Re f(z) as a height function over C = R2. Then let the original contour "fall"
like a tensionless string in this landscape keeping the endpoints fixed. The final contour will be steepest
descent in the landscape.
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Quantum Physics IV, Exercises 4

Exercise 11 (Propagator for the harmonic oscillator):
The propagator for the harmonic oscillator has the following form

KHO(xf , T ;xi, 0) =

√
mω

2πi~ sinωT
exp

[
i

~
Scl

]
(C.4.1)

where Scl is the action evaluated on the solutions of the equations of motion obtained
with Dirichlet boundary conditions xcl(0) = xi, xcl(T ) = xf .

a) Use Gelfand-Yaglom’s theorem to recover the prefactor

KHO(0, T ; 0, 0) =

√
mω

2πi~ sinωT
(C.4.2)

b) Calculate the explicit expression for KHO(xf , T ;xi, 0).

c) Consider a gaussian wave packet at rest at time t = 0

ψ(x, 0) =
1

(2πσ20)
1
4

e
− (x−x0)

2

4σ2
0 , (C.4.3)

where the prefactor is such that
ˆ ∞

−∞
|ψ(x, 0)|2dx = 1 . (C.4.4)

Determine the wave function at later time t = T , if the dynamics are those of a
harmonic oscillator. 16

d) Read off the averages x(t) = 〈x(t)〉, and ∆x(t)2 = 〈(x(t)−x(t))2〉 and discuss their
relation w.r.t. the classical problem.

Hint: Recall that for a gaussian wave-packet ψ(x) = N exp
(
− (x−x0)2

4σ2
0

)
, x = x0

and ∆x2 = σ20.

Exercise 12 (More Propagators):
For both systems below compute the propagator. The idea is to make use of the known
solutions (free particle and harmonic oscillator) :

Kfree(x, t; 0, 0) =

√
m

2πı̇~t
e

ı̇
~S

free
cl

KHO(x, t; 0, 0) =

√
mω

2πı̇~|sin(ωt)|
eı̇(n+−n−)π

4 e
ı̇
~S

HO
cl

16Hint: The calculations here become cumbersome. Remember that Mathematica is your friend.
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1. Constant gravitational field :

Lgrav. =
1
2mẋ

2 −mgx

2. Forced harmonic oscillator :

Lforced HO = 1
2mẋ

2 − 1
2mω

2x2 − J(t)x

To solve the forced harmonic oscillator, here is some guidance:

• To start, write x as the classical solution xcl to the unforced harmonic
oscillator plus a path y. You should get:

Sforced HO[x] = Sforced HO[xcl]−
1

2

ˆ T

0
dt
[
y m

(
d2

dt2
+ ω2

)
︸ ︷︷ ︸

Dω

y + 2J(t)y
]

• At the end of the first exercise session we saw that

xTAx+JTx = (x+JA−1/2)TA(x+A−1J/2)−JTA−1J/4 ≡ x′TAx′−JTA−1J/4.
(C.4.5)

We will now use the continuous equivalent of this. We need to find the ‘inverse’
of the differential operator Dω. To this end we assume that there is a function
G(t, τ) such that

DωG(t, τ) = δ(t− τ) , G(0, τ) = G(T, τ) = 0 (C.4.6)

We will find this G explicitly later. We introduce the notation

G · J ≡
ˆ

dt′G(t, t′)J(t′). (C.4.7)

Rewrite the y dependent part of the action as:

Sy = −1

2

ˆ
dt (y(t)+G·J(t))Dω(t)(y(t)+G·J(t))+

1

2

ˆ
dt dt′ J(t′)G(t′, t)J(t).

(C.4.8)
• You should shift the integration path again such that you obtain

Kforced HO(xf , T, xi, 0) = e
i
~Sforced HO[xcl]+

i
2~J ·G·J

ˆ y(T )=0

y(0)=0
D[ȳ]e

i
~SHO[ȳ] .

(C.4.9)
What was the shift y → ȳ? Why will the boundary conditions on our new ȳ
be the same as the ones on y?

• Now we only need to evaluate the factors in front of the path integral. In
order to do this, we will have to find the explicit expression for G(t, τ). We
will need to solve the differential equation (C.4.6). First write the general
solution for t < τ and t > τ . Note that in these domains we have a simpler
homogeneous differential equation DωG = 0. You should find:

G±(t, τ) = R±(τ) sin(ωt+ φ±) (C.4.10)

where ± stands for t < τ , t > τ .
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• Use the continuity of G and the discontinuity of the first derivative of G ,

G−(τ, τ) = G+(τ, τ) (C.4.11)

G′
+(τ, τ)−G′

−(τ, τ) =
1

m
, (C.4.12)

as well as the boundary conditions, to find φ± and R±. Can you derive
(C.4.12) ?

• Use all these elements to compute the full propagator.
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Quantum Physics IV, Exercises 5

Exercise 13 (Wick rotations and 2-point functions):
In the lecture, you defined the Euclidean vacuum expectation value

GE(τ1, τ2) ≡ 〈0|T x̂E(τ1)x̂E(τ2) |0〉 , (C.5.1)

where x̂E(τ) = e
1
~Hτ x̂Ee

− 1
~Hτ is the Heisenberg picture Euclidean position operator17

and T is the time-ordering operator which places the x̂E with highest τ on the left, and
the others in decreasing order to the right.

The Minkowski space correlator can be obtained by Wick rotation τ → it in the
above:

〈0|T x̂(t1)x̂(t2) |0〉 = GE(it1, it2) (C.5.2)

In this exercise, you will familiarize yourself with the Wick rotation by looking in greater
details at the 2pt function without the time-ordering.

• Show that 〈0| x̂E(τ1)x̂E(τ2) |0〉 is well-defined only if

Re(τ1) > Re(τ2) (C.5.3)

Hint: use the fact that the Hamiltonian is in general not bounded from above.

• Wick-rotating consists of setting τj = eiαtj (j = 1, 2) and going from α = 0
(Euclidean) to α = π

2 (Minkowski). Draw the τ complex plane to visualize the
rotation. Is the constraint (C.5.3) realized during the whole rotation? Which 2pt
function do you obtain?

• Assume now that we want to compute the unordered Minkowski 2pt function18

〈0| x̂(t1)x̂(t2) |0〉 , t1 < t2 (C.5.4)

Is it possible to reach this from the Euclidean correlator using the same rotation as
before?

• Instead of rotating τ1 and τ2 in the same way with a parameter α as above, consider
now the case τj = itj + εj (j = 1, 2), where εj � 1. Is it possible to pick ε1 and ε2
such that

〈0| x̂(t1)x̂(t2) |0〉 (C.5.5)

is well defined? Again, draw the τ complex plane to better visualize what you are
doing.

17Note that it is obtained by replacing t→ −iτ in the usual Minkowski space operator x̂(t).
18In QFT, these are sometimes called Wightman functions
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• Convince yourself that in Minkowski space, it is possible to define out of time order
correlators starting from time-ordered Euclidean correlators by using the above
prescription. Try to generalize the discussion to 3-point functions and above. Can
you find an explicit parametrization of the ε?

Exercise 14 (The propagator of the forced harmonic oscillator in Euclidean time):
We will now find the propagator for the HO with source in Euclidean time

K fHO
E (xi, xf ;β) =

ˆ
x(0) = xi
x(β) = xf

D[x] exp

(
−
SJE
~

)
(C.5.6)

with
SJE [x] =

ˆ β

0
dτ

(
m

2
ẋ2 +

mω2

2
x2 + J(τ)x

)
(C.5.7)

We now have to do a computation that is similar to what we did last week. However,
here we have rotated to euclidean time τ = it.

• Start from the definition of the Minkowski propagator of the forced harmonic
oscillator from last week exercise sheet and perform a Wick rotation to check that
you obtain (C.5.6). In particular, check that this changes the exponent to be of
the form −SJ

E
~ and check that the signs in the (now Euclidean) action SE (C.5.7).

• Now, we can proceed similarly as last week in order to find the explicit form of the
Euclidean propagator. (You may want to go back to last week exercise sheet for
guidance.). After performing the usual change of variable x = xcl + y where xcl is
the classical solution of the unforced HO, you should obtain

K fHO
E (xi, xf ;β) = exp

(
−
SJE [xcl] +

1
2J ·GE · J
~

)
KHO
E (0, 0;β) (C.5.8)

where
DE
ωGE(τ1, τ2) = δ(τ1, τ2), GE(0, τ) = GE(β, τ) = 0 (C.5.9)

with DE
ω = m

(
d2

dt2
− ω2

)
(notice the sign change compare to the Minkiwski case).

• Following the same steps as last week, we can now find the different terms of (C.5.8)
and obtain

K fHO
E (xi, xf ;β) =

√
ω

2π~ sinh(ωβ)
exp

− 1
2mω

(x2f+x
2
i ) cosh(ωβ)−2xixf
sinh(ωβ) + J · xcl + 1

2J ·GE · J
~


Exercise 15 (Partition function of HO):
We want to compute the thermal partition function of the HO given by

Z(β) =

ˆ
dX KHO

E (X,X;β) . (C.5.10)
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a) Use the result of Ex.2 to compute explicitly the partition function, you should
obtain

Z(β) =
1

2 sinh(ωβ/2)
(C.5.11)

b) Rewrite the partition function in order to obtain the energy levels of the harmonic
oscillator. You will need the series expansion for 1/(1− x). Then, compare with

Z(β) =
∞∑
n=0

e−βEn/~ (C.5.12)

Exercise 16 (Van Vleck-Pauli-Morette formula):
We saw that for a generic quadratic hamiltonian the propagator can be found using the
Gelfand-Yaglom theorem:

K(0, tf , 0, ti) =

√
m

2πi~φ(tf )
(C.5.13)

Moreover, even when dealing with a potential of higher order we can do a semi-classical
approximation where we expand the action to second order in the variation y around the
classical path xcl. For an action of the form

S[x] =

ˆ (
mẋ2

2
− V (x)

)
dt (C.5.14)

This gives

K(xf , tf , xi, ti) ≈ Ksemi-classical(xf , tf , xi, ti) = e
iS[xcl]

~

ˆ
D[y]e

i
~
´
dt

[
mẏ2

2
− 1

2
δ2V
δx2

(xcl)y
2

]
,

(C.5.15)
where we used that linear terms in y have a vanishing contribution. Then, we can
apply Gelfand Yaglom’s theorem with Ω(t) = V ′′(xcl(t)). We just need to find φ(tf ), the
solution to (

d2

dt2
+

Ω(t)

m

)
φ(t) = 0 (C.5.16)

satisfying the boundary conditions φ(ti) = 0 and φ̇(ti) = 1.

a) To start, differentiate the classical equations of motion to show that ẋcl is a solution
of (C.5.16).

b) Unfortunately, ẋcl does not satisfy the right boundary conditions. To find the
solution that does, we are going to use the Wronskian. In general, if you have
found n−1 solutions to a order n differential equation, the Wronskian will help you
finding the last solution. Given two functions f and g, their Wronskian is defined
as

W (t) = f(t)ġ(t)− ḟ(t)g(t) . (C.5.17)
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Given the one solution we found, v(t) ≡ ẋcl(t), we write the Wronskian with the
solution we seek, φ(t), as

W (t) = v(t)φ̇(t)− v̇(t)φ(t) , (C.5.18)

Using (C.5.16), show that
Ẇ (t) = 0. (C.5.19)

c) Show that Ẇ (t) = 0 implies

d

dt

(
φ(t)

v(t)

)
=
v(ti)

v2(t)
(C.5.20)

d) Solve this differential equation to find φ(tf ). With a simple change of variable you
should find that the solution can be expressed as an integral over x:

φ(tf ) = v(tf )v(ti)

ˆ xf

xi

dx

v(x)3
(C.5.21)

e) Finally, we want to write our result in terms of the action. To do so, show that19

∂2Scl
∂xi∂xf

=
1

v(tf )

∂E

∂xi
, (C.5.22)

and
∂E

∂xi
= − m

v(ti)
´ xf
xi

dx
v3(x)

. (C.5.23)

You should obtain, in the end,

Ksemi-classical(xf , tf , xi, ti) = e
iS[xcl]

~

√
− 1

2πi~
∂2Scl
∂xi∂xf

. (C.5.24)

This is called the Van Vleck-Pauli-Morette formula for semiclassical propagators.

19What you showed in Exercise Sheet 3 will come useful here.
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Quantum Physics IV, Exercises 6

Exercise 17 (Partition function of the forced HO):
Compute the partition function of the forced HO or equivalently the partition function
of the HO coupled to an external source.20

ZHO[β, J ] =

ˆ
x
(
−β

2

)
=x

(
β
2

)D[x] exp

[
−1

~

ˆ β/2

−β/2
dτLEHO − J(τ)x(τ)

]
(C.6.1)

where
LEHO =

1

2
mẋ2 +

1

2
mω2x2 (C.6.2)

• Completing the square, you should obtain

ZHO[β, J ] = ZHO(β, 0) exp

[
J ·GP · J

2~

]
(C.6.3)

where the Green’s function is the solution of

m
(
−∂τ1 + ω2

)︸ ︷︷ ︸
Dω

GP (τ1, τ2) = δ(τ1 − τ2) (C.6.4)

with periodic boundary condition (why?)

GP

(
−β
2
, τ2

)
= GP

(
β

2
, τ2

)
(C.6.5)

∂τ1GP

(
−β
2
, τ2

)
= ∂τ1GP

(
β

2
, τ2

)
(C.6.6)

• Use the continuity equation at τ1 = τ2 and the periodic boundary condition to
show that

GP (τ1, τ2) =
1

2ωm

cosh
[
ω
(
1
2β − |τ1 − τ2|

)]
sinh

(
1
2ωβ

) (C.6.7)

• Conclude by using last week’s result for the unforced HO:

ZHO(β, 0) =
1

2 sinh (ωβ/2)
. (C.6.8)

Exercise 18 (Perturbative expansion & anharmonic oscillator):
Consider a harmonic oscillator perturbed by an anharmonic term :

LE = 1
2mẋ

2 + 1
2mω

2x2 +
λ

4!
x4

We will treat the quartic interaction as a small perturbation, that is λ � 1 and will
study the partition function. The aim is to compute :

20Note that we defined here J(τ) with opposite sign compared to last week. The reason is that we
want to match the equation studied in the lectures
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• Mean energy at first order in λ.

• Free energy to second order in λ in small and large β limit.

Definitions :

Free energy : F (β) = −~
1

β
logZ

Mean energy : E(β) = −~
d

dβ logZ

You will need the result derived in exercise 1.
Let us also clarify notations, we define

Z[β, J ] =

ˆ
x
(
−β

2

)
=x

(
β
2

)D[x] exp

[
−1

~

ˆ β/2

−β/2
dτLE − J(τ)x(τ)

]
(C.6.9)

and

Z[β] ≡ Z[β, 0] =

ˆ
x
(
−β

2

)
=x

(
β
2

)D[x] exp

[
−1

~

ˆ β/2

−β/2
dτLE

]
(C.6.10)

1. First we need to find an expression for the perturbed partition function in terms of
functional derivatives acting on the unperturbed partition function that we know.
Starting from

Z[β] =

ˆ
x
(
−β

2

)
=x

(
β
2

)D[x] exp[−(SHO + Sint.)/~], (C.6.11)

show that

Z[β] = Z0[β] exp

[
− λ

~4!

ˆ
dτ1

(
~δ

δJ(τ1)

)4
]
exp

(
1

2~
J · G · J

)∣∣∣∣∣
J=0

. (C.6.12)

What are Z0[β] and G(τ1, τ2)?

2. Now we can find Z[β] to any order in λ by expanding the exponent to the appropriate
order. We see that the functional derivative to J(τn) can act in different ways
to give different contributions (either working on one of the J ’s in the exponent
or on J ’s that were brought down by previous functional derivatives). Start by
explicitly calculating the first order partition function (in terms of G). Check that
you understand that we can represent the result by (a numerical factor times) the
following diagram:

. (C.6.13)

You can see that there is a diagrammatic way to work out what contractions of G
you can get by acting with a functional derivative with respect to J and how often
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such a contraction occurs. For instance for the diagram we just saw we knew we
had access to one vertex (one order of λ). All functional derivatives were at the
same point (the same τ coordinates). Thus, all four lines need to connected back
to the same vertex. So the only option is to connect them all back. However, we
are left with the choice of how to do this. Take one line, we have to connect this
line to one of three others. This gives 3 options. This was the only choice as the
two lines that are left have to connect to each other. This choice corresponds to
the fact that we can get G(τ1, τ1)2 in three different ways by acting with functional
derivatives. Thus, we can work out the combinatorics of the derivatives using only
the diagrams.

3. Now calculate the second order contribution both explicitly and diagrammatically
and check that the results match. You will now find disconnected diagrams. In
fact you will find the previous diagram twice. (Take a look at the numerical
pre-factor. Are you starting to see a pattern?) Calculate the pre-factor of the
diagram consisting of three such disconnected diagrams (which you find at the
third order calculation) and see whether you understand the pattern.

4. Show that we can write these disconnected diagrams as the exponential of the
connected one, show especially that the pre-factors work out. In general all
disconnected diagrams can be written as the exponential of connected ones. When
you take the log of the partition function (free energy) you will get only connected
diagrams.

5. Write the partition function at order 0, 1 and 2 in terms of diagrams (pay attention
to the multiplicities), and write log[Z(β)] also in terms of diagrams.

6. Compute the first order diagram exactly (do the integral over the greens function),

7. Compute the second order ones in the small β limit. (It is a good exercise to also
calculate the large β limit now. However, it might actually be easier to obtain it
later when we have the exact expression.)

8. We will need an integral identity for the next level. So here is a small mathematical
interlude. Show the following identity:

ˆ
coshn(x)dx =

n− 1

n

ˆ
coshn−2(x)dx+

1

n
coshn−1(x) sinh(x)

and use it to obtain :
ˆ

cosh2(x)dx = 1
2x+ 1

4 sinh(2x)ˆ
cosh4(x)dx = 3

8x+ 1
4 sinh(2x) +

1
32 sinh(4x)

9. Use the integrals above to compute the second order diagrams exactly. Check the
limits obtained earlier.
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10. Compute the mean energy at first order. Identify a dimensionless expansion
parameter.

11. Compute the free energy at second order in the small and large β limits. Identify
the dimensionless expansion parameter for each limit.

12. Discuss the validity of the expansion, give an interpretation of the conclusion in
both limits and relate the two expansion parameters.
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Quantum Physics IV, Exercises 7

Exercise 19 (Free energy of HO perturbed by a cubic potential):
Consider a harmonic oscillator perturbed by a cubic term :

LE = 1
2mẋ

2 + 1
2mω

2x2 +
λ

3!
x3

and compute the leading correction to the ground state energy. Here is some guidance:

a) Write down the partition function in terms of a path integral, and write the
interaction in terms of functional derivatives acting on a source.

b) Use the periodic Greens function and the unperturbed harmonic oscillator partition
function as calculated before21

GP (τ1, τ2) =
1

2ωm

cosh
[
ω
(
1
2β − |τ1 − τ2|

)]
sinh

(
1
2ωβ

) ,

Z0[β] =
1

2 sinh(ωβ/2)
,

(C.7.1)

and compute the leading order correction to the partition function using Feyman
diagrams. You should find that the first non-zero contribution is at O(λ2). Was
there a way to see this from the beginning?

c) Use this result to derive the leading order correction to the free energy. What limit
do you need to take in order to derive the correction to the ground state energy
starting from the correction to the free energy?

Exercise 20 (1 & 2 point correlators for cubic and quartic perturbations):
Compute :

a) the first non vanishing correction (leading order (LO) correction) to the thermal
correlation functions 〈x̂〉 and

〈
x̂2
〉

both for a harmonic oscillator perturbed by a
cubic and a quartic term. Note that this is not necessarily the first order in λ. It
should be easy to predict when these will vanish. Also take the large β limits.

b) the second non vanishing correction (next to leading order (NLO) correction) to 〈x̂〉
for the cubic potential (For simplicity, in this second point, just write the diagrams,
do the combinatorics and check the cancellation of the disconnected graphs. Leave
evaluating the integrals for last.).

Remember :

〈x̂n〉 = ~n/2GP (τ1 = τ, . . . , τn = τ)

~n/2GP (τ1, . . . , τn) =
1

Z[β, 0]

~δ
δJ(τ1)

. . .
~δ

δJ(τn)
Z[β, J ]

∣∣∣
J=0

21Or quickly re-derive the partition function from its trace definition. Since you know En.
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Useful relations :ˆ
dx sinhn(x) =

1

n
sinhn−1(x) cosh(x)− n− 1

n

ˆ
dx sinhn−2(x)

ˆ
dx coshn(x) =

1

n
coshn−1(x) sinh(x) +

n− 1

n

ˆ
dx coshn−2(x)
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Exercise 21 ( The partition function in the high temperature limit.):
The goal of this exercise is to find the leading quantum corrections to the euclidean
partition function in the β → 0 limit. Consider the euclidean action

SE =

ˆ β/2

−β/2
dτ
[m
2
ẋ2 + V (x)

]
. (C.8.1)

The partition function can be written as
ˆ ∞

−∞
dX

ˆ
x(±β/2)=X

D[x]e−
SE
~ =

ˆ
x(−β/2)=x(β/2)

D[x]e−
SE
~ . (C.8.2)

First way

a) Approximate the left hand side of eq. (C.8.2) by evaluating the potential on the
fixed path x(τ) = X (in the β → 0 limit, it is a reasonable first approximation
to treat V (x) as a constant on the interval). Can you interpret the result as the
partition function of a well-known system?

b) Do an expansion around the previous approximation using x(τ) = X + ξ(τ). Keep
terms up to and including second order.
Why should this expansion be valid (i.e. why is ξ � X in the β → 0 limit)? (Hint:
Use dimensional analysis or isolate all β dependence in a way that the β dependence
of the final result is easy to understand.)

c) Simplify as much as you can (perform a shift in ξ and remember to keep track of
how this affects the boundary conditions). The goal is to get a form where you can
apply the previously found harmonic oscillator result

K(xf , tf ;xi, ti) =

√
mω

2πi~ sinωT
exp

[
imω

2~ sinωT
[(
x2f + x2i

)
cosωT − 2xfxi

]
.

]
.

(C.8.3)
Remember you should Wick rotate this to Euclidian signature by taking T → −iβ .

d) Take the limit β → 0. If you only go to first order in the Taylor series for cosh and
sinh, you will find the same result as in a), so you should take into account the
second order terms.

e) Express the final result just in terms of V ′ (dependence on V ′′ can be replaced with
V ′ dependence through partial integration)22.

Second way (Matsubara expansion)
22The boundary term that you get for doing this can be discarded if V (X) → ∞ as X goes to plus or

minus infinity.
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e) We will now compute the right hand side by expanding x(τ) in a Fourier series

x(τ) = x0 +
∑
k≥1

[
x
(s)
k sin

(
2πk

β
τ

)
+ x

(c)
k cos

(
2πk

β
τ

)]
. (C.8.4)

Verify that this expansion satisfies the correct boundary conditions.

f) Plug this expansion into the action and expand V (x0 + ...) keeping terms up to
and including second order in the xk’s. Perform the Euclidean time integral.
Useful formulas:

1

L

ˆ L

−L
dτ cos

(nπ
L
τ
)
cos
(mπ
L
τ
)
= δnm

1

L

ˆ L

−L
dτ sin

(nπ
L
τ
)
sin
(mπ
L
τ
)
= δnm

1

L

ˆ L

−L
dτ sin

(nπ
L
τ
)
cos
(mπ
L
τ
)
= 0

g) In terms of the new variables x0, x(s),(c)k we can perform the path integral as follows

dX D[x] → Ndx0
∏
k≥1

dx
(s)
k x

(c)
k (C.8.5)

with some (infinite) normalization N . Perform the x(s)k and x(c)k (Gaussian) integrals.
Fix the normalization of N by taking V = 0 and comparing with the free theory
results.

h) Keep only β terms up to second order and use the identity

∑
k≥1

1

k2
= ζ(2) =

π2

6
(C.8.6)

Check that your result matches the result from the previous exercise (Use partial
integration again).

Exercise 22 (The quartic integral):
The goal of this exercise is to investigate some mathematical features of various kinds of
approximations to the toy model of the quartic integral

I(g) =
1√
2π

ˆ ∞

−∞
dz e−

1
2
z2− 1

4
g z4 , (C.8.7)

which is defined for Re(g) ≥ 0. This can be interpreted as the path integral of a zero
dimensional anharmonic oscillator with a quartic interaction term. For interested read-
ers, https://munsal.files.wordpress.com/2014/10/marino-lectures2014.pdf is a
great reference.
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a) Show that the series expansion around g = 0 is given by

I(g) =
∞∑
n=0

ang
n , an = (−4)−n

(4n− 1)!!

n!
. (C.8.8)

b) Show that this perturbative series is asymptotic, i.e. it has zero radius of conver-
gence.

c) We would like to extend the definition of I(g) to negative values of g, by keeping
the integral convergent. To do so, we can analytically continue this integral by
rotating g clockwise or counterclockwise by 180◦ and compensating by rotating z4
by the opposite amount, such that Re(gz4) > 0. Show that this corresponds to
rotating the contour of integration by 45◦ clockwise or anticlockwise.

d) Notice that these two ways of analytically continuing this integral lead to different
answers. This means that I(g) has a branch cut along the negative real axis. Use
the saddle point approximation to compute the discontinuity along this branch cut.

e) Plot the partial sums

IN (g) =

N∑
n=0

ang
n , (C.8.9)

for g = 0.04 and N = 0, 1, . . . , 10 and compare these values with the exact value
I(g = 0.04). What N should you choose to obtain the best approximation to the
exact value? What happens for other values of g? Can you determine the optimal
value of N as a function of g?

f) Borel summation: Define the Borel transform

F (t) =

∞∑
n=0

1

n!
ant

n . (C.8.10)

Show that the function

Ĩ(g) ≡ 1

g

ˆ ∞

0
dt e−t/gF (t) , (C.8.11)

has the same perturbative expansion as I(g), as long as the integral over t converges.

g) From equation (C.8.10), show that the radius of convergence of the Borel transform
is finite. Evaluate (C.8.10) with Mathematica. It should give you a closed form
expression. What are the singularities of F (t) in the complex t−plane?

h) Pade approximants: Consider the following rational representations of the series
expansion of I(g):

PN (g) ≡
b0 + b1g + . . . bNg

N

1 + c1g + . . . cNgN
=

2N∑
n=0

ang
n +O(g2N+1) (C.8.12)
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This is called the [N/N ] Pade approximant to I(g). Hint: in order to find the b
and c coefficients, impose that ∂nPN (g)

∂gn

∣∣∣
g=0

matches on both sides. Do this with
Mathematica for various values of N .

Check numerically that limN→∞ PN (g) = I(g) for any g > 0 (in practice, check up
to N ∼ 8). Plot the poles of PN (g) in the complex g−plane for several values of N .

i) Further reading at https://munsal.files.wordpress.com/2014/10/marino-lectures2014.pdf
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Exercise 23 (Free particle fixed energy propagator):
The goal of this exercise is to compute the fixed energy propagator for a free particle
by Fourier transforming the fixed time propagator. Start by inserting the fixed time
propagator in the definition of the fixed energy propagator.23

K(T ;xf , xi) =

√
m

2πı̇~T
eı̇Scl/~

K(E;xf , xi) =

ˆ ∞

0
dTeı̇

(E+ı̇ε)
~ TK(T ;xf , xi)

(C.9.1)

Notice that it is difficult to immediately perform the T integral. To simplify the calculation
we use the momentum representation of the fixed-time propagator instead of the position
one.

K(T ;xf , xi) =

ˆ ∞

−∞

dp
2π~

exp

(
−i p

2T

2m~
+ i

p(xf − xi)

~

)
(C.9.2)

You may want to check that this is correct (by doing the Gaussian p integral). Plug this
into the equation for K(E;xf , xi) and do the T integral. Then, do the p integral, using
Cauchy’s theorem. You will want to rewrite the integral to the following form first:

−im
ˆ ∞

−∞

dp
π

ei
p∆x
~

(p− p0)(p+ p0)

where ∆x = xf − xi and p0 =
√

2m(E + ı̇ε).

Exercise 24 (WKB Approximation Validity):
Next time we will see how the path integral formalism can be used to deal with bound
states and meta-stable states (tunneling). This time we will brush up on the WKB
approximation using the Schrodinger equation, since it will be easier to find its region of
validity:

Write the generic wave function to be solved for in the time-independent problem as

ψ(x) = e
i
~σ, σ = σ0 +

(
~
i

)
σ1 +

(
~
i

)2

σ2 + . . .

and solve the Schrodinger equation perturbatively in ~.

a) First solve for σ0 at order O(0) then for σ1 at order O(~) and finally for σ2 at order
O(~2).

b) Then check what ~σ1 � σ0 and ~2σ2 � σ0 mean in terms of the physical parameters
of the problem. This gives you the regimes where the WKB approximation is valid.

23Notice that to obtain a convergent integral we gave a small imaginary part to the energy. This is
analogous to requiring that the fixed energy propagator is analytic in the upper half of the complex plane.
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Exercise 25 (Large order behaviour of perturbation theory):
In this exercise, we will study the correction to the ground state energy to all order in
perturbation theory. In this exercise, instead of using Feynman diagrams, we will use
the Schrödinger equation and a clever ansatz for the wave function24. Inspired from last
week’s exercise, what do you expect for the radius of convergence of the expansion of the
ground state energy in powers of λ?

Consider the anharmonic oscillator with Hamiltonian

H =
1

2
p2 +

1

2
x2 + λx4 , (C.9.3)

we are going to study the perturbative expansion of the ground state energy 25

E0 =
1

2
+

∞∑
n=1

Anλ
n . (C.9.4)

The Schrodinger equation for this system is[
−1

2

d2

dx2
+

1

2
x2 + λx4

]
ψ(x) = E0ψ(x) . (C.9.5)

Use the following perturbative ansatz for the ground state wave function

ψ(x) =
1

π1/4

∞∑
n=0

λne−
1
2
x2Bn(x) , Bn(x) = (−1)n

2n∑
j=1

x2jBn,j . (C.9.6)

a) Fix B0(x) by considering the unperturbed harmonic oscillator (λ = 0) and compar-
ing with the usual ground state wavefunction.

b) Show that this solves the Schrodinger equation if the coefficients of these polynomials
satisfy the following recursion relation:

2jBn,j = (j + 1)(2j + 1)Bn,j+1 +Bn−1,j−2 −
n−1∑
p=1

Bn−p,1Bp,j , (C.9.7)

and that An = (−1)n+1Bn,1.

c) Implement this equation recursively on Mathematica and determine An for n =
1, 2, . . . , 50. Compare your results with the asymptotic formula

An ≈ (−1)n+13n
√

6

π3
Γ

(
n+

1

2

)
, n→ ∞ . (C.9.8)

d) What is the radius of convergence of the series (C.9.4)?

24The article [4] is a good reference for interested readers
25Notice that we are in units where ~ = 1 and we choose m = ω = 1 to simplify the expressions.
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Exercise 26 (Application of WKB):
During the lectures, you learned about the semiclassical approximation to the fixed
energy propagator

Ksc(E;xf , xi) =
1√

|v(xi)v(xf )|

∑
n

e−i
π
2
Nne

i
~
´ xf
xi

dxnp(x) , (C.10.1)

where p(E, x) = ±
√
2m[E − V (x)], the sum is over all classical paths of energy E, and

Nn is the number of turning points of the n-th path. We will consider this approximation
in the case of a bound state and of a metastable state.

Case 1 : bound state Case 2 : meta stable state.
Probability P ≪ 1 to tunnel

Through the WKB approximation, we will compute the energy levels and the wavefunc-
tions in both cases.
Bound state:

a) For two points xi and xf consider all classical paths of energy E connecting them
(assume xf > xi for simplicity). There are infinitely many. Which? Can you write
the sum in equation (C.10.1) for these paths in closed form?26

b) Determine where the poles of the propagator are. You should find there are poles
for

2

ˆ b

a
p(x)dx = 2π~

(
n+ 1

2

)
. (C.10.3)

26Hint: Convince yourself that all elements in the sum in equation (C.10.1) can be expressed as
products of the following three factors:

D = exp

(
i

~

ˆ xf

xi

p(x)dx
)
, L = exp

(
− iπ

2
+ 2

i

~

ˆ xi

a

p(x)dx
)
, R = exp

(
− iπ

2
+ 2

i

~

ˆ b

xf

p(x)dx
)
.

(C.10.2)
where a and b are the classical turning points. Then, use 1

1−x
≈ 1 + x+ x2 + ....
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c) To find the wavefunctions, let use an alternative form of the fixed energy propagator.
Define it as the Fourier transform of the fixed time propagator in its canonical form

K(E;xf , xi) =

ˆ ∞

0
dT 〈xf |e−iHT/~|xi〉ei(E+iε)T/~.

Carry out the time integral and write this as

K(E;xf , xi) = i~
∑
n

ψn(xf )ψ
∗
n(xi)

E − En + iε
. (C.10.4)

d) Compute the residues on the poles of the expression you found in question a) and
read off the wavefunctions by comparing it with Equation (C.10.4). Be careful with
the denominator: when taking the residue, it will give an extra prefactor.27

Meta stable state:
Now there is a chance P � 1 to go over the potential barrier on each reflection. This fact
can easily be incorporated in our previous calculations by changing one of the factors in
Equation (C.10.2).

f) Show that the states are now unstable and decay with lifetime τ = Tn
P .

Exercise 27 (Gravitational interference):
Gravitational effects can be measured with an interferometer as shown below. A beam
of neutrons, or atoms, is sent on the beam splitter in A. Half of the beam follows the
path AXB, and the second half AY B. In B there is a screen which counts the number
of hits. The apparatus is such that it can be rotated around the AY axis by an angle δ
(see figure (C.1)).

27At some point you will need to show that

cos

(
1

~

ˆ b

xf

p(x)dx− π

4

)
= (−1)n cos

(
1

~

ˆ xf

a

p(x)dx− π

4

)
. (C.10.5)

172



Figure C.1: A beam of particles is split at A, can be reflected at X and Y , and is detected
at B. The angle δ determines the tilt of the apparatus around the AY axis.

The goal is to compute the observed interference pattern as function of δ, for a linear
gravitational potential. Be careful to distinguish between the inertial mass mi and the
gravitational mass mg

28.

a) Compute the difference between the action on the path AXB and on the path
AY B. To do so, show first that one can write

S =

ˆ
path

p(x)dx− E∆t, p(x) =
√

2mi(E − V (x)) (C.10.6)

where E is the energy of a given particle in the beam and ∆t is the time it takes for
the particles to go from A to B. Note that in the above, x is a schematic variable
meant to indicate a spatial position, not the explicit coordinate of the x-axis.

b) Assume now that the kinetic energy of the particles is much larger than their
potential energy, as is the case in these kinds of experiment. Show that

SAXB − SAYB = −mimgLhg sin(δ)

p
(C.10.7)

c) Compute the phase shift ∆φ between the two paths, and express the result in terms
of the de Broglie wavelength λ̄ = ~

p .

Exercise 28 (Bloch waves and instantons):
Consider a periodic potential V (x) = V (x+ a), with only one minimum per period. Find
the description of the lowest energy band in the dilute instanton gas approximation.
Assume each local minimum to be approximated by an harmonic potential with a certain
ω.

28The inertial mass appears in the expression for the kinetic energy, while the gravitational mass
appears in the gravitational potential.
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To do the computation, we will use the instanton formalism to find

〈nf | e−
β
~H |ni〉 , (C.10.8)

where nf and ni label the position of two minima. Recall the different contributions
from the lecture: determine the action for a given saddle point with fixed number of
instantons and anti-instantons, write the overall prefactor (we can leave R as an unfixed
parameter for now), sum over kink locations, and consider the multiplicity from the
instanton/anti-instanton ordering.

1. Show that

〈nf | e−βH/~ |ni〉 =
(mω
π~

)1/2
e−βω/2

∑
n,n̄

1

n!n̄!

[
Rβe−S0/~

]n+n̄
δn−n̄,∆, (C.10.9)

where ∆ = nf − ni.

2. Prove that

δa,b =

ˆ 2π

0

dθ
2π
ei(a−b)θ, (C.10.10)

and use this to express equation (C.10.9) as an integral over θ. Now assume that
there exists a complete set of energy eigenstates labelled by θ (we will prove this in
the next bullet point). Show that

〈nf | e−βH/~ |ni〉 =
ˆ

dθe−βE(θ)/~ 〈nf |θ〉 〈θ|ni〉 (C.10.11)

and use this to find the energy levels E(θ) and the Bloch wavefunctions 〈n|θ〉.

3. Lastly, we want to show the existence of energy eigenstates |θ〉. Consider first
position eigenstates |n〉 corresponding to the bottom of each wells, i.e. n ∈ Z.
These are not eigenstates of the hamiltonian, but we can expand them as:

H |n〉 =
∑
k

∆n,n+k |n+ k〉 (C.10.12)

Implicitly, this is an approximation which assumes that if we were to perform a
position measurement on the state H |n〉, we would always find that it is in one of
the wells - in other words, we neglect the probability that the position of H |n〉 is

x

V(x)

a
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outside a well.

Using this expansion, show that

|θ〉 =
∑
n

einθ |n〉 , θ ∈ [0, 2π] (C.10.13)

are eigenstates of H, which means that our derivation in 2) was correct. Hint:
argue that ∆n,n+k actually does not depend on n.

Exercise 29 (Hamiltonian truncation):
Consider the anharmonic oscillator with Hamiltonian

H =
1

2
p2 +

1

2
x2 + λ2x

2 + λ4x
4 =

1

2
+ a†a+

λ2
2
(a† + a)2 +

λ4
4
(a† + a)4 , (C.10.14)

where we used
x =

a+ a†√
2

, p = i
a† − a√

2
. (C.10.15)

a) Set λ4 = 0. The Hamiltonian is a harmonic oscillator with a re-defined frequency.
Find the exact spectrum.

b) Truncate the Hilbert space to the first N eigenstates of the harmonic oscillator
(with λ = 0),

|n〉 , n = 0, 1, 2, . . . , N − 1 , (C.10.16)

and build the N×N matrix Hnm = 〈n|H |m〉. Use a computer program to compute
the lowest eigenvalues of this finite matrix for different values of λ2, λ4 and N . Test
your program by the exact result of λ4 = 0 that you found in first part.

c) From now on, for simplicity, take λ2 = 0 and λ4 = λ. Plot the ground state energy
for λ ∈ [0, 2] and N = 1, 3, 5, 7, 9. Add to this plot the predictions of perturbation
theory in the first few orders (see exercise set 9).

d) Using your numerical results to compute the first and the second derivative of the
ground state energy with respect to λ at λ = 0.

e) Compare your result with the prediction from perturbation theory. What is the
minimal size of the truncation to match perturbation theory at order λk?
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Exercise 30 (False vacuum decay reappraisal):
The goal of this exercise is to compute the rate of decay of the false vacuum for a
potential of the form in figure C.2, assuming the conditions to apply the semiclassical
approximation hold true. To be specific, consider, for explicit computations, the potential

V (x) =
λ

3!
(a− x)x2 ≡ mω2x2

2
− λx3

3!
, mω2 =

aλ

3
. (C.11.1)

a) Using the Schrodinger equation show that, given a wave function ψ(t, x), the
quantity ρ(t, x) = |ψ(t, x)|2 satisfies a continuity equation

∂ρ

∂t
+
∂J

∂x
= 0 (C.11.2)

for a suitable current J that you will identify. Using this observation link the decay
rate (and the lifetime) of the false vacuum to the current J . Use physical intuition
and dimensional analysis.

b) Let the initial wavefunction at time t = ti be the ground state of the harmonic
oscillator centered in x = 0. This state is characterized by the wave function

ψ0(y, ti) =
(mω
π~

)1/4
e−

mω
2~ y

2 (C.11.3)

Write the wave function of the evolved state at a later time t = tf in terms of an
integral in the semiclassical approximation.

c) Try to evaluate the integral you obtain using the saddle-point method. Show that
no real trajectory exists that can satisfy the saddle-point constraint. You should
find that the constraint is29

− ipi −mωxi = 0 . (C.11.4)

d) Convince yourself that, necessarily, the initial evolution of this trajectory has to be
in complex time. To see that, look at

t =

ˆ xf

xi

dx

v(x)
(C.11.5)

and split it into the two intervals xi < x < a and a < x < xf . Notice that we are
working in the ground state, which in the limit ~ → 0 has energy E ≈ 0. Call the
Euclidean time interval of evolution β. Show that for E ≈ 0, β → ∞ .

29Hint: to find this particular form of the constraint, use the general expression for the action

S =

ˆ xf

xi

pdx−
ˆ tf

ti

Edt .
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e) Compute the exponential factor coming from the saddle point approximation.
Notice that energy conservation imposes E = 0 on the whole path, simplifying the
expression of the action on this trajectory.

f) Compute the prefactor coming from the saddle point approximation and thus
complete the calculation of the wavefunction at time t = tf . What are the decay
rate and the lifetime of this metastable state, as a function of the other parameters
of this system?

0

B

ti

Re

A

A

B

Vx

Im

tfto

a xf

Figure C.2: Depiction of the potential V (x). It has zeroes at x = 0 and x = a, and we
consider xf > a.
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Exercise 31 (Semiclassical evolution of a gaussian wave-packet):
Consider a gaussian wave-packet at time t = 0

ψ(x) = N exp

(
−(x− x)2

2∆2~
− i

~
px

)
. (C.12.1)

We want to study its semiclassical evolution described by an action S.

a) Determine N . Write the wave function at position x = xf at time t = T in terms
of an integral over the semiclassical propagator.

One expects that the wave-packet evolves in such a way that the mean remains on its
classical trajectory, the gaussian shape is kept, and the width varies with time. Too see
this, do a double expansion

b) Evaluate the integral over x expanding around the saddle point of the exponent.
In which case does this saddle-point coincide with the center x of the initial
wave-packet?.

c) Expand the wave-function at time t = T around the value xcl(T ), that is the final
position of the particle moving according to its classical path.

d) Identify the width of the final wave-packet and its associated momenta.

Exercise 32 (Landau levels):
Consider a particle in a constant magnetic field B = (0, 0, B), and choose the particular
gauge A1 = −By, A2 = A3 = 0 (Landau gauge).

a) Write down the Hamiltonian describing this system.

b) Check that the naive translation operator does not commute with the Hamiltonian
even though the system does physically have a symmetry under translation.

c) This implies that the translations are implemented in a non-trivial way. Find the
true generators of translations in presence of a magnetic field. Do they commute
with the canonical momenta? Among themselves?

d) Find the energy levels and wave-functions.
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Quantum Physics IV, Exercises 13

Exercise 33 (Particle on a ring):
The goal of this exercise is to study how the presence of a magnetic field affects the
quantum mechanical properties of a particle moving on a ring.

a) Find the energy eigenvalues and eigenfunctions of a free particle confined on a ring
in the absence of a magnetic field.30

b) Identify the degeneracy of the free particle system. Can you relate it to the
symmetries that it enjoys?

c) Now add the magnetic field. What are the new energy eigenfunctions and eigenval-
ues?

d) Identify the new degeneracy in the energy eigenstates (if there is any left). Can
you point to some symmetry arguments to explain the reduction of degeneracy?

ring

solenoid

σ, B

R

Exercise 34 (Magnetic monopoles and charge quantization):
Maxwell’s equations of electrodynamics display a strong symmetry between the electric
field E and the magnetic field B. Yet magnetic charges (commonly referred to as
magnetic monopoles) are absent: the sources of the magnetic fields we observe in nature
are either moving electric charges or static magnetic dipoles, never static magnetic
charges. Maxwell’s equations impose ∇ ·B = 0. Quantum mechanics doesn’t predict nor
forbid the existence of magnetic monopoles, however it clearly requires that if magnetic
monopoles exist, electric charge must be quantized and must appear in multiples of an
elementary quantum of charge. The goal of this exercise is to prove this last statement.

a) Suppose that there exists a magnetic monopole such that

∇ ·B = 4πρM = 4πeMδ
3(x) . (C.13.1)

30Hint: identify the correct degrees of freedom and boundary conditions.



Show that the magnetic field generated is

B =
eM
r2
r̂ , (C.13.2)

where we moved to spherical coordinates.

b) Recalling the expression of the curl in spherical coordinates31, show that a possible
choice of the vector potential that generates such a magnetic field is

A =
eM (1− cos θ)

r sin θ
φ̂ . (C.13.4)

c) Observe that the expression in (C.13.4) is not regular everywhere in space. Where
is it singular?

d) Using the fact that a potential A regular everywhere would satisfy ∇· (∇×A) = 0,
show that in the presence of a magnetic charge, such regular potential cannot exist
(use Stoke’s theorem).

e) Consider then two vector potentials defined in two different patches:

A(1) =
eM (1− cos θ)

r sin θ
φ̂ for θ ≤ π/2

A(2) = −eM (1 + cos θ)

r sin θ
φ̂ for θ ≥ π/2

(C.13.5)

On the equator θ = π
2 , their difference is a pure gauge: A(1) −A(2) = ∇α. Find α.

f) Recall the expression of the gradient in spherical coordinates:

∇α = r̂
∂α

∂r
+ θ̂

1

r

∂α

∂θ
+ φ̂

1

r sin θ

∂α

∂φ
. (C.13.6)

Consider now the wave function of an electrically charged particle of charge e and
subjected to the magnetic field generated by the magnetic monopole. Since the
wavefunction is not gauge invariant, its form depends on the choice of the vector
potential. Find the relation between the wavefunctions ψ(1), ψ(2) corresponding to
the two choices of vector potential in (C.13.5), evaluated on the equator θ = π

2 .

g) Using the fact that the wavefunctions must be single-valued, show that the electric
charge is quantized in terms of the magnetic charge:

e =
~c
2eM

n , n = 0,±1,±2, . . . (C.13.7)

31

∇×A = r̂

(
1

r sin θ

∂

∂θ
(Aφ sin θ)− ∂Aθ

∂φ

)
+ θ̂

1

r

(
1

sin θ

∂Ar

∂φ
− ∂

∂r
(rAφ)

)
+ φ̂

1

r

(
∂

∂r
(rAθ)−

∂Ar

∂θ

)
.

(C.13.3)
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