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Abstract

This course is an introduction to Conformal Field Theory (CFT) and its
application to Quantum Gravity. The course starts with a review of scaling
and renormalization in statistical physics leading to the CFT description of
continuous phase transitions. We then proceed to the study of CFT on its
own as a continuum quantum field theory. This leads us to the conformal
bootstrap program as a practical tool to map out the space of CFTs. In the
second part of the course, we introduce the Anti-de Sitter (AdS) spacetime and
describe particle dynamics and QFT in this background. Finally, we introduce
the AdS/CFT correspondence as a natural extension of QFT in a fixed AdS
background. We also discuss some applications of the bulk geometric intuition
to strongly coupled QFT.
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Introduction

Conformal Field Theory (CFT) is a central subject in modern theoretical physics. It
provides a field theory description of continuous phase transitions in statistical mechanics
and quantum critical points in condensed matter theory. It describes the short distance
(UV) and long distance (IR) behaviour of quantum field theories (QFT). It provides a
non-perturbative definition of quantum gravity via the AdS/CFT correspondence.

These notes are divided in 4 main parts. The first part is dedicated to scaling and
renormalization and discuss the emergence of CFT in statistical mechanics. This part
follows closely the book [1]. The second part is focused on the study of CFT per se. The
lecture notes [2] are a very useful complement to this section. 1 Section 3 deals with
Anti-de Sitter (AdS) spacetime. The first goal here is to gain intuition about particle
dynamics in AdS and QFT in a fixed AdS background. From this point-of-view, we will
see that a gravitational theory with AdS boundary conditions naturally defines a CFT
living on its boundary. In section 4, we discuss the AdS/CFT correspondence in more
detail and emphasize its importance for quantum gravity. We also consider what kind
of CFTs have simple AdS duals and the role of string theory. Furthermore, we discuss
several applications of the gauge/gravity duality as a tool to geometrize QFT effects.
Finally, in section 5, we introduce the Mellin representation of CFT correlation functions.
We explain the analytic properties of Mellin amplitudes and their particular simplicity in
the case of holographic CFTs.

The AdS/CFT correspondence [5, 6, 7] is a well established general approach to
quantum gravity. However, it is often perceived as a particular construction specific to
string theory. In these lectures I will argue that the AdS/CFT correspondence is the
most conservative approach to quantum gravity. The quick argument goes as follows:

• System in a box - we work with Anti-de Sitter (AdS) boundary conditions because
AdS is the most symmetric box with a boundary. This is useful to control large IR
effects, even without dynamical gravity.

• QFT in the box - Quantum Field Theory (no gravity) in a fixed AdS background
leads to the construction of boundary operators that enjoy an associative and

1See also the lecture notes [3, 4].
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convergent Operator Product Expansion (OPE). The AdS isometries act on the
boundary operators like the conformal group in one lower dimension.

• Boundary stress-tensor from gravitons - perturbative metric fluctuations around AdS
lead to a boundary stress tensor (weakly coupled to the other boundary operators).

Starting from these 3 facts it is entirely natural to define quantum gravity with AdS
boundary conditions as Conformal Field Theory (CFT) in one lower dimension. Of course
not all CFTs look like gravity in our universe. That requires the size of the box to be
much larger than the Planck length and all higher spin particles to be very heavy (relative
to the size of the box). As we shall see, these physical requirements imply that the CFT is
strongly coupled and therefore hard to find or construct. The major role of string theory
is to provide explicit examples of such CFTs like maximally supersymmetric Yang-Mills
(SYM) theory.

There are many benefits that follow from accepting the AdS/CFT perspective. Firstly,
it makes the holographic nature of gravity manifest. For example, one can immediately
match the scaling of the CFT entropy density with the Bekenstein-Hawking entropy of
(large) black holes in AdS. Notice that this is a consequence because it was not used as
an argument for AdS/CFT in the previous paragraph. More generally, the AdS/CFT
perspective let us translate questions about quantum gravity into mathematically well
posed questions about CFT. 2 Another benefit of the gauge/gravity duality is that it
gives us a geometric description of QFT phenomena, which can be very useful to gain
physical intuition and to create phenomenological models.

There are many reviews of AdS/CFT available in the literature. Most of them are
complementary to these lecture notes because they discuss in greater detail concrete
examples of AdS/CFT realized in string theory. I leave here an incomplete list [9, 10, 11,
12, 13, 14, 15, 16, 17] that can be useful to the readers interested in knowing more about
AdS/CFT. The lecture notes [18] by Jared Kaplan discuss in greater detail many of the
ideas presented here.

2It might not be possible to formulate all quantum gravity questions in CFT language. For example,
it is unclear if the experience of an observer falling into a black hole in AdS is a CFT observable [8].





Chapter 1

Scaling and Renormalization

The traditional application of conformal field theory is the description of continuous phase
transitions in Statistical Mechanics. This chapter is a brief review of how this arises. The
book [1] is recommended as complementary reading to this chapter.

1.1 Phase transitions

The macroscopic properties (like density or magnetization) of a system depend on the
external conditions (like temperature, pressure or applied magnetic field).

A phase transition is an abrupt change in macroscopic properties under a small
variation of the external conditions. More precisely, the free energy F has a non-analyticity
as a function of the external conditions. For example, F (T ) is not analytic at the critical
temperature T = Tc.

A phase transition can be continuous or discontinuous. In a discontinuous or first
order phase transition the first derivative of the free energy is discontinuous. At the
transition, there are two phases that coexist and the correlation length is finite. First
order phase transitions involve latent heat and hysteresis. The prototypical example is
the liquid-vapour transition. Hysteresis means that it is possible to have a superheated
liquid for T > Tc and a supercooled gas for T < Tc.

In a continuous phase transition the first derivative of the free energy is continuous
and the second (or higher) derivative is discontinuous. There is a unique phase and
infinite correlation length.

The correlation length ξ can be defined using the two-point correlation function,

G(x− y) = 〈s(x)s(y)〉 − 〈s(x)〉〈s(y)〉 , (1.1)

where s(x) is a local variable (like a spin) and we assumed translational and rotational
invariance for simplicity. The correlation length can be defined by

ξ2 =

∑
r r

2G(r)∑
rG(r)

. (1.2)

1



2 Chapter 1 Scaling and Renormalization

Exercise 1.1.1 Consider the canonical ensemble for a lattice spin system 1

〈s(y)〉 =
1

Z

∑
{s}

s(y)e−H[{s}] , Z =
∑
{s}

e−H[{s}] . (1.3)

Show that an infinitesimal local source h at the point x,

e−H[{s}] → e−H[{s}]+hs(x) , (1.4)

produces the response

〈s(y)〉h = 〈s(y)〉0 + hG(x, y) +O(h2) (1.5)

where G(x, y) is the connected two-point function in the absence of the source h.

In the context of QFT, the correlation length is inversely proportional to the mass of
the lightest particle.

Exercise 1.1.2 Consider the propagator of a massive scalar field in Euclidean space,

G(x) =

ˆ
ddk

(2π)d
ei k·x

k2 +m2
. (1.6)

Determine its large-distance behaviour (for x� 1/m). Suggestion: Use the identity

1

A
=

ˆ ∞
0

dt e−tA , (1.7)

to do the Fourier transform to position space and evaluate the t integral using the saddle
point approximation.

Estimate the behaviour of the propagator in the opposite limit x� 1/m. How does it
compare with the propagator of a massless field?

A possible definition of correlation length is

ξ2 =

´
ddxx2G(x)´
ddxG(x)

(1.8)

Show that this gives

ξ2 = − 1

Ĝ(0)

∂

∂kµ

∂

∂kµ
Ĝ(k)

∣∣∣∣
k=0

=
2d

m2
(1.9)

where Ĝ(k) is the propagator in momentum space and in the last step we used the form
of the propagator of a free massive scalar field.

1We write the Boltzmann weight e−βH as e−H by absorbing the inverse temperature into the
hamiltonian H. In this notation, the inverse temperature is just a parameter inside the dimensionless
lattice Hamiltonian H.
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1.1.1 Critical exponents

Uniaxial ferromagnets have spontaneous magnetization for temperatures T < Tc, where
Tc denotes the Curie temperature. The magnetization is the order parameter for the
phase transition between ferromagnet and paramagnet. The phase diagram has a critical
point at T = Tc and H = 0. In the vicinity of the critical point, it is natural to use the
reduced temperature and magnetic field,

t =
T − Tc
Tc

, h =
H

Tc
. (1.10)

Several quantities have singular behaviour near the critical point.

• Specific heat at h = 0
C ∼ |t|−α . (1.11)

• Spontaneous magnetization

lim
h→0+

M ∼ (−t)β , t < 0 . (1.12)

• Susceptibility

χ ≡ ∂M

∂H

∣∣∣∣
H=0

∼ |t|−γ . (1.13)

• Magnetization at T = Tc
M ∼ |h|1/δ . (1.14)

• Correlation length
ξ ∼ |t|−ν . (1.15)

• Two-point function at the critical point (T = Tc and H = 0)

G(r) ∼ 1

rd−2+η
. (1.16)

The parameters α, β, γ, δ, ν, η are called critical exponents and d is the dimension of space.
For uniaxial ferromagnets we have

α ≈ 0.11 , β ≈ 0.33 , γ ≈ 1.24 , (1.17)
δ ≈ 4.79 , ν ≈ 0.63 , η ≈ 0.036 . (1.18)

Remarkably, many different systems have the same critical exponents. For example,
the critical point at the end of the line of first-order liquid-vapour transition has the same
critical exponents as uniaxial ferromagnets. The same exponents also appear in binary
mixtures, Coulombic and micellar systems [19]. This leads to the notion of universality.
Systems with the same critical exponents belong to the same universality class. The
examples above belong to the Ising universality class.

The intuitive explanation of universality is that the microscopic details of the system
become irrelevant when the correlation length diverges. We shall see that critical points
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are described by scale invariant continuum quantum field theories. These are generically
isolated and characterized by discrete data like its symmetries and space dimensionality.

The Ising model is the simplest microscopic model that belongs to the Ising universality
class. It consists of a cubic lattice with a spin s = ±1 at each lattice site and the following
hamiltonian

H = −J
∑
〈i,j〉

sisj − h
∑
i

si , (1.19)

where the first sum runs over nearest neighbour pairs.

1.2 Renormalization

The basic idea of renormalization is to compute the large scale properties of the system
by coarse graining the microscopic dynamics. This process is most intuitive in real space.

1.2.1 Block spin transformation

Consider a block spin transformation (BST) where we replace a block of spins by a single
spin. For example, we can use the majority rule. We divide the square lattice in squares
with 3 × 3 = 9 spins and replace each set of 9 spins by a single spin pointing in the
direction of the majority of the original 9. If we start with a configuration above the
critical temperature (paramagnetic phase) and we perform this operation many times
we will reach a configuration where all spins are uncorrelated. This fixed point of the
BST corresponds to T =∞. If we start below the critical temperature, performing the
block spin transformation many times will takes to another fixed point where all spins
are aligned. This corresponds to T = 0. Both fixed points have ξ = 0. The critical point
T = Tc is also a fixed point of the BST but it has ξ =∞.

Mathematically, a BST is implemented by a projection operator

Tb(s
′; si) = Θ

(
s′
∑

si

)
, (1.20)

where si are the spins inside the block b and the Heaviside Θ-function is given by Θ(x) = 1
if x > 0 and Θ(x) = 0 if x < 0. The hamiltonian of the blocked system is given by

e−H
′[{s′}] =

∑
{s}

e−H[{s}]
∏
b

Tb(s
′; si) . (1.21)

One can check that the partition function remains the same,

Z ′ =
∑
{s′}

e−H
′[{s′}] =

∑
{s′}

∑
{s}

e−H[{s}]
∏
b

Tb(s
′; si) =

∑
{s}

e−H[{s}] = Z . (1.22)

If we parametrize the Hamiltonian by a set of couplings {k} = {k1, k2, . . . } then the BST
generates a map

{k} → {k′} = R[{k}] . (1.23)
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Exercise 1.2.1 The BST can be implement exactly in the 1D Ising model. Divide the
lattice in blocks of 2 spins and erase the first spin in each block. This operation is known
as decimation,

T (s′; s1, s2) = Θ(s′s2) . (1.24)

Show that if the hamiltonian is given by

H = −k
∑
i

sisi+1 −
∑
i

c (1.25)

then decimation leads to the map

c′ = 2c+
1

2
log(4 cosh 2k) (1.26)

k′ =
1

2
log(cosh 2k) (1.27)

Use this to derive that the correlation length (in lattice units) is given by

ξ =
const

log tanh k
, (1.28)

which diverges at low temperatures k →∞.

There are many possibilities for BSTs. The BST will automatically preserve the
partition function as long as

∑
s′ Tb(s

′; si) = 1. In addition, a useful BST should preserve
the local structure of the Hamiltonian.

In higher dimensions (d > 1), BSTs generate new couplings from the ones originally
present in the Hamiltonian. This means that after a larger number of steps the number
of couplings that one has to keep track becomes very large. In practice, one has to resort
to approximations and truncations.

1.2.2 Scaling variables

A fixed point {k∗} in the space of couplings is defined by {k∗} = R[{k∗}]. It is useful to
linearize the map R around the fixed point

k′a − k∗a ≈
∑
b

Tab (kb − k∗b ) , Tab =
∂k′a
∂kb

∣∣∣∣
k=k∗

. (1.29)

Using the left eigenvectors eia of the matrix Tab,∑
a

eiaTab = λieib , (1.30)

we can define the scaling variables

ui ≡
∑
a

eia (ka − k∗a) , (1.31)

that transform multiplicatively u′i = λiui (no sum). The associated renormalization group
eigenvalues yi are defined by λi = byi where b is the size of the block (in lattice units)
used in the BST. Scaling variables are classified accordingly to
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• yi > 0 ⇒ ui is relevant because it grows under a BST.

• yi < 0 ⇒ ui is irrelevant because it decreases under a BST.

• yi = 0 ⇒ ui is marginal. The linear approximation is not sufficient to know its
behaviour under a BST.

In general there is an infinite number of irrelevant scaling variables and a finite number
of relevant ones. For example, the critical point of the Ising model has two relevant scaling
variables: the reduced temperature (Z2 even) and the magnetic field (Z2 odd). This is
consistent with the idea of universality because most parameters in the hamiltonian are
irrelevant for the long distance properties of the system close to the critical point. The
number of relevant scaling variables is the number of parameters that must be tuned to
achieve criticality. Equivalently, it is the co-dimension of the critical surface in the space
of couplings.

1.2.3 Free energy

Let f = − 1
N logZ be the (dimensionless) free energy per spin. In general, there is a

constant term in f which does not flow to a fixed value at the critical point (see exercise
1.2.1). It is convenient to write

f = c+ f̂ [{k}] (1.32)

where we exclude the constant c appearing in the hamiltonian from the list of couplings
{k}. Under a BST we have

f ′ = bdf ⇒ f̂ [{k}] = g[{k}] + b−df̂ [{k′}] , (1.33)

where b is the linear size of the block and d is the space dimension. In general, the
function g is regular at the fixed point {k∗} because it is generated by integrating out
the short distance degrees of freedom in each block. 2 Therefore, the singular part of the
free energy scales as

fs[{k}] = b−dfs[{k′}] . (1.34)

Using scaling variables, we can write

fs(ut, uh, uI , . . . ) = b−dfs (bytut, b
yhuh, b

yIuI , . . . ) (1.35)

= b−ndfs (bnytut, b
nyhuh, b

nyIuI , . . . ) (1.36)

where uI represents an irrelevant scaling variable and we have used the Ising critical point
variables for concreteness. Suppose we start very close to the fixed point ut = uh = 0 and
perform n BSTs until |bnytut| = 1. 3 This gives

fs(ut, uh, uI , . . . ) = |ut|
d
yt fs

(
±1, uh|ut|−

yh
yt , 0, . . .

)
, (1.37)

2The free energy can be written as f = c+
∑∞
n=0 b

−dng[{k}n]. The non-analyticity at the fixed point
emerges from the infinite sum. However, the sum can not diverge because the free energy is bounded
if the hamiltonian is bounded from below and there is a finite number of degrees of freedom per site.
The non-analyticity can be seen as a divergence of some derivatives of the free energy (with respect to
couplings or temperature) at the fixed point.

3More precisely, we should set |bnytut| = ut0 where ut0 is a small but fixed number.
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or equivalently

fs(t, h) =

∣∣∣∣ tt0
∣∣∣∣ dyt Φ±

(
h

h0

∣∣∣∣ tt0
∣∣∣∣−

yh
yt

)
, (1.38)

where we have used ut = t/t0 and uh = h/h0. The functions Φ± are universal scal-
ing functions and the parameters t0 and h0 are model dependent. Φ± describes the
paramagnetic/ferromagnetic phases close to the critical point, i.e. t > 0 and t < 0.

Exercise 1.2.2 Show that the scaling form (1.38) of the singular part of the free energy,
predicts the following expressions for the critical exponents introduced in section 1.1.1,

α = 2− d

yt
, β =

d− yh
yt

, γ =
2yh − d
yt

, δ =
yh

d− yh
. (1.39)

Check that these imply the following scaling relations,

α+ 2β + γ = 2 , α+ β + βδ = 2 . (1.40)

In general, the scaling relations can be more complicated if there are more relevant
operators.

Exercise 1.2.3 Argue that the correlation length ξ satisfies

ξ(ut, uh, uI , . . . ) = b ξ (bytut, b
yhuh, b

yIuI , . . . ) . (1.41)

Use this to derive the following critical behaviour of ξ at zero magnetic field,

ξ ∼ |t|−
1
yt ⇒ ν =

1

yt
. (1.42)

Compare this behaviour with what you found in problem 1.2.1.

1.2.4 Scaling operators

In the vicinity of the fixed point the hamiltonian takes the form

H = H∗ +
∑
a

(ka − k∗a)
∑
x

Sa(x) (1.43)

where Sa(x) are local operators associated with the couplings ka. Moving to the scaling
variables defined in (1.31) we find

H = H∗ +
∑
i

ui
∑
x

Oi(x) (1.44)

where Oi(x) are scaling operators which are related to the original local operators
by Sa(x) =

∑
i e
i
aOi(x). It is convenient to consider scaling variables that are space

dependent,
H = H∗ +

∑
i

∑
x

ui(x)Oi(x) , (1.45)
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so that connected correlation functions can be computed as derivatives of the free energy.
In particular, the two-point function is given by

Gi(x, y) ≡ 〈Oi(x)Oi(y)〉 − 〈Oi(x)〉〈Oi(y)〉 =
∂2 logZ

∂ui(x)∂ui(y)
. (1.46)

If the scaling variables ui(x) are slowly varying fields and the hamiltonian is dominated
by local interactions then we expect that the BST has the same effect as for constant
scaling variables. Namely u′i(x

′) = byiui(x), where x′ labels the block of size b and x
labels all sites contained in that block prior to the BST. Therefore,

G′i(x
′, y′) =

∂2 logZ ′

∂u′i(x
′)∂u′i(y

′)
= b−2yi

∑
x∈x′
y∈y′

∂2 logZ

∂ui(x)∂ui(y)
= b2(d−yi)Gi(x, y) , (1.47)

where we assumed that the correlation function varies slowly for |x− y| � b so that the
sum over sites in each block only produces a volume factor bd.

At the critical point, (1.47) reduces to

G′i(x
′, y′)→ G∗i (x

′ − y′) = G∗i

(
x− y
b

)
= b2(d−yi)G∗i (x− y) , (1.48)

which implies that

G∗i (x− y) =
const

|x− y|2∆i
, ∆i ≡ d− yi , (1.49)

where we introduce the scaling dimensions ∆i.

Exercise 1.2.4 Apply the previous result to the spin two-point function and show that

η = d+ 2− 2yh . (1.50)

Exercise 1.2.5 Generalize the previous argument to n-point functions at criticality to
derive 〈

O1

(x1

b

)
. . .On

(xn
b

)〉
= b∆1 . . . b∆n〈O1(x1) . . .On(xn)〉 . (1.51)

Conclude that the one-point functions 〈Oi(x)〉 = 0 if ∆i 6= 0.

Exercise 1.2.6 Consider the hamiltonian

H = −1

2

∑
x,y

Ĵ(x− y)s(x)s(y)−H
∑
x

s(x) + λ
∑
x

(
s(x)2 − 1

)2 (1.52)

where x and y label sites in a d-dimensional hypercubic lattice and s(x) ∈ R. The coupling
Ĵ(x− y) is equal to J if x and y are nearest neighbours and it vanishes otherwise. Argue
that in the limit λ→∞ this hamiltonian reduces to the usual Ising model where s(x) = ±1.
We shall assume that the hamiltonian with finite λ can also describe the Ising critical
point. This is motivated by universality and the intuition from BSTs.
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Show that in the continuum limit where the lattice spacing a → 0, the hamiltonian
can be written as

H =

ˆ
ddx

[
1

2
(∂φ)2 + t a−2φ2(x) + u ad−4φ4(x) + h a−1− d

2φ(x) + . . .

]
, (1.53)

where the field φ(x) =
√
Ja

2−d
2 s(x) and the dimensionless couplings are

t = −2λ

J
− d , u =

λ

J2
, h = − H√

J
. (1.54)

The . . . in (1.53) stand for terms with more than two derivatives. Use dimensional
analysis to conclude that a generic term with p derivatives and n fields,

g a−yg
ˆ
ddxφ∂pφn−1 , (1.55)

has yg = d− p− nd−2
2 . The fixed point t = u = h = 0 is called the gaussian fixed point.

Check that for d > 4, t and h are the only relevant couplings of the gaussian fixed point.
In fact the operator φ3(x) is relevant. However, it is a redundant operator because it
can be removed from the hamiltonian by a field redefinition φ(x) → φ(x) + const. In
general, there is an infinite number of redundant operators that can be removed by local
field redefinitions φ(x)→ φ(x) + c1φ

3(x) + c2∂
2φ(x) + . . . .

The continuum limit of the partition function

Z =

ˆ ∏
x

dφ(x)e−H[φ] (1.56)

is equivalent to the path integral formulation of (euclidean) QFT, with the hamiltonian
playing the role of the euclidean action.

1.2.5 RG flows

We are free to choose the rescaling factor b of the BST. On a lattice we usually have some
geometric constraints but using QFT we have more freedom. It is convenient to choose

b = eδ` ≈ 1 + δ` , δ`� 1 . (1.57)

By performing a sequence of infinitesimal BSTs we can define a renormalization group
(RG) flow in the space of couplings. It is natural to define a vector field tangent to these
RG trajectories

~β(~k) = − lim
δ`→0

~k′ − ~k
δ`

, (1.58)

such that fixed points are characterized by

~β(~k∗) = 0 . (1.59)

Notice that
~k′ = ~Rb(~k) = ~k + δ`

d ~Rb(~k)

db

∣∣∣∣∣
b=1

+O(δ`2) (1.60)
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which implies that

~β(~k) = − d ~Rb(~k)

db

∣∣∣∣∣
b=1

=
d~k

d log Λ
, (1.61)

where in the last expression we introduced a momentum cutoff Λ ∼ 1/a.
Recall that the matrix

Tcd =
∂k′c
∂kd

∣∣∣∣
k=k∗

(1.62)

had left eigenvalues byi . For b = 1 + δ`, we find byi = 1 + yiδ`+O(δ`2) and

Tcd = δcd + δ`Mac +O(δ`2) , (1.63)

where
Mcd = − ∂βc

∂kd

∣∣∣∣
k=k∗

. (1.64)

Therefore the renormalization group eigenvalues yi are the eigenvalues of the matrix Mcd.

Exercise 1.2.7 Consider an invertible redefinition g̃(g) of a coupling constant g. Assume
that g = 0 is a fixed point of the RG flow and that g̃(0) = 0. Write the beta function

β̃(g̃) =
dg̃

d log Λ
(1.65)

as a perturbative expansion in the coupling g̃ using the perturbative expansions

β(g) =
dg

d log Λ
= b1g + b2g

2 + . . . (1.66)

and
g̃ = a1g + a2g

2 + . . . (1.67)

If b1 6= 0 then show that one can choose ai’s such that β̃ is linear to all orders in g̃. Is
the result physically reasonable?

It is instructive to consider a simplified model with only one coupling. In this case

β(g) =
dg

d log Λ
, (1.68)

which means that if β > 0 then g decreases towards the IR. This is the case of gφ4 in
d > 4 or QED in d = 4. In both examples the theory becomes weakly coupled at low
energies. If β < 0 then g increases towards the IR. This is the case of gφ4 in d < 4 or
QCD in d = 4. In both examples the theory becomes weakly coupled at high energies.

So far we have only talked about theories with a UV cutoff. In fact, we have defined
the RG flow by the change in couplings necessary to compensate a change of UV cutoff so
that the physical observables remain invariant. However, some QFTs are UV complete
in the sense that we can compute correlation functions at arbitrarily small distances. 4

4In the QFT textbooks UV complete theories are often called renormalizable theories.
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Clearly, this is only possible in theories where the correlation length is infinite in units
of the lattice spacing. More precisely, one can define QFT correlations functions by the
limit of the lattice correlators

G1...n(x1, . . . , xn; {ui}) ≡ 〈O1(x1) . . .O(xn)〉{ui} (1.69)

when the correlation length ξ → ∞ keeping the ratios |xi − xj |/ξ fixed. As shown in
exercise 1.2.3, the correlation length close to the critical point can be written as

ξ = |u1|−
1
y1 F (U1, . . . , Ur) (1.70)

where we assumed that u1 was a relevant coupling (y1 > 0) and Ui ≡ ui|u1|−
yi
y1 . Notice

that when we approach the critical point at ui = 0, the U ’s associated to irrelevant
operators tend to zero. On the other hand, the U ’s associated to the r relevant operators
can be kept fixed as we approach the fixed point ui = 0. The variables U1, . . . , Ur encode
the direction in parameter space in which we are approaching the fixed point. Under p
consecutive BSTs, the correlator of scaling operators transforms as

G1...n

(x1

bp
, . . . ,

xn
bp

; {bpyiui}
)

= G1...n(x1, . . . , xn; {ui})
n∏
i=1

bp∆i . (1.71)

We can then choose bp = ξ and take the limit ξ → ∞ by approaching the fixed point.
This gives

lim
ξ→∞

G1...n(x1, . . . , xn; {ui})
n∏
i=1

ξ∆i = G1...n

(
x1

ξ
, . . . ,

xn
ξ

; {UiF}
)
, (1.72)

which shows that in the continuum limit the correlation functions only depend on the

ratios (ui)
1
yi /(uj)

1
yj involving relevant couplings. Therefore, UV complete QFTs are scale

invariant theories (fixed points) and relevant deformations of these,

S = S∗ +
∑
i

giµ
yi

ˆ
ddxOi(x) (1.73)

with yi > 0 and µ a renormalization scale. These QFTs describe the scaling region of the
fixed point. In particular, they contain all the universal observables like critical exponents,
the scaling functions Φ± in (1.38) and the universal correlators (1.72).

If S∗ is a free QFT and the deformation Oi introducing interactions is weakly relevant
(i.e. 0 < yi � 1), then a perturbative analysis can be useful. For example, consider the
action for a scalar field

S =

ˆ
ddx

[
1

2
(∂φ)2 +

1

2
tµ2φ2 +

1

4!
λµd−4φ4

]
. (1.74)

We can identify S∗ with the first term and the other terms as relevant deformations,
assuming 2 ≤ d < 4. One can compute the β−function at small coupling 5

β(λ) = −(4− d)λ+ cλ2 +O(λ3) (1.75)
5There is also a β–function for the dimensionless coupling t. We are assuming that we can tune t so

that this β–function also vanishes.
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where c is a constant that depends on the renormalization scheme. This β−function has
two zeros: λ = 0 and λ = λ∗ ≡ (4− d)/c. The first zero corresponds to the gaussian fixed
point where the operator φ4 is relevant because its associated RG eigenvalue is (4− d).
The zero at λ = λ∗ corresponds to an interacting fixed point where the operator φ4 is
irrelevant because its RG eigenvalue is −(4 − d). When ε ≡ 4 − d � 1 the interacting
fixed point is weakly coupled and can be reliable described with perturbative methods.
This leads to the famous ε–expansion proposed by Wilson and Fisher [?].

1.3 Problems

Exercise 1.3.1 Fluid model
Consider a simple lattice model of a fluid, where there can be at most one molecule

per lattice site and there is an energy U associated to the attractive interaction between
two molecules in neighbouring sites. Show that this model in the grand canonical ensemble
is equivalent to the Ising model in a magnetic field and relate the physical parameters of
the two models.

Exercise 1.3.2 Decimation in 1D Ising with magnetic field
Consider the Ising model in one dimension, with partition function

Z =
∑

{si=±1}

ek
∑
i sisi+1+h

∑
i si+

∑
i c (1.76)

where k is the nearest neighbour coupling, h is the magnetic field and c is a constant that
we introduced for convenience. Notice that the standard free-energy per spin is given by

f(k, h) = − 1

N
logZ + c (1.77)

where N is the number of spins and we consider periodic boundary conditions.
Perform a block spin transformation (BST) that erases half of the spins. More precisely,

sum over the spins si with odd index i and show that the partition function can be written
as

Z = Z ′ =
∑

{s′i=±1}

ek
′∑

i s
′
is
′
i+1+h′

∑
i s
′
i+

∑
i c
′

(1.78)

where s′i = s2i are the even-numbered spins and

e2h′ = e2h cosh(2k + h)

cosh(2k − h)
(1.79)

e4k′ =
cosh(2k + h) cosh(2k − h)

cosh2 h
(1.80)

e4c′ = 16e8c cosh(2k + h) cosh(2k − h) cosh2 h (1.81)

What are the fixed points of this BST in the plane (x = e−4k, y = e−2h)?
Can you use this BST to determine the exact free energy per spin f(k, h) in the

thermodynamic limit?
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Exercise 1.3.3 Approximate Block Spin Transformation
Consider the (generalized) 2D Ising model

H[{s}] = −
∑
<x,y>

Jxy s(x)s(y) (1.82)

on an infinite square lattice. The local spins can take values s(x) = ±1. The sum in the
hamiltonian runs over all pairs of sites in the lattice (not necessarily nearest neighbours).
Our goal is to perform a block spin transformation that removes the dotted sites in figure
1.1. Let us denote the spins s on dotted sites by ṡ and the remaining ones by s′.

ṡs�

J1

J2

ẋs�1

s�2

s�3

s�4

Figure 1.1 A two dimensional square lattice divided into two sub-lattices labelled by s′ and ṡ.
The four nearest neighbours s′i of a dotted site x′ are shown. In question d. we consider nearest
neighbour interactions J1 and next-to-nearest neighbour interactions J2.

a. Show that the partition function can be written as

Z =
∑
{s}

e−H[{s}] =

[ ∏
<x,y>

cosh Jxy

]∑
{s}

∏
<x,y>

[
1 + s(x)s(y) tanh Jxy

]
. (1.83)

Recall the identity e±x = coshx (1± tanhx).
b. Show that the hamiltonian H ′ generated by the block spin transformation that

removes the dotted spins is given by

H ′[{s′}] = −
∑
<x,y>

log (coshJxy)− log

∑
{ṡ}

∏
<x,y>

[
1 + s(x)s(y) tanh Jxy

] (1.84)
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c. Consider first the simplest case where Jxy = J when x and y are nearest neighbours
and Jxy = 0 otherwise. In this case, show that

H ′[{s′}] =−
∑
ẋ

log
(
2 cosh4 J

)
(1.85)

−
∑
ẋ

log
[
1 + (s′1s

′
2 + s′1s

′
3 + s′1s

′
4 + s′2s

′
3 + s′2s

′
4 + s′3s

′
4) tanh2 J + s′1s

′
2s
′
3s
′
4 tanh4 J

]
where the sum is over the dotted sites ẋ and s′i are its four nearest neighbours. Argue that
this can be written as

H ′[{s′}] = −
∑
ẋ

[
K0 + (s′1s

′
2 + s′1s

′
3 + s′1s

′
4 + s′2s

′
3 + s′2s

′
4 + s′3s

′
4)K1 + s′1s

′
2s
′
3s
′
4K2

]
(1.86)

where

K0 = log 2 + 2J2 +O(J4) (1.87)

K1 = J2 +O(J4) (1.88)

K2 = −2J4 +O(J6) (1.89)

Notice that applying a block spin transformation to an hamiltonian with only nearest
neighbour interactions we generated a more complicated hamiltonian containing 4 spin
interactions. In order to proceed we must do some approximation.

d. Consider now the case where Jxy = J1 when x and y are nearest neighbours,
Jxy = J2 when x and y are next-to-nearest neighbours, and Jxy = 0 otherwise. In this
case, show that

H ′[{s′}] = C −
∑
<x,y>

J ′xys
′(x)s′(y) + . . . (1.90)

where C is a constant, the dots stand for interaction terms with 4 or more spins and the
nearest and next-to-nearest neighbour couplings in the s′ lattice are given by

J ′1 = J2 + 2J2
1 +O(J3

2 , J
4
1 , J2J

2
1 ) (1.91)

J ′2 = J2
1 +O(J2

2 , J
4
1 , J2J

2
1 ) (1.92)

e. Let us approximate the exact block spin transformation above by truncating to

J ′1 = J2 + 2J2
1 , J ′2 = J2

1 . (1.93)

Determine the fixed points of this transformation. Determine also the renormalization
group eigenvalue y associated with the relevant scaling variable u at the non-trivial fixed
point (with J1 6= 0). Recall the definition of scaling variable u′ = byu with b being the
scaling factor of the block spin transformation.

Exercise 1.3.4 Mean Field Approximation
Prove Feynman’s inequality

Tr e−H ≥ Tr e−H
′−〈H−H′〉H′ , (1.94)
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where [H,H ′] = 0 and

〈O〉H′ =
TrO e−H′

Tr e−H′
. (1.95)

Choosing the hamiltonian H ′ to maximize the right hand side of (1.94) is a systematic
way to implement a mean-field approximation. Use the hamiltonian

H ′ = −h′
∑
x

s(x) (1.96)

to study the Ising model hamiltonian on a hyper-cubic lattice,

H = −J
∑
<x,y>

s(x)s(y)− h
∑
x

s(x) (1.97)

in the mean-field approximation. Show that the free energy per spin in this approximation

fMF = − 1

N
log max

h′
Tr e−H

′−〈H−H′〉H′ , (1.98)

can be written as

fMF = min
M

[
− log 2− hM +

1− Jz
2

M2 +
1

12
M4 +O(M6)

]
, (1.99)

where z denotes the number of nearest neighbours of each spin. What is the critical
temperature? Plot the phase diagram and compute the thermodynamical critical exponents
for the Ising model in d dimensions using this approximate free energy.

To determine the spin two-point correlation function we need to allow for space
dependent magnetic fields h(x) and h′(x). By moving to Fourier space, determine the
spin two-point function at zero magnetic field and read off the ν and η critical exponents
in the mean-field approximation.

Exercise 1.3.5 Dangerously irrelevant operators
Consider the (singular part of the) free energy of the Ising model in the mean field

approximation

f(h, t, λ) = min
M

[
−hM +

t

2
M2 +

λ

12
M4

]
, (1.100)

and verify that it satisfies the scaling law

f(h, t, λ) = b−df (byhh, bytt, byλλ) (1.101)

with renormalization group eigenvalues

yh =
d

2
+ 1 , yt = 2 , yλ = 4− d . (1.102)

Recall that these are the RG eigenvalues of the Gaussian fixed point. Using the standard
formulas derived in the lectures, one would conclude that the critical exponents are given
by the second column in next table. However, these are different from the actual critical
exponents associated with Mean Field Theory free energy (1.100), which are given in the
third column.
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Exponent Gaussian MFT

α 2− d
2 0

β d−2
4

1
2

γ 1 1

δ d+2
d−2 3

ν 1
2

1
2

η 0 0

Go through the general argument presented in the lectures and find the assumption made
that is not valid in this case. Hint: study the free energy when λ→ 0 and t < 0.

Exercise 1.3.6 The Transfer Matrix
The partition function of one dimensional lattice models with local interactions can be

computed using the transfer matrix method. One starts by writing the hamiltonian as a
sum of terms associated to each pair of neighbouring sites

H =

N∑
i=1

H(si, si+1) (1.103)

where we assumed periodic boundary conditions sN+1 = s1. The partition function can
then be written as

Z =
∑
{si}

e−H =
∑
{si}

e−H(s1,s2)e−H(s2,s3) . . . e−H(sN ,s1) = Tr TN (1.104)

where T is a square matrix whose elements are

[T ]s1,s2 = e−H(s1,s2) . (1.105)

Notice that the size of the matrix is given by the number of degrees of freedom per site.
Correlation functions of local observables can be written as

〈f1(si1) . . . fn(sin)〉 =
1

Z
Tr F1T

i2−i1F2T
i3−i2F3 . . . FnT

N−in+i1 (1.106)

where Fi is a diagonal matrix associated to the local observable fi(s),

[F ]s1,s2 = δs1,s2f(s1) . (1.107)

Show that the correlation length is given by

1

ξ
= − log

λ1

λ0
(1.108)

where λ0, λ1, λ2, . . . are the eigenvalues of the transfer matrix T ordered by decreasing
size (modulus).



1.3 Problems 17

Use this method to show that the free energy per site of the one-dimensional Ising
model (1.110), is given by

f = − lim
N→∞

1

N
logTr e−H = − log λ0 = −J− log

(
coshh+

√
sinh2 h+ e−4J

)
. (1.109)

Study the thermodynamic quantities and the spin-spin two-point function near the critical
temperature. Compare your results with the mean-field approximation.

Exercise 1.3.7 Finite Size Scaling
Consider the 2D Ising model

H = −J
∑
<x,y>

s(x)s(y)− h
∑
x

s(x) (1.110)

on a square lattice with cylinder topology. Let N be the number of sites along the periodic
direction of the cylinder. Argue that the specific heat per spin (at zero magnetic field) has
the following scaling behavior (for large N and small t)

c ∼ Nα/νψ
(
tN1/ν

)
(1.111)

where α and ν are critical exponents of the two dimensional system and t ∼ J − Jc with
Jc = 1

2 log(1 +
√

2). The theory of finite size scaling is explained in section 4.4 of [1].
In fact, the divergence in the specific heat of the two-dimensional Ising model is only
logarithmic (α = 0). Thus, we expect

c ∼ ψ
(
tN1/ν

)
logN (1.112)

Define a transfer matrix 2N × 2N for this system. Plot the specific heat per spin of
the system as a function of J (at zero magnetic field) for several values of N = 1, 2, 3, . . .
(it is possible to go up to N = 7 in a reasonable time in a personal laptop). Compare
your results with the scaling (1.112). More precisely, test the logarithmic growth of the
maximum cmax(N) of the specific heat and fit the value of J that maximizes c for each N
with

Jmax(N) ≈ Jc +BN−1/ν . (1.113)

What values do you obtain for the fitting parameters Jc, B and ν?
A better way to estimate the value of ν is to plot c(J,N)/cmax(N) as a function of

(J−Jmax(N))N1/ν for each value N = 3, 4, 5, 6, 7 and for several values of ν. You can use
the function Manipulate of MATHEMATICA to vary ν until the curves for different values
of N collapse on top of each other (approximately). Estimate ν using this technique.

Suggestion 1: A possible way to numerically determine the largest (in modulus)
eigenvalue λ0 of a matrix T is to use

T |v0〉 = λ0|v0〉 , |v0〉 = lim
n→∞

|n〉 , |n+ 1〉 =
T |n〉
||T |n〉 || , (1.114)

assuming that the initial vector |0〉 of the iteration is not orthogonal to |v0〉.
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Suggestion 2: Another possibility is to consider a lengthy but finite cylinder. Then,
you can use

Z = Tr T 2M = Tr (((T 2)2)2 . . . )2 (1.115)

where you just need to square a matrix M times. A cylinder of length 64 = 26 is already
good.

Exercise 1.3.8 High and low temperature expansions
Derive the high-temperature series expansion for the partition function of the 2D Ising

model at zero magnetic field,

Z = 2N (cosh J)2N

(
1 +

∑
n

an(tanh J)n

)
(1.116)

where N is the total number of spins in the system and an is the number of ways to draw
closed loops of total length n in the square lattice (each link can only be used once). Derive
the low temperature expansion of the same model,

Z = e2JN

(
2 +

∑
n

bne
−2Jn

)
(1.117)

where bn is the number of configurations with exactly n anti-aligned nearest neighbour
spin pairs. Show that bn = 2an (Kramers-Wannier duality) and use that to determine the
critical temperature of the 2D Ising model. Compare the result with the prediction from
mean field theory.

Exercise 1.3.9 Worm algorithm for Monte-Carlo simulation
The high temperature expansion of the Ising model discussed in the previous problem

can be easily generalized to arbitrary dimension,

Z = 2N (cosh J)dN
(

1 +
∑
n

an(tanh J)n

)
, (1.118)

where N is the total number of spins in the system and an is the number of ways to draw
closed loops of total length n in the hyper-cubic lattice. Show that the high temperature
expansion for the spin two point function takes the form

〈s(x)s(y)〉 =
1

Z
2N (cosh J)dN

∑
n

(tanh J)nan(x, y) =

∑
n(tanh J)nan(x, y)

1 +
∑

n(tanh J)nan
, (1.119)

where an(x, y) is the number of ways to draw a path from x to y and closed loops of total
length n in the hyper-cubic lattice.

The basic idea of the worm algorithm is to think of the space of paths on the hyper-
cubic lattice as the configuration space. This means that one configuration is uniquely
characterized by the list of links crossed by the paths. Then we put a probability distribution
on this configuration space such that the probability of each configuration is proportional to
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(tanh J)n where n is the total length of the paths. Finally, we compute averages 〈. . . 〉worm
with this distribution. This gives

〈s(x)s(y)〉 =
〈L1(x, y)〉worm
〈L0〉worm

, (1.120)

where L1(x, y) = 1 if the configuration contains only closed loops and one open path from
x to y, otherwise L1(x, y) = 0. On the other hand, L0 = 1 if the configuration contains
only closed loops and L0 = 0 otherwise.

To make this idea useful we need to invent a method to generate path configurations
with the correct probability distribution. Show that the following Markov chain of path
configurations produces the correct probability distribution at late times:

• Choose a random point in the lattice and set the two endpoints m and i to this site.

• Choose with equal probability which end point you will try to move. Let us say the
result was m.

• Try to move m randomly to one of the 2d neighbouring sites and activate the link
from i to m with probability tanh J . You will need to keep a list of active links in
the lattice.

• Try to move one end point randomly to its neighbouring sites. In each move, you
can either activate a new link or remove a link from the list of active links. If the
proposal is to activate a new link, it should only be accepted with probability tanh J .
If the proposal is to deactivate a link then it is always accepted.

• Repeat the previous step.

Notice that this algorithm explores the full configuration space consisting of closed loops
together with at most one open path (with endpoints m and i). This is sufficient to
calculate the spin-spin two-point function using (1.120). The idea is simply to compute the
average 〈. . . 〉worm in the ensemble of configurations generated by the Markov chain above.
Implement this algorithm in the computer and plot the two-point function as a function
of the distance |x− y| for temperatures above, below and at the critical temperature of the
2D Ising model. Start by computing the magnetic susceptibility

χ =
∑
y

〈s(x)s(y)〉 =
1

〈L0〉worm
(1.121)

as function of the coupling J .

Exercise 1.3.10 RG Flow with Cubic Anisotropy
Consider the following Euclidean action

S =

ˆ
ddx

1

2

n∑
a=1

∂µϕ
a∂µϕa +

1

2
t
n∑
a=1

ϕaϕa + u

(
n∑
a=1

ϕaϕa

)2

+ v

n∑
a=1

(ϕa)4

 (1.122)
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for n real scalar fields ϕa. Notice that the action with v = 0 is invariant under O(n)
rotations of the fields, while for v 6= 0 this symmetry is broken to a finite group: the
symmetry group of an n-dimensional cube.

a) For constant field of fixed magnitude ϕ̄2 =
∑n

a=1 ϕ
aϕa, what directions in field

space minimize the action for v > 0 and v < 0?
b) What are the allowed values of u and v such that the action is bounded from below?

Draw the allowed region in the (u, v) plane.
c) Studying the system in d = 4 − ε dimensions, derive the following (one-loop)

renormalization group equations

du

dl
= −βu = εu− c

[
(n+ 8)u2 + 6uv

]
(1.123)

dv

dl
= −βv = εv − c(12uv + 9v2) (1.124)

where c is a numerical constant that can be set to 1 by rescaling the couplings u and v.
d) Find the fixed points in the (u, v) plane. Determine the scaling variables and

respective RG eigenvalues at each fixed point.
e) Sketch the RG flow lines in the (u, v) plane for n > 4 and for n < 4. What is the

symmetry of the most stable RG fixed point in each case?

Exercise 1.3.11 Quantum Ising in transverse field
Consider the hamiltonian

Ĥ = −J
∑
i

Ŝzi Ŝ
z
i+1 − h

∑
i

Ŝxi (1.125)

for a one-dimensional lattice with a spin-1
2 degree of freedom per site. Assume periodic

boundary conditions in a chain of length N , ŜN+1 = Ŝ1. Recall that the spin operators
can be represented using the Pauli matrices

Ŝx =
1

2

(
0 1
1 0

)
, Ŝy =

1

2

(
0 −i
i 0

)
, Ŝz =

1

2

(
1 0
0 −1

)
. (1.126)

a) What is the ground state of the system when J > 0 and h = 0? What is the ground
state of the system when h > 0 and J = 0? Comment on the qualitative difference between
these two cases.

b) The partition function of the system can be written as

Z = Tr e−βĤ = lim
∆τ→0

Tr
(

1−∆τĤ
) β

∆τ
. (1.127)

This has the form of the partition function of a system defined on a two-dimensional
square lattice with N × β

∆τ sites (with periodic boundary conditions) and transfer matrix
1−∆τĤ connecting consecutive rings of length N . Show that

〈σ′1, . . . , σ′N |(1−∆τĤ)|σ1, . . . , σN 〉 = eK1
∑
i σiσi+1+K2

∑
i(σiσ

′
i−1) +O(∆τ2) (1.128)
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where |σ1, . . . , σN 〉, with σi = ±1, denotes a state of the spin chain in the eigenbasis of
Ŝzi (the eigenvalues being σi/2) and

K1 =
J∆τ

4
, e−2K2 =

h∆τ

2
. (1.129)

c) Notice that the transfer matrix above corresponds to an anisotropic two-dimensional
Ising model, with hamiltonian

H = −K1

∑
i,j

σi,jσi+1,j −K2

∑
i,j

σi,jσi,j+1 (1.130)

where we dropped an irrelevant constant and labelled the local Ising spins σi,j by the row and
column numbers i, j. It can be shown that this model is critical for sinh 2K1 sinh 2K2 = 1
where it is described by the two-dimensional Ising universality class with renormalization
group eigenvalues yh = 15/8 and yt = 1. With this in mind what can you say about the
large r behaviour of the correlation function

G(r) = 〈Ŝzi Ŝzi+r〉 − 〈Ŝzi 〉〈Ŝzi+r〉 , (1.131)

at zero temperature and for J = 2h?

Exercise 1.3.12 Lattice Gauge Theory
Consider a 4-dimensional hyper-cubic lattice and associate a N ×N unitary matrix

Uij to the link (or edge) of the lattice that connects the neighbouring sites i and j. We
suppress the indices associated with the fact that Uij is a matrix in the group U(N).
Reversing orientation corresponds to hermitian conjugation Uij = U †ji. Wilson proposed
the following action

S = β
∑
�

[
1− 1

N
ReTr UijUjkUklUki

]
, (1.132)

where the sum runs over all elementary squares or plaquettes of the lattice. The labels
i, j, k, l are the vertices of these plaquettes.

Show that the action is invariant under the lattice gauge transformation

Uij → ΩiUijΩ
†
j , (1.133)

with Ωi ∈ U(N) depending on the site i. The partition function

Z =

ˆ ∏
〈ij〉

dUije
−S[U ] , (1.134)

is obtained by integrating each link variable over the manifold of N ×N unitary matrices.
The natural measure in this space (Haar measure) is invariant under the transformation
(1.133).

When β is large, the partition function is dominated by unitary matrices close to the
identity. It is then convenient to write

Uij = eiaAµ (1.135)
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where a is the lattice spacing and Aµ is a N ×N hermitian matrix associated with the link
〈ij〉 which is along the direction µ. Take the (naive) continuum limit a→ 0, assuming
smoothness of the field Aµ so that you can use Taylor expansions. You should find the
Yang-Mills action

S =
1

4g2

ˆ
d4xTrFµνFµν , (1.136)

where Fµν = ∂µAν − ∂νAµ − i[Aµ, Aν ] is the field strength. What is the relation between
the Yang-Mills coupling g and the lattice coupling β?

The simplest lattice gauge theory has gauge group Z2. In this case, the link variables
Uij can only take the values ±1. Show that the partition function of a Z2 lattice gauge
theory in a three dimensional cubic lattice is equal to the partition function of the Ising
model on the dual lattice, which is defined as follows. The vertices of the dual lattice are
at the center of the elementary cubes of the original lattice. A pedagogical reference is
Duality in field theory and statistical systems by R. Savit. You can google it or find it at
the following link: https://journals.aps.org/rmp/pdf/10.1103/RevModPhys.52.453



Chapter 2

Conformal Field Theory

In the previous chapter, we saw that continuous phase transitions correspond to scale
invariant systems with infinite correlation length. Generically, these systems are also
invariant under local scale transformations, i.e. conformal transformations.1 Conformal
symmetry has far reaching consequences.

This chapter describes the concepts necessary to formulate a non-perturbative defini-
tion of CFT. In the last part, we explain the embedding space formalism for CFT and
’t Hooft’s large N expansion, which will be very useful in the context of the AdS/CFT
correspondence described in the following chapters.

2.1 Conformal Transformations

For simplicity, in most formulas, we will consider Euclidean signature. We start by
discussing conformal transformations of Rd in Cartesian coordinates,

ds2 = δµνdx
µdxν . (2.1)

A conformal transformation (CT) is a coordinate transformation xµ → x̃µ that preserves
the form of the metric tensor up to a scale factor,

δµν
dx̃µ

dxα
dx̃ν

dxβ
= Ω2(x)δαβ . (2.2)

In other words, a CT is a local dilatation. Therefore, CTs preserve the intersection angle
between two curves. Poincaré transformations are a particular case of CTs with Ω(x) = 1.

It is useful to consider an infinitesimal CT

xµ → x̃µ = xµ + εµ(x) . (2.3)

In this case, (2.2) reduces to the conformal Killing vector equation

∂µεν + ∂νεµ =
2

d
∂αε

αδµν . (2.4)
1There is long history to the question: "Does scale imply conformal invariance?". Under reasonable

assumptions, we think the answer is yes but this has only been proven in 2 [?] and 4 [?] dimensions. See
exercises ?? and ?? for more comments about this question.

23
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CTs can also be defined in general spacetimes by replacing the flat metric δµν by a
general metric gµν(x) in equation (2.2). Notice that this implies that two spacetimes
with metrics proportional to each other, g(1)

µν (x) = Λ2(x)g
(2)
µν , have the same conformal

transformations. Such spacetimes are said to be conformally related.

Exercise 2.1.1 Consider infinitesimal CTs in a general spacetime with metric gµν(x)
and show that this leads to the following conformal killing vector equation

∇µεν +∇νεµ =
2

d
∇αεαgµν , (2.5)

where ∇µ is the covariant derivative (Levi-Civita connection).

Returning to flat Euclidean space, let us know discuss the solutions to equation (2.4).
In 1 dimension, any coordinate transformation is a conformal transformation because
there are no angles. In 2 dimensions, the conformal group is infinite dimensional. This
makes 2D CFT an extremely powerful tool. However, in this course we will not delve
into this topic and instead focus on CFTs in d > 2 dimensions.

Exercise 2.1.2 Consider the coordinate transformation

x→ x̃ = f(x+ iy) + f(x− iy) + i [g(x+ iy)− g(x− iy)] (2.6)
y → ỹ = g(x+ iy) + g(x− iy)− i [f(x+ iy)− f(x− iy)] , (2.7)

where f and g are arbitrary real analytic functions, i.e f(z∗) = [f(z)]∗. Check that this is
a CT of the Euclidean plane and obtain

ds2 = dx̃2 + dỹ2 = 4|f ′(x+ iy) + ig′(x+ iy)|2(dx2 + dy2) . (2.8)

It is convenient to use a complex coordinate z = x+ iy. Then a coordinate transformation
is any holomorphic map z → z̃ = F (z),

ds2 = dz̃d¯̃z = |F ′(z)|2dzdz̄ . (2.9)

Exercise 2.1.3 The infinitesimal transformation

xµ → xµ + εµ(x) (2.10)

is conformal if and only if εµ is a conformal Killing vector, i.e.

∇νεµ +∇µεν = f(x)gµν (2.11)

for some function f(x).
Take gµν to be the Euclidean metric in cartesian coordinates in d > 2 dimensions.

Start by deriving the identity

2∇µ∇νερ = gµρ∇νf + gνρ∇µf − gµν∇ρf . (2.12)
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By combining the last two equations appropriately, show that

(2− d)∇µ∇νf = gµν∇2f (2.13)

and conclude that the function f must take the form f(x) = c+ 4bµx
µ. Finally, show that

the most general conformal Killing vector is given by

εµ = aµ + c xµ +mµνxν + x2bµ − 2(x · b)xµ , (2.14)

where aµ corresponds to a translation, c to dilatation, mµν = −mνµ to a rotation and bµ

to a special conformal transformation. How many independent conformal transformations
exist in d dimensions?

The finite versions of the infinitesimal transformations (2.14) are:

• Translation
xµ → xµ + aµ (2.15)

• Dilatation
xµ → λxµ (2.16)

• Rotation
xµ →Mµ

µx
ν (2.17)

where Mµ
µ is an orthogonal matrix, Mµ

αMν
βδµν = δαβ .

• Special Conformal Transformation (SCT)

xµ → xµ − bµx2

1− 2b · x+ b2x2
=

xµ

x2 − bµ(
xµ

x2 − bµ
)2 (2.18)

In spacetime dimension d > 2, conformal transformations form a group of dimension
1
2(d+ 2)(d+ 1). We shall see that this group is isomorphic to SO(d+ 1, 1).

The generators Pµ and Mµν correspond to translation and rotations and they are
present in any relativistic invariant QFT. In addition, we have the generators of dilatations
D and special conformal transformations Kµ. It is convenient to think of the special
conformal transformations as the composition of an inversion followed by a translation
followed by another inversion. Inversion is the conformal transformation2

xµ → xµ

x2
. (2.19)

2Inversion is outside the component of the conformal group connected to the identity. Thus, it is
possible to have CFTs that are not invariant under inversion. In fact, CFTs that break parity also break
inversion.
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Exercise 2.1.4 Show that inversion

xµ → x′µ =
xµ

x2
(2.20)

is a conformal transformation. By applying an inversion, after a translation, after another
inversion, we obtain a special conformal transformation

xµ → x′µ =
xµ

x2 − bµ(
xµ

x2 − bµ
)2 =

xµ − bµx2

1− 2b · x+ b2x2
. (2.21)

Contrary to inversion, this conformal transformation is continuously connected to the
identity. Show that

dx′µdx′µ =
dxµdxµ

(1− 2b · x+ b2x2)2
. (2.22)

Exercise 2.1.5 Verify that the action

S[ϕ] =

ˆ
ddx

1

2
∂µϕ∂

µϕ (2.23)

describing the Gaussian fixed point is conformal invariant. In other words, show that

S[ϕ′] = S[ϕ] , ϕ′(x) =

∣∣∣∣∂x′∂x

∣∣∣∣∆/d ϕ(x′) (2.24)

where x → x′ is a conformal transformation and ∆ = d−2
2 . Hint: the only non-trivial

transformation to check is the special conformal transformation.

2.2 Conformal Algebra

The form of the generators of the conformal algebra acting on functions can be obtained
from

φ (xµ + εµ(x)) =

[
1 + i aµPµ − cD +

i

2
mµνMµν + i bµKµ

]
φ (xµ) , (2.25)

which leads to 3

Pµ = −i∂µ , D = −xµ∂µ , (2.26)

Mµν = −i (xµ∂ν − xν∂µ) , Kµ = 2ixµx
ν∂ν − i x2∂µ . (2.27)

Exercise 2.2.1 Show that the generators obey the following commutation relations

[D,Pµ] = Pµ , [D,Kµ] = −Kµ , [Kµ, Pν ] = 2δµνD − 2iMµν ,

[Mµν , Pα] = i (δµαPν − δναPµ) , [Mµν ,Kα] = i (δµαKν − δναKµ) ,

[Mαβ,Mµν ] = i (δαµMβν + δβνMαµ − δβµMαν − δανMβµ) . (2.28)
3We define the dilatation generator D in a non-standard fashion so that it has real eigenvalues in

radial quantization of unitary CFTs.
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The third line of (2.28) is the usual SO(d) (or Lorentz) algebra. The second line
means that Pµ and Kµ transform as vectors under rotations. The first line is more
interesting. It says that Pµ and Kµ act as raising and lowering operators for D.

2.3 Local operators

For a conformal transformation g (xµ → x̃µ = gµ(x)), the correlation functions of local
operators in a CFT should be invariant,

〈Oa1
1 (x1) . . .Oann (xn)〉 = T a1

b1
(x1, g) . . . T an

bn
(xn, g)

〈
Ob11 (g(x1)) . . .Obnn (g(xn))

〉
.

(2.29)
The question we would like to answer is what can the matrices T a

b (x, g) be? We shall
start by considering the little group of conformal transformations that preserves the origin
x = 0. Then, the matrices T a

b (0, g) must for a representation of the little group generated
by dilatations, rotations and SCTs. The action of the little group generators can then be
written as

DOa(0) = [∆] ab Ob(0)

MµνOa(0) = [Sµν ] ab Ob(0) (2.30)

KµOa(0) = [qµ] ab Ob(0)

where the matrices ∆, Sµν and qµ form a representation of the little algebra. Given this
representation, we can easily derive the action of the conformal generators at any point x.
We start by defining

Oa(x) ≡ eiP ·xOa(0) (2.31)

and then use the commutation relations and the action (2.30) to define the action of the
generators on Oa(x). This leads to

PµOa(x) = −i∂µOa(x)

DOa(x) = ([∆] ab − x · ∂ δab )Ob(x) (2.32)

MµνOa(x) =
(
[Sµν ] ab − i(xµ∂ν − xν∂µ) δab

)
Ob(x)

KµOa(x) =
(
[qµ] ab − 2xµ [∆] ab + 2i [Sµν ] ab xν + i(2xµx · ∂ − x2∂µ) δab

)
Ob(x)

2.4 Primary operators and their correlation functions

We have seen that scaling operators transform simply under global scale transformations
(see equation (1.51)). The natural generalization for conformal transformations x→ x̃ is

〈O1(x̃1) . . .On(x̃n)〉 =

∣∣∣∣∂x̃∂x
∣∣∣∣−

∆1
d

x1

. . .

∣∣∣∣∂x̃∂x
∣∣∣∣−∆n

d

xn

〈O1(x1) . . .On(xn)〉 . (2.33)

If the operators have spin, i.e. if they transform under rotations then the rule is〈
Ω(x̃1)∆1D(R(x̃1)) a

b Ob1(x̃1) . . .
〉

= 〈Oa1(x1) . . . 〉 . (2.34)
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where 4
∂x̃µ

∂xν
= Ω(x̃)Rµν(x̃) , Rµν(x̃) ∈ SO(d) . (2.35)

The matrix D(R)ab implements the action of the SO(d) rotation R in the representation
of O1. Operators that satisfy this transformation rule are called primary.

Exercise 2.4.1 Check that the rule (2.34) is compatible with the composition of two
conformal transformations. In other words, verify that it gives the same result for
x→ x̃ = g1(g2(x)) and for x→ y = g2(x) followed by y → x̃ = g1(y).

As explained above, if the action of Poincaré transformations and inversion are
correctly realized then all conformal transformations will act correctly. In practice, this
means that imposing conformal symmetry of a correlator amounts to imposing Poincaré
covariance and 〈(

x2
1

)−∆1 D(I(x1)) a
b Ob1

(
x1

x2
1

)
. . .

〉
= 〈Oa1(x1) . . . 〉 , (2.36)

where 5

Iµν(x) = δµν −
2xµx

ν

x2
. (2.37)

This implies that vacuum one-point functions 〈O(x)〉 vanish except for the identity
operator (which is the unique operator with ∆ = 0). It also fixes the form of the two and
three point functions,

〈Oi(x)Oj(y)〉 =
δij

(x− y)2∆i
, (2.38)

〈O1(x1)O2(x2)O3(x3)〉 =
C123

|x12|∆1+∆2−∆3 |x13|∆1+∆3−∆2 |x23|∆2+∆3−∆1
,

where we have normalized the operators to have unit two-point function. Notice that
after normalizing the operators using the two-point function, the normalization of the
three-point function is physically meaningful.

Exercise 2.4.2 Derive expressions (2.38).

The four-point function is not fixed by conformal symmetry because with four points
one can construct two independent conformal invariant cross-ratios

u =
x2

12x
2
34

x2
13x

2
24

, v =
x2

14x
2
23

x2
13x

2
24

. (2.39)

The physical meaning of the cross-ratios is clear in the conformal frame. In the
conformal frame, we use the symmetries to place the operators at special points. Notice

4Here we are considering conformal transformations connected to the identity. If the CFT is parity
invariant then Rµν can also be a reflection.

5Notice that Iµν ∈ O(d) is a reflection and not a rotation. This is related to the fact that inversion is
not in the component of the conformal group connected to the identity.
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that we can always reconstruct the general case by acting with the inverse symmetries.
We send x4 to ∞ by performing a special conformal transformation. Then we bring x1

to the origin with a translation. Next, we do a dilatation and a rotation to bring x3 to
(1, 0, . . . , 0). Finally, we perform a rotation (that leaves x3 fixed) to bring x2 to the plane
(x, y, 0, . . . , 0). If we evaluate the cross-ratios in this configuration we obtain

u = zz̄ , v = (1− z)(1− z̄) , (2.40)

where z = x+ iy and z̄ = x− iy.
The general form of the four point function is

〈O(x1) . . .O(x4)〉 =
A(u, v)(
x2

12x
2
34

)∆ . (2.41)

Exercise 2.4.3 Generalize (2.41) for 4 different operators. Generalize it also for the
case of a n-point function. How many independent cross-ratios are there in this case?

Exercise 2.4.4 The correlator (2.41) is invariant under permutations of the points xi.
Show that this implies

A(u, v) = A(u/v, 1/v) , A(u, v) =
(u
v

)∆
A(v, u) . (2.42)

Exercise 2.4.5 Tensor primary fields - two point function
A tensor primary field of scaling dimension ∆ and spin J transforms as follows

T ′µ1...µJ
(x) =

∣∣∣∣∂x′∂x

∣∣∣∣∆−J
d ∂x′ν1

∂xµ1
. . .

∂x′νJ

∂xµJ
Tν1...νJ (x′) . (2.43)

Show that the two-point function of a vector primary operator in a CFT is given by

〈jµ(x)jν(y)〉 =
Cj

|x− y|2∆
Iµν(x− y) (2.44)

where
Iµν(x) = ηµν − 2

xµxν
x2

. (2.45)

If jµ is a conserved current, what is its scaling dimension ∆?
Show that the two-point function of a spin 2 (symmetric and traceless) tensor primary

operator in a CFT is given by

〈Tµν(x)Tαβ(y)〉 =
CT

|x− y|2∆

[
1

2
(Iµα(x− y)Iνβ(x− y) + Iµβ(x− y)Iνα(x− y))− 1

d
ηµνηαβ

]
.

Check that if Tµν is the stress-energy tensor, then its conservation requires ∆ = d.
Compute the constant CT for a real massless scalar field in flat space. Use the (normal

ordered version of the) stress-energy tensor

Tµν = ∂µϕ∂νϕ−
1

4(d− 1)

(
(d− 2)∂µ∂ν + ηµν∂

2
)
ϕ2 , (2.46)
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which can be derived from the action

S[ϕ] =

ˆ
ddx
√
g

(
1

2
gµν∇µϕ∇µϕ+

d− 2

8(d− 1)
Rϕ2

)
, (2.47)

as explained in exercise 2.5.1.

Exercise 2.4.6 Tensor primary fields - three point function
A tensor primary field of scaling dimension ∆ and spin J transforms as follows

T ′µ1...µJ
(x) =

∣∣∣∣∂x′∂x

∣∣∣∣∆−J
d ∂x′ν1

∂xµ1
. . .

∂x′νJ

∂xµJ
Tν1...νJ (x′) . (2.48)

a. Verify that

〈O1(x1)O2(x2)jµ(x3)〉 = C12j
V µ(x1, x2, x3)

|x12|∆1+∆2−∆+1|x13|∆1+∆−∆2−1|x23|∆2+∆−∆1−1
(2.49)

has the correct transformation properties of a three point function of a vector and two
scalar primary operators in a CFT. In this expression, ∆ is the dimension of the vector
operator jµ, ∆i is the dimension of the scalar operator Oi, C12j is a constant and

V µ(x1, x2, x3) =
xµ13

x2
13

− xµ23

x2
23

. (2.50)

Suggestion: start by showing that under inversion x′µ = xµ/x2, we have

(x′ij)
2 =

x2
ij

x2
ix

2
j

, Vµ(x1, x2, x3) =
∂x′ν

∂xµ

∣∣∣∣
x=x3

Vν(x′1, x
′
2, x
′
3) . (2.51)

b. Similarly, verify that

〈O1(x1)O2(x2)Tµν(x3)〉 = C12T
Hµν(x1, x2, x3)

|x12|∆1+∆2−∆+2|x13|∆1+∆−∆2−2|x23|∆2+∆−∆1−2
(2.52)

transforms appropriately under conformal transformations with Tµν a primary field of
dimension ∆ and spin 2 (symmetric traceless tensor). Here, the numerator is

Hµν = V µV ν − 1

d
VαV

αδµν , (2.53)

and you can use the identities (2.51) without proof.
c. Consider a free massless scalar field with Euclidean action

S[ϕ] =

ˆ
ddx

1

2
∂µϕ∂

µϕ . (2.54)

Show that the two-point function is given by (assume d > 2)

〈ϕ(x)ϕ(y)〉 =
N

|x− y|d−2
, N =

Γ
(
d
2 − 1

)
4π

d
2

. (2.55)
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Recall that the Γ-function is defined by

Γ(z) =

ˆ ∞
0

dt tz−1e−t , < z > 0 . (2.56)

d. In the same theory, compute the three point function

〈ϕ(x1)ϕ(x2)Tµν(x3)〉 , (2.57)

where
Tµν =: ∂µϕ∂νϕ : − 1

4(d− 1)

(
(d− 2)∂µ∂ν + ηµν∂

2
)

: ϕ2 : (2.58)

is the stress-energy tensor. Compare your result with (2.52) and determine the dimension
∆ of the stress-energy tensor, the dimension ∆ϕ and the constant CϕϕT .

2.5 Stress-energy tensor

To define the stress-energy tensor it is convenient to consider the theory in a general
background metric gµν . Formally, we can write

〈O1(x1) . . .On(xn)〉g =
1

Z[g]

ˆ
[dφ]e−S[φ,g]O1(x1) . . .On(xn) , (2.59)

where Z[g] =
´

[dφ]e−S[φ,g] is the partition function for the background metric gµν .
Recalling the classical definition

Tµν(x) = − 2√
g

δS

δgµν(x)
, (2.60)

it is natural to define the quantum stress-energy tensor operator via the equation

Z[g + δg]

Z[g]
= 1 +

1

2

ˆ
dx
√
gδgµν(x) 〈Tµν(x)〉g +O(δg2) , (2.61)

and

〈O1(x1) . . .On(xn)〉g+δg − 〈O1(x1) . . .On(xn)〉g
=

1

2

ˆ
dx
√
gδgµν(x)

[
〈Tµν(x)O1(x1) . . .On(xn)〉g (2.62)

−〈Tµν(x)〉g 〈O1(x1) . . .On(xn)〉g
]

+O(δg2) .

Exercise 2.5.1 Consider the action for a free scalar field in a curved background

S[gµν , ϕ] =

ˆ
ddx
√
g

(
1

2
gµν∇µϕ∇µϕ+

1

2
ξRϕ2

)
(2.63)

where R is the Ricci scalar of the metric gµν and ξ is a dimensionless coupling constant.
Show that the action is Weyl invariant

S[Ω2gµν ,Ω
−∆ϕ] = S[gµν , ϕ] (2.64)
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for ∆ = d−2
2 and ξ = d−2

4(d−1) . Hint: you will need to use the following formula

R̃ = Ω−2 [R− 2(d− 1)gµν∇µ∇ν log Ω− (d− 2)(d− 1)gµν(∇µ log Ω)(∇ν log Ω)] (2.65)

where R̃ is the Ricci scalar for the metric g̃µν = Ω2gµν . You can find the derivation of
this formula in appendix D of Wald’s book on General Relativity.

Obtain the stress-energy tensor for this theory and check that it is traceless and
conserved on-shell (i.e., if ϕ solves the classical equations of motion).

Exercise 2.5.2 Show that the action for electrodynamics

S[Aµ] =

ˆ
d4x

1

4
ηµαηνβFµνFαβ (2.66)

where Fµν = ∂µAν − ∂νAµ, is invariant under conformal transformations,

S[A′µ] = S[Aµ] , A′µ(x) =
∂x′α

∂xµ
Aα(x′) (2.67)

Rederive the same result by considering electrodynamics in a general curved background

S[gµν , Aµ] =

ˆ
d4x
√
g

1

4
gµαgνβFµνFαβ (2.68)

and showing that
S[Ω2gµν , Aµ] = S[gµν , Aµ] (2.69)

Obtain the electromagnetic stress-energy tensor Tµν .
Returning to flat Minkowski space (for simplicity), show that the following integrals

over all space at a fixed time t,

D(t) =

ˆ
Σ(t)

d3xT 0µxµ , Kα(t) =

ˆ
Σ(t)

d3xT 0µ(ηµαx
2 − 2xµxα) (2.70)

are conserved quantities for an electromagnetic wave propagating in vacuum.

2.6 Ward identities

Under an infinitesimal coordinate transformation x̃µ = xµ + εµ(x), the metric tensor
changes g̃µν = gµν −∇µεν −∇νεµ but the physics should remain invariant. In particular,
the partition function Z[g] = Z[g̃] and the correlation functions 6

〈O1(x̃1) . . .On(x̃n)〉g̃ = 〈O1(x1) . . .On(xn)〉g , (2.71)

do not change. This leads to the conservation equation 〈∇µTµν(x)〉g and

n∑
i=1

εµ(xi)
∂

∂xµi
〈O1(x1) . . .On(xn)〉g (2.72)

= −
ˆ
dx
√
gεν(x) 〈∇µTµν(x)O1(x1) . . .On(xn)〉g

6If the operators are not scalars (e.g. if they are vector operators) then one also needs to take into
account the rotation of their indices.
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for all εµ(x) that decays sufficiently fast at infinity. Thus ∇µTµν = 0 up to contact terms.
Correlation functions of primary operators transform homogeneously under Weyl

transformations of the metric 7

〈O1(x1) . . .On(xn)〉Ω2g =
〈O1(x1) . . .On(xn)〉g

[Ω(x1)]∆1 . . . [Ω(xn)]∆n
. (2.73)

Exercise 2.6.1 Show that this transformation rule under local rescalings of the metric
(together with coordinate invariance) implies (2.33) under conformal transformations.

Consider now an infinitesimal Weyl transformation Ω = 1 + ω, which corresponds to
a metric variation δgµν = 2ωgµν . From (2.62) and (2.73) we conclude that

n∑
i=1

∆i ω(xi) 〈O1(x1) . . .On(xn)〉g

=−
ˆ
dx
√
g ω(x)gµν

[
〈Tµν(x)O1(x1) . . .On(xn)〉g (2.74)

−〈Tµν(x)〉g 〈O1(x1) . . .On(xn)〉g
]
.

Consider the following codimension 1 integral over the boundary of a region B, 8

I =

ˆ
∂B
dSµεν(x)

[
〈Tµν(x)O1(x1) . . .On(xn)〉g (2.75)

−〈Tµν(x)〉g 〈O1(x1) . . .On(xn)〉g
]
.

One can think of this as the total flux of the current ενTµν , where εν(x) is an infinitesimal
conformal transformation. Gauss law tells us that this flux should be equal to the integral
of the divergence of the current

∇µ (ενT
µν) = εν∇µTµν +∇µενTµν = εν∇µTµν +

1

d
∇αεαgµνTµν , (2.76)

where we used the symmetry of the stress-energy tensor Tµν = T νµ and the definition of
an infinitesimal conformal transformation ∇µεν +∇νεµ = 2

d∇αεαgµν . Using Gauss law
and (2.72) and (2.74) we conclude that

I = −
∑
xi∈B

[
εµ(xi)

∂

∂xµi
+

∆i

d
∇αεα(xi)

]
〈O1(x1) . . .On(xn)〉g . (2.77)

The equality of (2.75) and (2.77) for any infinitesimal conformal transformation (2.14) is
the most useful form of the conformal Ward identities.

7In general, the partition function is not invariant in even dimensions. This is the Weyl anomaly
Z[Ω2g] = Z[g]e−SWeyl[Ω,g].

8In the notation of the [2] this is the topological operator Qε[∂B] inserted in the correlation function
〈O1(x1) . . .On(xn)〉g.



34 Chapter 2 Conformal Field Theory

Exercise 2.6.2 Conformal symmetry fixes the three-point function of a spin 2 primary
operator and two scalars up to an overall constant, 9

〈O(x1)O(x2)Tµν(x3)〉 = C12T
Hµν(x1, x2, x3)

|x12|2∆−d+2|x13|d−2|x23|d−2
, (2.78)

where

Hµν = V µV ν − 1

d
VαV

αδµν , V µ =
xµ13

x2
13

− xµ23

x2
23

. (2.79)

Write the conformal Ward identity (2.75)=(2.77) for the three point function 〈Tµν(x)O(0)O(y)〉
for the case of an infinitesimal dilation εµ(x) = λxµ and with the surface ∂B being a sphere
centred at the origin and with radius smaller than |y|. Use this form of the conformal
Ward identity in the limit of an infinitesimally small sphere ∂B and formula (2.78) for
the three point function to derive

COOT = − d∆

d− 1

1

Sd
, (2.80)

where Sd = 2πd/2

Γ(d/2) is the volume of a (d− 1)-dimensional unit sphere.

2.7 Quantization

So far we have only discussed correlation functions from a path integral (or statistical
mechanics) point of view. It is also convenient to consider the theory in the canonical
quantization formalism. In this context, we must choose a foliation of spacetime by
spatial slices and there will be a Hilbert space associated to each spatial slice. Usually
one chooses spatial slices according to the symmetries of the theory such that the Hilbert
spaces at different slices are the same and that we can move between slices with a unitary
operator representing time evolution. Then, correlation functions can be thought of as
time-ordered (with respect to our foliation) expectation values

〈O1(x1) . . .On(xn)〉 = 〈0|T
{
Ô1(τ1,x1) . . . Ôn(τn,xn)

}
|0〉 , (2.81)

where |0〉 os the vacuum and Ôi(x) are quantum operators acting on the Hilbert space.
Notice that the Hilbert space is different for different foliations. The same set of correlators
can be given different quantum mechanical interpretations by choosing different foliations.

We shall only consider euclidean time evolution using a vector field associated to a
symmetry. In other words, the hamiltonian Ĥ that generates ∂τ is a constant of motion.
We can then write

Ô(τ,x) = eτĤÔ(0,x)e−τĤ . (2.82)

Notice that this makes the expectation value (2.81) finite if the hamiltonian as a spectrum
(with real part) bounded from below.

9You can try to derive this formula using the embedding space formalism of section 2.12.
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For Poincaré invariant field theories, one may choose to foliate spacetime with surfaces
of constant x1 = τ . Then, the action of the quantum operator Ĥ corresponds to the
insertion of

H = −
ˆ
dxT 11(τ,x) (2.83)

in the path integral language. Notice that the Ward identitiy (2.75) = (2.77) with
εµ(x) = δ1

µ implies that the insertion of H does not depend on the euclidean time τ
as long as it does not cross the Euclidean time of the other operator insertions. This
corresponds to the operator ordering in the quantum mechanical language. Moreover, we
can use the same Ward identity to compute the commutator of Ĥ with Ô. This gives[

Ĥ, Ô(τ,x)
]

= ∂τ Ô(τ,x) , (2.84)

in agreement with (2.82). Similarly, we can also define the momentum operator P̂µ by
the insertion of

Pµ = −
ˆ
dxT 1µ(0,x) , (2.85)

in the correlator. This definition imples[
P̂µ, Ô(τ,x)

]
= ∂µÔ(τ,x) . (2.86)

2.7.1 Conjugation

In quantum mechanics the hamiltonian is an hermitian operator. Therefore,

Ô(τ,x)† = e−τĤÔ(0,x)†eτĤ = Ô(−τ,x) . (2.87)

if Ô(0,x) is an hermitian operator (representing an observable). In other words, for real
scalar operators conjugation acts like a reflection τ → −τ . The same is true for operators
with spin:

Ôµ1...µl(τ,x)† = Θν1
µ1
. . .Θνl

µl
Ôν1...νl(−τ,x) , Θν

µ = δνµ − 2δ1
µδ
ν
1 , (2.88)

where the euclidean time τ corresponds to the index µ, ν = 1. 10

2.7.2 Reflection positivity

One can also think of the correlator as computing an inner product in the Hilbert space.
For example,

〈O1(x1) . . .On(xn)〉 = 〈ψout|ψin〉 , (2.90)

10 Notice that this is consistent with the particular case of operators with indices created by derivatives:

∂τ Ô(τ,x)† = −∂τ Ô(−τ,x) ,
∂

∂xi
Ô(τ,x)† =

∂

∂xi
Ô(−τ,x) , i = 2, . . . , d . (2.89)
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where

|ψin〉 = Ôk+1(τk+1,xk+1) . . . Ôn(τn,xn)|0〉 (2.91)

|ψout〉 = Ô†k(τk,xk) . . . Ô
†
1(τ1,x1)|0〉 (2.92)

assuming the operators are time-ordered τ1 > τ2 > · · · > τn. In a unitary theory, we have

〈ψ|ψ〉 ≥ 0 , (2.93)

for all states |ψ〉. Choosing

|ψ〉 = Ô1(τ1,x1) . . . Ôn(τn,xn)|0〉 , 0 > τ1 > τ2 > · · · > τn , (2.94)

and using the conjugation formula (2.87), we find

〈ψ|ψ〉 = 〈On(−τn,xn) . . .O1(−τ1,x1)O1(τ1,x1) . . .On(τn,xn)〉 ≥ 0 . (2.95)

This condition is known as reflection positivity and it follows from unitarity of the
Lorentzian theory obtained by Wick rotation τ → it. The Osterwalder–Schrader theorem
states that the converse is also true (with a few extra assumptions).

Exercise 2.7.1 The two point function of a scalar primary operator can be written as
an inner product

〈O(−τ1, x1)O(τ2, x2)〉 = 〈O(τ1, x1)|O(τ2, x2)〉 , (2.96)

where
|O(τ, x)〉 = O(τ, x)|0〉 , τ < 0 . (2.97)

In the quantization with constant x1 = τ surfaces, it is natural to decompose the state
|O(τ, x)〉 into an eigenbasis of momenta P̂µ. Notice that the conjugation rule (2.88)
implies that P 1 is hermitian and P̂ j for j = 2, . . . , d is anti-hermitian. In fact, P̂ 1 = H
is the hamiltonian given in (2.83) and P̂ jL = −iP̂ j is the hermitian operator representing
spatial momentum in the Lorentzian theory. We can then write

|O(τ, x)〉 =
∑
α

ˆ
Edk
(2π)d

ψα(τ, x;E, k)|E, k, α〉 , (2.98)

where |E, k, α〉 is an eigenstate of momentum

Ĥ|E, k, α〉 = E|E, k, α〉 , P̂ j |E, k, α〉 = ikj |E, k, α〉 , (2.99)

and the label α distinguishes states with the same momentum eigenvalue. Use (2.86) to
show that

ψα(τ, x;E, k) = eτE+ik·xqα(E, k) . (2.100)
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Using the normalization 11 〈E, k, α|E′, k′, α′〉 = (2π)dδαα′δ
d−1(k− k′)δ(E −E′), show

that the two point function becomes

〈O(−τ1, x1)O(τ2, x2)〉 =
1

(τ2 + x2)∆
=

ˆ
dEdk
(2π)d

e−Eτ+ik·xρ(E, k) , τ > 0 ,

(2.101)
where τ = −(τ1 + τ2), x = x2 − x1 and the spectral density is ρ(E, k) =

∑
α |qα(E, k)|2.

Show that

ρ(E, k) =
2π

d
2

+1

Γ(∆)Γ
(
∆− d

2 + 1
)Θ (E − |k|)

(
E2 − k2

4

)∆− d
2

. (2.102)

Conclude that there is no particle interpretation of this spectral density for generic ∆.
Conclude also that reflection positivity (or unitarity) implies that ∆ ≥ d

2 − 1. Give a
particle interpretation to the spectral density for ∆ = d

2 − 1 and ∆ = d− 2.

Local operators are divided into two types: primary and descendant. Descendant
operators are operators that can be written as (linear combinations of) derivatives of
other local operators. Primary operators can not be written as derivatives of other local
operators. Primary operators at the origin are annihilated by the generators of special
conformal transformations. Moreover, they are eigenvectors of the dilatation generator
and form irreducible representations of the rotation group SO(d),

[Kµ,O(0)] = 0 , [D,O(0)] = ∆O(0) , [Mµν ,OA(0)] = [Mµν ]BA OB(0) .

Exercise 2.7.2 Analytic structure of the two-point function
Correlation functions in a Euclidean QFT are always time ordered: see eq. (2.81). The

reason for this is that out-of-time ordered correlators do not exist in general in Euclidean
signature:

a) indeed, apply eq. (2.82) to a two-point function of operators which are odered as
written:

〈0| Ô(τ1, ~x1)Ô(τ2, ~x2) |0〉 . (2.103)

In general H is only bounded from below, not from above. By using this fact, show that the
two-point function is infinite if the operators are anti-time ordered. Correlation functions
computed from a path-integral indeed compute Euclidean time ordered correlators.

b) Consider the two point function of a primary operator O as a function of time, at
fixed distance ~x:

F (τ) = 〈O(τ, ~x)O(0)〉 =
1

(~x2 + τ2)∆
. (2.104)

Define F (τ) for complex values of τ by analytic continuation, and find the singularities of
F (τ) in the complex τ -plane, for generic ∆.

c) Set
τ = it+ ε, t, ε ∈ R. (2.105)

Then as ε→ 0, you get a correlation function in Lorentzian time. Compute the vacuum
expectation value of [Ô(it, ~x), Ô(0)]. Is it compatible with causality? Hint: give a small
real part to τ = it+ ε, with ε→ 0±. The ordering of operators depends on the sign of ε.

11If the normalization includes a positive factor depending on E and k, that will not change the
positivity properties of the spectral density.
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2.8 Radial quantization and the state-operator map

Consider Rd in spherical coordinates. Writing the radial coordinate as r = eτ we find

ds2 = dr2 + r2dΩ2
d−1 = e2τ

(
dτ2 + dΩ2

d−1

)
. (2.106)

Thus, the cylinder R× Sd−1 can be obtained as a Weyl transformation of euclidean space
Rd.

Exercise 2.8.1 Compute the two-point function of a scalar primary operator on the
cylinder using the Weyl transformation property (2.73).

A local operator inserted at the origin of Rd prepares a state at τ = −∞ on the
cylinder. On the other hand, a state on a constant time slice of the cylinder can be
propagated backwards in time until it corresponds to a boundary condition on a arbitrarily
small sphere around the origin of Rd, which defines a local operator. Furthermore, time
translations on the cylinder correspond to dilatations on Rd. This teaches us that the
spectrum of the dilatation generator on Rd is the same as the energy spectrum for the
theory on R× Sd−1. 12

2.9 Unitarity bounds

Exercise 2.9.1 The generators of the conformal algebra can be represented as follows

P̂µ = −i∂µ , L̂µν = −i(xµ∂ν − xν∂µ) (2.107)

D̂ = −x · ∂ , K̂µ = i(2xµ x · ∂ − x2∂µ)

a) In a unitary representation, there is a positive definite inner product such that

D̂† = D̂ , K̂†µ = P̂µ , L̂†µν = L̂µν . (2.108)

Show that unitarity implies that the dimension (or eigenvalue of D̂) of a scalar primary
state |O〉 can not be lower than d−2

2 , and that the bound is saturated by a state created by
a free massless scalar field (obeying the equation of motion ∂2O(x) = 0).

b) Show that a vector primary state |Oα〉 contained in a unitary representation must
have dimension larger or equal to d− 1. Show that when the bound is saturated, the state
is created by a conserved current. Recall that for a spin 1 state,

L̂µν |Oα〉 = (Mµν)αβ|Oβ〉 , (Mµν)αβ = i(ηνβδ
α
µ − ηµβδαν ) . (2.109)

Hint: Compute the norm of Pµ|Oµ〉.
c) Verify that the operator

Ĉ = D̂2 − 1

2

(
K̂µP̂

µ + P̂µK̂
µ
)

+
1

2
L̂µνL̂

µν (2.110)

12More precisely, there can be a constant shift equal to the Casimir energy of the vacuum on Sd−1,
which is related with the Weyl anomaly. In d = 2, this gives the usual energy spectrum

(
∆− c

12

)
1
L

where c is the central charge and L is the radius of S1.
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is a Casimir of the conformal algebra (i.e. it commutes with all its generators). Determine
its value for a scalar and a vector primary state.

d) Generalize questions b) and c) for symmetric traceless primary states |Oα1...αl〉.
Recall that for spin l states,

L̂µν |Oα1...αl〉 =
l∑

i=1

(Mµν)αiβ|Oα1...αi−1βαi+1...αl〉 . (2.111)

You should find that the dimension of such a state in a unitary theory must be greater or
equal to d− 2 + l.

2.10 Operator Product Expansion

The Operator Product Expansion (OPE) between two scalar primary operators takes the
following form

Oi(x)Oj(0) =
∑
k

Cijk|x|∆k−∆i−∆j

Ok(0) + β xµ∂µOk(0) + . . .︸ ︷︷ ︸
descendants

 (2.112)

where β denotes a number determined by conformal symmetry. For simplicity we show
only the contribution of a scalar operator Ok. In general, in the OPE of two scalars there
are primary operators of all spins.

Exercise 2.10.1 Compute β by using this OPE inside a three-point function.

The OPE has a finite radius of convergence inside correlation functions. This follows
from the state operator map with an appropriate choice of origin for radial quantization.

OPE for tensor operators... leading OPE can always be completed into conformal
invariant 3pt-function (very useful for counting OPE coefficients) ... connection with
embedding formalism

2.11 Conformal Bootstrap

Using the OPE successively one can reduce any n−point function to a sum of one-point
functions, which all vanish except for the identity operator. Thus, knowing the operator
content of the theory, i.e. the scaling dimensions ∆ and SO(d) irreps R of all primary
operators, and the OPE coefficients Cijk,13 one can determine all correlation functions
of local operators. This set of data is called CFT data because it essentially defines the
theory. 14 The CFT data is not arbitrary, it must satisfy several constraints:

13For primary operators O1, O2, O3 transforming in non-trivial irreps of SO(d) there are several OPE
coefficients C123. The number of OPE coefficients C123 is given by the number of symmetric traceless
tensor representations that appear in the tensor product of the 3 irreps of SO(d) associated to O1, O2

and O3.
14However, there are observables besides the vacuum correlation functions of local operators. It is also

interesting to study non-local operators (line operators, surface operators, boundary conditions, etc) and
correlation functions in spaces with non-trivial topology (for example, correlators at finite temperature).
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• OPE associativity - Different ways of using the OPE to compute a correlation
function must give the same result. This leads to the conformal bootstrap equations
described below.

• Existence of stress-energy tensor - The stress-energy tensor Tµν is a conserved
primary operator (with ∆ = d) whose correlation functions obey the conformal
Ward identities.

• Unitarity - In the Euclidean context this corresponds to reflection positivity and
it implies lower bounds on the scaling dimensions. It also implies that one can
choose a basis of real operators where all OPE coefficients are real. In the context
of statistical physics, there are interesting non-unitary CFTs.

It is sufficient to impose OPE associativity for all four-point functions of the theory. For
a four-point function of scalar operators, the bootstrap equation reads∑

k

C12kCk34G
(12)(34)
∆k,lk

(x1, . . . , x4) =
∑
q

C13qCq24G
(13)(24)
∆q ,lq

(x1, . . . , x4) ,

where G∆,l are conformal blocks, which encode the contribution from a primary operator
of dimension ∆ and spin l and all its descendants.

2.12 Embedding Space Formalism

The conformal group SO(d+ 1, 1) acts naturally on the space of light rays through the
origin of Rd+1,1,

−
(
P 0
)2

+
(
P 1
)2

+ · · ·+
(
P d+1

)2
= 0 . (2.113)

A section of this light-cone is a d−dimensional manifold where the CFT lives. For example,
it is easy to see that the Poincaré section P 0 +P d+1 = 1 is just Rd. To see this parametrize
this section using

P 0(x) =
1 + x2

2
, Pµ(x) = xµ , P d+1(x) =

1− x2

2
, (2.114)

with µ = 1, . . . , d and xµ ∈ Rd and compute the induced metric. In fact, any conformally
flat manifold can be obtained as a section of the light-cone in the embedding space Rd+1,1.
Using the parametrization PA = Ω(x)PA(x) with xµ ∈ Rd, one can easily show that the
induced metric is simply given by ds2 = Ω2(x)δµνdx

µdxν . With this is mind, it is natural
to extend a primary operator from the physical section to the full light-cone with the
following homogeneity property

O(λP ) = λ−∆O(P ) , λ ∈ R . (2.115)

This implements the Weyl transformation property (2.73). One can then compute
correlation functions directly in the embedding space, where the constraints of conformal
symmetry are just homogeneity and SO(d+ 1, 1) Lorentz invariance. Physical correlators
are simply obtained by restricting to the section of the light-cone associated with the
physical space of interest. This idea goes back to Dirac [20] and has been further develop
by many authors [21, 22, 23, 24, 25, 26, 27].
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Exercise 2.12.1 Rederive the form of two and three point functions of scalar primary
operators in Rd using the embedding space formalism.

Vector primary operators can also be extended to the embedding space. In this case,
we impose

PAOA(P ) = 0 , OA(λP ) = λ−∆OA(P ) , λ ∈ R , (2.116)

and the physical operator is obtained by projecting the indices to the section,

Oµ(x) =
∂PA

∂xµ
OA(P )

∣∣∣∣
PA=PA(x)

. (2.117)

Notice that this implies a redundancy: OA(P )→ OA(P ) +PAΛ(P ) gives rise to the same
physical operator O(x), for any scalar function Λ(P ) such that Λ(λP ) = λ−∆−1Λ(P ).
This redundancy together with the constraint PAOA(P ) = 0 remove 2 degrees of freedom
of the (d+ 2)-dimensional vector OA.

Exercise 2.12.2 Show that the two-point function of vector primary operators is given
by 〈

OA(P1)OB(P2)
〉

= const
ηAB (P1 · P2)− PA2 PB1

(−2P1 · P2)∆+1
, (2.118)

up to redundant terms.

Exercise 2.12.3 Consider the parametrization PA =
(
P 0, Pµ, P d+1

)
= (cosh τ,Ωµ,− sinh τ)

of the global section
(
P 0
)2 − (P d+1

)2
= 1, where Ωµ (µ = 1, . . . , d) parametrizes a unit

(d − 1)−dimensional sphere, Ω · Ω = 1. Show that this section has the geometry of a
cylinder exactly like the one used for the state-operator map.

Conformal correlation functions extended to the light-cone of R1,d+1 are annihilated
by the generators of SO(1, d+ 1)

n∑
i=1

J
(i)
AB 〈O1(P1) . . .On(Pn)〉 = 0 , (2.119)

where J (i)
AB is the generator

JAB = −i
(
PA

∂

∂PB
− PB

∂

∂PA

)
, (2.120)

acting on the point Pi. For a given choice of light cone section, some generators will
preserve the section and some will not. The first are Killing vectors (isometry generators)
and the second are conformal Killing vectors. The commutation relations give the usual
Lorentz algebra

[JAB, JCD] = i (ηACJBD + ηBDJAC − ηBCJAD − ηADJBC) . (2.121)
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Exercise 2.12.4 Check that the conformal algebra (2.28) follows from (2.121) and

D = −i J0,d+1 , Pµ = Jµ0 − Jµ,d+1 ,

Mµν = Jµν , Kµ = Jµ0 + Jµ,d+1. (2.122)

Exercise 2.12.5 Show that equation (2.119) for JAB = J0,d+1 implies time translation
invariance on the cylinder

n∑
i=1

∂

∂τi
〈O1(τ1,Ω1) . . .On(τn,Ωn)〉 = 0 , (2.123)

and dilatation invariance on Rd

n∑
i=1

(
∆i + xµi

∂

∂xµi

)
〈O1(x1) . . .On(xn)〉 = 0 . (2.124)

In this case, you will need to use the differential form of the homogeneity property
PA ∂

∂PA
Oi(P ) = −∆iOi(P ). It is instructive to do this exercise for the other generators

as well.

2.13 Conformal anomalies

In these lectures, we are exploring consequences of exactly realized conformal symmetry in
flat space. We also pointed out that Weyl invariant theories are automatically conformal
invariant when restricted to flat space. In this section, we discuss the sources of breaking
of conformal symmetry, with special attention to the so called conformal anomalies. You
already know from chapter 1 that conformal symmetry is broken when a relevant coupling
is turned on in the action. Correlation functions cease to be conformal invariant and
their dependence on the distance is governed by the Callan-Symanzik equations. On
the other hand, we know that if a stress-tensor with vanishing trace can be defined,15

conformal invariance is guaranteed. We conclude that the trace of the stress-tensor is a
legitimate non vanishing scalar operator along the renormalization group flow. We can
be more specific. Recall eq. (1.73), which we rewrite here while coupling the theory to a
background metric:

Z[gµν ] =

ˆ
[Dφ] e−S[φ,gµν ] , S[φ, gµν ] = S∗[φ, gµν ] +

∑
i

gi(µ)

ˆ
ddx
√
gOi(x) ,

(2.125)

gi(µ) = g0
i µ

d−∆i . (2.126)

Here S∗[φ, gµν ] is assumed to be Weyl invariant. Weyl invariance of the fixed point
action means that there is a change of variables in the path integral φ→ φΩ such that
S∗[φΩ,Ω

2(x)gµν ] = S[φ, gµν ]. We also take Oi to be scalar primary operators at the
15
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fixed point,16 i.e. Oi → Ω−∆Oi when φ → φΩ. Finally, we also assume for now that
the path-integral measure is invariant under Weyl transformations:17 [DφΩ] = [Dφ] –
but more on this later! We can now study the variation of the free energy under an
infinitesimal Weyl transformation with Ω ' 1 + σ. Let us denote the functional variation
as

δσ ≡
ˆ
ddxσ(x)

δ

δσ(x)

∣∣∣∣
σ=0

. (2.127)

Then

δσ logZ[(1 + 2σ)gµν ]

=
1

Z
δσ

ˆ
[DφΩ(σ))] exp

{
−S[φ, gµν ]−

∑
i

gi(µ)

ˆ
ddy
√
g(y)σ(y)(d−∆i)Oi(y)

}

=
1

Z

ˆ
[Dφ]e−S[φ,gµν ]

{
−
∑
i

gi(µ)(d−∆i)

ˆ
ddy
√
g(y)σ(y)Oi(y)

}
. (2.128)

On the other hand,

δσ logZ[(1 + 2σ)gµν ] =

ˆ
ddx
√
g(x)σ(x)Tµµ (x) . (2.129)

Using eq (2.126), we finally obtain

〈Tµµ (x) . . .〉 = −
∑
i

βi(gj) 〈Oi(x) . . .〉 , βi(gj) =
d gi
d logµ

, (2.130)

In the flat space limit, one can write Tµµ = −∂µjµD, where jDµ is the dilatation current.
Therefore, eq. (2.130) relates the breaking of scale invariance to the beta functions of
the theory. It is valid as an operator equation: we added dots as place-holder of other
local operators inserted at separated points. This follows from repeating the same chain
of equalities with other background currents turned on in the path-integral.

If the divergence of a current is a local operator, like in eq. (2.130), the symmetry
is said to be explicitly broken. The symmetry is simply not there. There are two more
subtle ways in which the symmetry might be broken. One possibility is that while the
current is conserved, the vacuum is not invariant under the symmetry. This phenomenon
is called spontaneous symmetry breaking and has enormous importance, but you will see
it up close in your QFT courses.

The third way to break a symmetry is again realized when ∂µjµ 6= 0, but this time
on the right hand side there is a function of the background fields rather than a local
operator: this is called anomalous breaking. In our case, again the background fields

16This is not a restriction: we chose a basis of scaling variables, which at this point in the course we
can call eigenstates of the dilatation operator. They cannot be descendants, because they would turn
into total derivatives in the action.

17Notice that the fixed point action could be adsorbed into the path integral measure, so the invariance
of the former is not an additional assumption.
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contribute to the trace of the stress-tensor, and this is the contribution that we are going
to focus on. Let us first summarize:18

Tµµ (x) =


−βi(g)Oi(x) , Explicit breaking,
0, but xµTµν |0〉 6= 0 , Spontaneous breaking,
A(x) , Anomalous breaking,

(2.131)

where A(x) is called the conformal (or Weyl) anomaly, and is a function of the metric
and its derivatives, which are the only background fields that we are going to consider.
One way to understand the conformal anomalies is to note that the assumption made
above that the path-integral measure is Weyl invariant was not justified: the anomaly
appears when this assumption is wrong. Here we will take a more abstract approach.

Before inquiring whether there are theories for which A(x) 6= 0, let us list some general
properties that the anomaly has to satisfy. Tµµ (x) is a local scalar (i.e. diffeomorphism
invariant) operator of dimension d. The anomaly is then constrained by the same rules:

1. the anomaly is local,

2. it is a scalar under diffeomorphisms,

3. it has dimension d.

Rule 1 means that A(x) is a function of the metric and of finitely many derivatives of
the metric evaluated at the same point x where Tµµ is evaluated.19 Rule 2 implies that
the anomaly is a function of the covariant derivative ∇µ and of the Riemann tensor
Rµνρσ, with all indices contracted. Finally, we should only consider functions that have a
well defined Taylor expansion when the metric is nearly flat, i.e. they can be expanded
in powers of δgµν ≡ gµν − δµν . This excludes things like Rα where α is not a positive
integer.20 A first consequence of these rules is that A(x) is a polynomial built out of
contractions of the building blocks (∇µ, Rµνρσ). Therefore, it vanishes in flat space.

An important additional rule follows from the Abelian nature of the Weyl group. Two
consecutive Weyl transformations must commute, which leads to the

4. Wess-Zumino consistency condition:

[δσ1 , δσ2 ] logZ =

ˆ
ddx
√
g(x) (σ2(x)δσ1A(x)− σ1(x)δσ2A(x)) = 0 . (2.132)

These four rules allow to classify the possible anomaly polynomials for each spacetime
dimension. First of all, since the Riemann tensor has dimension 2, and it always takes an
even number of derivatives to build a scalar, there are no invariants in odd spacetime

18In fact, terminology varies: sometimes it is called anomalous the breaking of a symmetry of the
action by quantum corrections. This would include cases in which the β functions are zero at tree level
but not at one- (or higher-) loops.

19Knowledge of derivatives of the metric up to arbitrarily high order is equivalent to knowledge of the
value of the metric at some point other than x.

20
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dimension: there is no Weyl anomaly in odd dimensions.21 Let us write the most general
anomaly polynomial in dimensions 2 and 4:22

d = 2 A =
c

24π
R , (2.133)

d = 4 A =
a

64π2
E4 +

c

64π2
WλµνρW

λµνρ + e1R
2 + e2�R . (2.134)

In eqs. (2.133) and (2.134), the normalizations are chosen to match the literature. For
reasons that we are not going to touch in these notes, the coefficient c in the two-
dimensional anomaly (2.133) is called the central charge of the CFT. In eq. (2.134), we
defined the Euler density

E4 = RµνλσR
µνλσ − 4RµνRµν +R2 , (2.135)

while the square of the Weyl tensor reads

WλµνρW
λµνρ = RµνλσR

µνλσ − 2RµνRµν +
1

3
R2 . (2.136)

It is an exercise to check the following:

Exercise 2.13.1 In d = 4, R2 does not obey the Wess-Zumino consistency condition i.e.
rule 4 above. Therefore

e1 = 0 . (2.137)

The fate of e2 is similar, for a different reason. Suppose that a local function of the metric
– let’s call it B – is added to the action:

S[φ, g]→ S[φ, g] +

ˆ
ddx

√
g(x)B(x) . (2.138)

The only effect of the addition on the correlators at separated points is a shift in the
definition of the stress-tensor. The shift is proportional to the c-number δB/δgµν , which
only gives a disconnected contribution at separated points. The distinction between the
theory before and after adding B is therefore purely conventional, and we consider two
theories equivalent if they differ only by counterterms which are local functions of the
background fields.

Exercise 2.13.2 Prove that

δσ

ˆ
d4x
√
gR2 = −12

ˆ
d4x
√
g σ�R . (2.139)

We say that the anomaly proportional to e2 in eq. (2.134) is (cohomologically) trivial,
and we can set

e2 = 0 , (2.140)
21

22We actually restrict ourselves to parity invariant anomalies. One more term, the signature invariant,
is allowed in d = 4 if we give up parity.
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by adding a counterterm B ∝ R2 to the action.
The existence of trivial anomalies raises the following question: why are the surviving

terms in eqs. (2.133) and (2.134) non trivial? After all, they also are c-numbers, and the
trace of the stress-tensor does not contribute to connected correlators at separated points.
The answer is that this disconnected effect is not the only one: the coefficients a and c
appear in connected correlation functions as well. We shall now see this in detail in d = 2,
which will also allow us to prove that the anomaly in eq. (2.133) is always present if the
theory is unitary.

2.13.1 The story in d = 2

In two dimesnions, the metric is determined by a single scalar function up to diffeomor-
phisms. In particular, one can choose the conformal gauge:23

gµν(x) = e2σ(x)δµν . (2.141)

Since the Weyl anomaly controls the dependence of the path-integral on σ(x), it completely
determines the dependence of the theory on the metric. In order to compute this explicitly,
let us take a derivative wrt σ, but notice that here σ is not infinitesimal:

δ

δσ(x)
logZ

[
e2σδµν

]
=

c

24π

√
gR . (2.142)

Here we used eq. (2.133), and gµν on the right hand side is still (2.141). In conformal
gauge,

R = −2e−2σ(x)δµν∂µ∂νσ(x) . (2.143)

Eqs. (2.142) and (2.143) together give a differential equation which is easy to integrate:

Z
[
e2σδµν

]
= Z[δµν ] exp

{
− c

24π

ˆ
d2xσ(x)δµν∂µ∂νσ(x)

}
. (2.144)

In order to recast this equation in a covariant form, we rewrite eq. (2.143) as

R = −2�σ , (2.145)

and use a Green function to invert for σ:

σ(x) =
1

2

ˆ
d2x′

√
g(x′)G(x, x′)R(x′) , �G(x, x′) = − 1√

g
δ2(x− x′) . (2.146)

Putting all together, we find the Polyakov effective action:

Z[gµν ] = Z[δµν ]eSP ,

SP =
c

96π

ˆ
d2x
√
g(x)

ˆ
d2x′

√
g(x′)R(x)G(x, x′)R(x′) . (2.147)

23One can show that it is possible to bring every two-dimensional metric in this form by a change of
coordinates, see e.g. Polchinski.
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Sometimes the Polyakov action is written SP = −c/96π
´
d2x
√
gR 1

�R. Notice that the
Polyakov action is non local, which means that the anomaly (2.133) is non-trivial. As
we explore in the next exercise, eq. (2.147) implies that all n-point functions of the
stress-tensor are completely fixed in terms of the anomaly coefficient c.

Exercise 2.13.3 Correlation functions of the stress-tensor from the Polyakov
effective action

Use the Polyakov action to compute the two-point function of the stress-tensor in flat
space. Hints: It is convenient to use complex coordinates:

z = x+ iy, z̄ = x− iy. (2.148)

Verify that the only non zero component of the metric in flat space is gzz̄ = gz̄z = 1
2 .

In complex coordinates therefore Tzz̄ is proportional to the trace. So you only need to
compute correlators of Tzz and Tz̄z̄. To get the Green function, use the following formula
(can you justify it?):

∂z
1

z̄
= πδ(x)δ(y). (2.149)

Here is one of the components of the two-point function you want to get:

〈Tzz(z)Tzz(z′)〉 =
c/(8π2)

(z − z′)4
. (2.150)

(In much of the 2d CFT literature, the stress tensor is renormalized: T (z) = −2πTzz(z).
Also notice that c = 1 for a free scalar in 2 dimensions).

Eq. (2.150) has an immediate consequence: reflection positivity implies that c ≥ 0, and
if c = 0 the stress-tensor itself vanishes as an operator. Therefore, every unitary local
conformal field theory has a Weyl anomaly.

A second important consequence of eq. (2.147) is that the stress-tensor does not
transform homogeneously under Weyl transformations. At the same time, the stress-tensor
does transform as a primary under globally defined conformal transformations in flat
space. Let us see how this happens.

Exercise 2.13.4 The Polyakov effective action and the Schwartzian derivative
a. Compute the one-point function of the stress-tensor in a non trivial background

metric gµν from the Polyakov effective action. Without loss of generality, you can choose
the conformal gauge gµν = e2σδµν , and consider only the variation that gives you the Tzz
component. The result is

〈Tzz〉 =
c

12π

(
∂2
zσ − (∂zσ)2

)
(2.151)

b. Verify that in 2 dimensions, the conformal Killing vectors are generated by all holo-
morphic changes of coordinates: w = f(z), w̄ = f̄(z̄). Under a conformal transformation,
the stress-tensor changes like a primary, up to a inhomogeneous piece due to the anomaly:

T ′ww(w) =

(
dz

dw

)2 (
Tzz +

c

24π
{w, z}

)
. (2.152)
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{w, z} is called the Schwartzian derivative and reads

{w, z} =
∂3
zw

∂zw
− 3

2

(
∂2
zw

∂zw

)2

. (2.153)

Derive eq. (2.153) using the result of point a. Hint Choose a Weyl transformation that
compensates for the diffeomorphism w = f(z), w̄ = f̄(z̄).

c. Not all of the holomorphic maps are globally invertible: if we ask for invertibility,
we go back to the usual conformal group. Show that the conformal transformations can be
cast in the form:

f(z) =
az + b

cz + d
, with ad− bc = 1. (2.154)

This realizes the isomorphism SL(2,C) ' SO(3, 1). Finally, show that the Schwartzian
derivative vanishes for these globally invertible conformal transformations.

The last computation in this section is an easy and interesting consequence of eqs.
(2.152) and (2.153). Consider a cylinder parametrized by an infinite coordinate σ1 and
a periodic one σ2 ∈ [0, β), and define the complex coordinate w = σ1 + iσ2. Then the
holomorphic map

z = e2πw/β (2.155)

maps the cylinder into the complex z-plane minus the origin and the point at infinity. On
the plane, 〈Tzz〉 = 0, and so the one-point function of the stress-tensor on the cylinder is
determined by the Schwartzian derivative (2.153):

〈Tww〉 = 〈Tw̄w̄〉 =
c π

12β2
, on the cylinder. (2.156)

Going back to the coordinates σ1 and σ2, we get

〈T 11〉 = −〈T 22〉 =
c π

6β2
. (2.157)

There are two ways of interpreting this result. First, take σ1 to be the time coordinates,
and do the Wick rotation accordingly. Then,

− T 11 = T tt = E = − c π
6β2

, Casimir energy density on the circle. (2.158)

The Casimir energy density E of a 2d CFT on a circle of length β is negative and
proportional to c. On the other hand, if we choose σ2 as time, we get a CFT at finite
temperature T = 1/β. Eq. (2.157) then becomes the equation of state of the CFT, which
thus turns out to be also determined by the anomaly:

− T 22 = T tt = E =
c πT 2

6
Equation of state. (2.159)
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2.14 Large N Factorization

Consider a U(N) gauge theory with fields valued in the adjoint representation. Schemati-
cally, we can write the action as

S =
N

λ

ˆ
dx Tr

[
(DΦ)2 + c3Φ3 + c4Φ4 + . . .

]
(2.160)

where we introduced the ’t Hooft coupling λ = g2
YMN and ci are other coupling constants

independent of N . Following ’t Hooft [28], we consider the limit of large N with λ kept
fixed. The propagator of an adjoint field obeys〈

Φi
jΦ

k
l

〉
∝ λ

N
δilδ

k
j (2.161)

where we used the fact that the adjoint representation can be represented as the direct
product of the fundamental and the anti-fundamental representation. This suggests that
one can represent a propagator by a double line, where each line denotes the flow of
a fundamental index. Start by considering the vacuum diagrams in this language. A
diagram with V vertices, E propagators (or edges) and F lines (or faces) scales as(

N

λ

)V ( λ
N

)E
NF =

(
N

λ

)χ
λF , (2.162)

where χ = V + F − E = 2− 2g is the minimal Euler character of the two dimensional
surface where the double line diagram can be embedded and g is the number of handles
of this surface. Therefore, the large N limit is dominated by diagrams that can be drawn
on a sphere (g = 0). These diagrams are called planar diagrams. For a given topology,
there is an infinite number of diagrams that contribute with increasing powers of the
coupling λ, corresponding to tesselating the surface with more and more faces. Figure 2.1
shows two examples of vacuum diagrams in the double line notation. This topological
expansion has the structure of string perturbation theory with λ/N playing the role of
the string coupling. As we shall see this is precisely realized in maximally supersymmetric
Yang-Mills theory (SYM).

V = 2

E = 3

F = 3

V = 4

E = 6

F = 2

V = 4

E = 6

F = 2

g = 1

V = 2

E = 3

F = 3

g = 0

Figure 2.1 Vacuum diagrams in the double line notation. Interaction vertices are marked with
a small blue dot. The left diagram is planar while the diagram on the right has the topology of a
torus (genus 1 surface).
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Let us now consider single-trace local operators of the form O = cJTr
(
ΦJ
)
, where cJ

is a normalization constant independent of N . Adapting the argument above, it is easy
to conclude that the connected correlators are given by a large N expansion of the form

〈O1 . . .On〉c =

∞∑
g=0

N2−n−2gfg(λ) , (2.163)

which is dominated by the planars diagrams (g = 0). Moreover, we see that the planar two-
point function is independent of N while connected higher point functions are suppressed
by powers of N . This is large N factorization. In particular it implies that the two-point
function of a multi-trace operator Õ(x) =: O1(x) . . .Ok(x) : is dominated by the product
of the two-point functions of its single-trace constituents〈

Õ(x)Õ(y)
〉
≈
∏
i

〈Oi(x)Oi(y)〉 =
1

(x− y)2
∑
i ∆i

, (2.164)

where we assumed that the single-trace operators were scalar conformal primaries properly
normalized. We conclude that the scaling dimension of the multi-trace operator Õ is
given by

∑
i ∆i + O(1/N2) . In other words, the space of local operators in a large N

CFT has the structure of a Fock space with single-trace operators playing the role of
single particle states of a weakly coupled theory. This is the form of large N factorization
relevant for AdS/CFT. However, notice that conformal invariance was not important
for the argument. It is well known that large N factorization also occurs in confining
gauge theories. Physically, it means that colour singlets (like glueballs or mesons) interact
weakly in large N gauge theories (see [29] for a clear summary).

The stress tensor has a natural normalization that follows from the action, Tµν ∼
N
λ Tr (∂µΦ∂νΦ). This leads to the large N scaling

〈Tµ1ν1(x1) . . . Tµnνn(xn)〉c ∼ N2 , (2.165)

which will be important below. This normalization of Tµν is also fixed by the Ward
identities.

2.15 Problems

Exercise 2.15.1 Conformal transformations and airplane wings
Conformal transformations are useful in many physics problems. Consider the case of

irrotational flow (no vorticity) of an incompressible fluid.
a) Show that we can write the velocity field v = ∇φ where the velocity potential φ

obeys the Laplace equation ∇2φ = 0 with Newman boundary conditions n · ∇φ = 0 at the
surface of any obstacle.

b) Consider the case where the flow is two dimensional (more precisely, the flow is
translational invariant in the third direction). In this case, show that the velocity potential
can be written as

φ(x, y) = ReΦ(x+ iy) , (2.166)
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where Φ(z) is holomorphic for z ∈ Σ the domain of the flow. Moreover, show that we can
choose ImΦ(z) = 0 for z ∈ ∂Σ. 24

c) The pressure p can be obtained from the Navier-Stokes equation

ρ(v · ∇)v = −∇p , (2.167)

where ρ is the fluid density. Show that for an incompressible and irrotational flow this
leads to Bernoulli’s equation

p+
1

2
ρv2 = const . (2.168)

Combine this with the previous result to show that the total force on an obstacle with
boundary ∂Σ can be written as

F ≡ Fx + iFy = − i
2
ρ

˛
∂Σ
dz|Φ′(z)|2 . (2.169)

d) Consider the case of a flow past a cylinder of radius R. Show that

Φcyl(z) = u

(
z +

R2

z

)
, (2.170)

where uex is the fluid velocity infinitely far away from the cylinder. What is the force
exerted on the cylinder.

e) Consider an holomorphic map z → w = f(z) that maps the region Σ = {z ∈ C :
|z| > R} to the a region Σ̃ corresponding to the flow region outside an obstacle with shape
given by the curve f(Reiθ) with θ ∈ [0, 2π]. Show that the velocity potential for this new
obstacle is given by

Φ(w) = Φcyl(f
−1(w)) . (2.171)

Use this idea to compute the flow past an airplane wing described by the Zhukovsky map

w = ζ +
1

ζ
, ζ = z +

i− 1

2

(√
2R2 − 1− 1

)
. (2.172)

Plot the shape of the wing for R = 1.05 and determine the force exerted by the fluid on
the wing.

f) Challenge: What is the optimal shape Σ of the cross section of an airplane wing
so that it maximizes the lifting force for a fixed length of the boundary ∂Σ.

Exercise 2.15.2 Scale + Unitarity ⇒ Conformal
Show that a scale invariant, unitary two-dimensional field theory is conformal invariant.
The original derivation is due to Polchinski, following the work of Zamolodchikov. The

more recent paper Arxiv:0910.1087 gives a very clear review of the argument in section
2.1.

24If the boundary ∂Σ has several disconnected components then ImΦ will be constant on each
component but not necessarily zero.
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Exercise 2.15.3 Operator Product Expansion - scalar case
The general form of the OPE of two scalar operators is

O1(x)O2(0) =
∑
k

C12k

|x|∆1+∆2−∆+l

[
F (12k)
a1...al

(x, ∂y)Oa1...al
k (y)

]
y=0

(2.173)

where the sum runs over all primary operators Ok with spin l and dimension ∆.
a. Show that scale invariance implies that

F (12k)
a1...al

(
λx, λ−1∂y

)
= λlF (12k)

a1...al
(x, ∂y) (2.174)

b. Compute the three-point function of scalar primary operators,

〈O1(x)O2(0)O3(w)〉 =
C123

|x|∆1+∆2−∆3 |w|∆3+∆2−∆1 |x− w|∆1+∆3−∆2
, (2.175)

using the OPE above, and derive[
F (123) (x, ∂y)

(
1 +

y2 − 2y · w
w2

)−∆3
]
y=0

=

(
1 +

x2 − 2x · w
w2

)∆2−∆1−∆3
2

. (2.176)

c.* Write a Mathematica program that uses the last equation to compute the coefficients
an,m for n+ 2m ≤ 10 in the derivative expansion

F (123) (x, ∂y) =

∞∑
n,m=0

an,m(x · ∂y)n(x2∂2
y)m (2.177)

Suggestion: choose w2 = 1 in equation (2.176).
d.* Make a table of your results and try to guess an analytic formula for an,m. The

function

Pochhammer[t,k] = (t)k =
Γ(t+ k)

Γ(t)
= t(t+ 1) . . . (t+ k − 1) (2.178)

will be very useful.

Exercise 2.15.4 Operator Product Expansion - vector case
a.* In order to study the OPE terms that involve operators with non-zero spin it

is convenient to introduce a polarization vector εa. The idea is that we can encode a
symmetric traceless tensor in a harmonic polynomial. If we define

O(x, ε) = εa1 . . . εalOa1...al(x) (2.179)

we can recover the tensor from the polynomial using

Oa1...al(x) =
1

l!(h− 1)l
Da1 . . . DalO(x, ε) (2.180)



2.15 Problems 53

where 2h is the dimension of (Euclidean) spacetime and

Da =

(
h− 1 + ε · ∂

∂ε

)
∂

∂εa
− 1

2
εa

∂2

∂ε · ∂ε . (2.181)

Show (possibly using Mathematica) that

[Da, Db] = 0 , D2 ∝ ε2 , Da ε
2 = ε2

(
Da + 2

∂

∂εa

)
. (2.182)

These properties guarantee that the tensor (2.180) is symmetric and traceless and that we
can set ε2 = 0 in O(x, ε) (because Da is an interior operator to this constraint).

Check that, for unit vectors x and y, we have

(x ·D)l(ε · y)l = 2−l(l!)2Ch−1
l (x · y) (2.183)

where Ch−1
l (t) = GegenbauerC[l,h-1,t] is the Gegenbauer polynomial.

b. In this formalism, the OPE can be written as

O1(x)O2(0) =
∑
k

C12k

|x|∆1+∆2−∆+l

[
F (12k) (x, ∂y, D)Ok(y, ε)

]
y=0

(2.184)

where
F (12k)

(
λx, λ−1∂y, αD

)
= (α)lF (12k) (x, ∂y, D) . (2.185)

Compute the three-point function of two scalar primary operators with a spin l operator,

〈O1(x)O2(0)Ok(w, ε′)〉 = C12k

(
ε′ · w (x− w)2 − ε′ · (w − x)w2

)l
|x|∆1+∆2−∆+l|w|∆+∆2−∆1+l|x− w|∆1+∆−∆2+l

, (2.186)

using the OPE (2.184) and the two-point function

〈Ok(y, ε)Ok(w, ε′)〉 =

(
ε · ε′ (y − w)2 − 2ε · (y − w) ε′ · (y − w)

)l
(y − w)2(∆+l)

(2.187)

and deriveF (12k) (x, ∂y, D)

(
ε · ε′ − 2 ε·(y−w) ε′·(y−w)

1−2y·w+y2

)l
(1− 2y · w + y2)∆


y=0

=

(
ε′ · x+ ε′ · w (x2 − 2w · x)

)l
(1− 2x · w + x2)

∆1+∆−∆2+l
2

(2.188)
where we have chosen w2 = 1.

c.** Write a Mathematica program that uses the last equation to compute the coeffi-
cients an,m and bn,m for n+ 2m ≤ 4 in the derivative expansion of the spin 1 case,

F (12k) (x, ∂y, D) =

∞∑
n,m=0

[
an,m x ·D + bn,m x

2 ∂y ·D
]

(x · ∂y)n(x2∂2
y)m . (2.189)
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d. You can also study the case of general spin using the expansion

F (12k) (x, ∂y, D) =
∞∑

n,m=0

l∑
q=0

an,m,q (x ·D)l−q(x2 ∂y ·D)q(x · ∂y)n(x2∂2
y)m . (2.190)

Show that the leading term in the OPE gives

a0,0,0 =
1

l!(h− 1)l
. (2.191)

or equivalently

O1(x)O2(0) =
∑
k

C12k

|x|∆1+∆2−∆+l

[
xa1 . . . xalOa1...al

k (0) + . . .
]

(2.192)

Exercise 2.15.5 Conformal Blocks from OPE
The four-point function of scalar primary operators can be expanded using the OPE

(2.173). This leads to the conformal block decomposition

〈O1(x1)O2(x2)O3(x3)O4(x4)〉 =
∑
k

C12kCk34G
(12)(34)
∆k,lk

(x1, . . . , x4) (2.193)

where

G
(12)(34)
∆,l (x1, . . . , x4) =

F (12k) (x12, ∂x2 , D) 〈Ok(x2, ε)O3(x3)O4(x4)〉
|x12|∆1+∆2−∆+lCk34

(2.194)

=
1

|x12|∆1+∆2 |x34|∆3+∆4

( |x24|
|x14|

)∆12
( |x14|
|x13|

)∆34

g∆,l(u, v) (2.195)

Here, ∆ij = ∆i −∆j and u, v are conformal invariant cross ratios

u =
x2

12x
2
34

x2
13x

2
24

, v =
x2

14x
2
23

x2
13x

2
24

. (2.196)

a.* Use the expansion (2.177) of the scalar OPE with

an,m =
(−1)m

(
∆k+∆12

2

)
m

(
∆k−∆12

2

)
m+n

4mm!n!
(
∆k + 1− d

2

)
m

(∆k)2m+n

, (2.197)

to compute the first terms of the double series expansion of the scalar conformal block

g∆,0(u, v) = u
∆
2

∞∑
p,q=0

bp,qu
p(1− v)q . (2.198)

Suggestion: choose x4 →∞ and x2
13 = 1 to show that

g∆,0(x2
12, 1− 2x12 · x13 + x2

12) = |x12|∆F (12k) (x12, ∂x2) |x23|−∆−∆34 (2.199)
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and
∞∑

p,q=0

bp,qx
2p(2x · w − x2)q =

[
F (12k) (x, ∂y) |y|−∆−∆34

]
y=w−x

(2.200)

where we have written x12 = x and x13 = w. Then, expand at small x to determine the
coefficients bp,q for q + 2p ≤ 6. Can you guess the general formula?

b. In the non-zero spin case, choose x4 →∞ and x2
13 = 1 to show that

g∆,l(x
2
12, 1− 2x12 · x13 + x2

12) = |x12|∆−lF (12k) (x12, ∂x2 , D)
(ε · x23)l

x∆+∆34+l
23

(2.201)

c. It is convenient to parametrize the cross ratios by

u = zz̄ , v = (1− z)(1− z̄) , (2.202)

where z and z̄ are independent variables. Show that for the choice x4 →∞ and x2
13 = 1

in Euclidean space, we have z = |z|eiθ and z̄ = |z|e−iθ with |z|2 = x2
12 and θ the angle

between the vectors x12 and x13.
d. Use the leading order term in the OPE

F (12k) (x, ∂y, D) =
1

l!(h− 1)l
(x ·D)l + . . . (2.203)

to derive the small |z| behaviour of the conformal block

g∆,l ≈
|x12|∆−l
l!(h− 1)l

(x12 ·D)l(ε · x13)l =
l!

2l(h− 1)l
|z|∆Ch−1

l (cos θ) (2.204)

where Ch−1
l (cos θ) is the Gegenbauer polynomial. Notice that this limit is particularly

simple in two and four dimensions

g∆,l ≈
1

2l
|z|∆ e

ilθ + e−ilθ

1 + δl,0
, d = 2 , (2.205)

g∆,l ≈
1

2l
|z|∆ e

i(l+1)θ − e−i(l+1)θ

eiθ − e−iθ , d = 4 . (2.206)

Note that the result in d = 2 is defined as the limit d → 2 of the expression in general
dimension.

Exercise 2.15.6 Conformal Blocks from Casimir differential equation
In the embedding formalism, each primary operator is promoted to an homogeneous

field on the future light-cone of the origin of Md+2,

O(λP ) = λ−∆O(P ) , P 2 = 0, λ > 0 . (2.207)

In this formalism, conformal transformations are just SO(d+1, 1) Lorentz transformations
of Minkowski space Md+2. The conformal block decomposition can then be written as

〈O1(P1)O2(P2)O3(P3)O4(P4)〉 =
∑
k

C12kCk34G
(12)(34)
∆k,lk

(P1, . . . , P4) (2.208)
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where

G
(12)(34)
∆,l (P1, . . . , P4) =

1

P
(∆1+∆2)/2
12 P

(∆3+∆4)/2
34

(
P24

P14

)∆12
2
(
P14

P13

)∆34
2

g∆,l(u, v) ,

(2.209)

Pij = −2Pi · Pj and u, v are conformal invariant cross ratios

u =
P12P34

P13P24
, v =

P14P23

P13P24
. (2.210)

The conformal blocks are eigenfunctions of the conformal Casimir,

1

2
(J1,AB+J2,AB)(JAB1 +JAB2 )G

(12)(34)
∆,l (P1, . . . , P4) = C∆,lG

(12)(34)
∆,l (P1, . . . , P4) , (2.211)

with eigenvalue C∆,l = ∆(∆− d) + l(l + d− 2), where

JAB = i

(
PA

∂

∂PB
− PB

∂

∂PA

)
(2.212)

are the Lorentz generators in Md+2 with indices A,B = 0, 1, . . . , d+ 1.
a.* Show (using Mathematica) that (2.211) together with (2.209) is equivalent to

D g∆,l(u, v) =
1

2
C∆,l g∆,l(u, v) (2.213)

where

D =(1− u− v)
∂

∂v

(
v
∂

∂v
+ a+ b

)
+ u

∂

∂u

(
2u

∂

∂u
− d
)

(2.214)

− (1 + u− v)

(
u
∂

∂u
+ v

∂

∂v
+ a

)(
u
∂

∂u
+ v

∂

∂v
+ b

)
(2.215)

and a = (∆2 −∆1)/2 and b = (∆3 −∆4)/2.
b. Transform to the coordinates z and z̄ defined in (2.202) and obtain

D = Dz +Dz̄ + (d− 2)
zz̄

z − z̄

(
(1− z) ∂

∂z
− (1− z̄) ∂

∂z̄

)
(2.216)

with

Dz = z2(1− z) ∂
2

∂z2
− (a+ b+ 1)z2 ∂

∂z
− abz . (2.217)

c. In two dimensions, the partial differential equation separates in two ordinary
differential equations. Show that

g∆,l =
k∆+l(z)k∆−l(z̄) + k∆+l(z̄)k∆−l(z)

2l(1 + δl,0)
(2.218)
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satisfies the boundary condition (2.205) if kβ(z) ≈ zβ/2 for small z, and the Casimir
differential equation if

Dzkβ(z) =
β

2

(
β

2
+ 1

)
kβ(z) . (2.219)

Conclude that
kβ(z) = zβ/2 2F1

(
β

2
+ a,

β

2
+ b, β, z

)
. (2.220)

d. Check that

g∆,l =
zz̄

2l(z − z̄)
(
k∆+l(z)k∆−l−2(z̄)− k∆+l(z̄)k∆−l−2(z)

)
(2.221)

satisfies both the differential equation and the boundary condition in d = 4.

Exercise 2.15.7 Stress tensor three-point function
The goal of this exercise is to determine how many independent tensor structures

are available for the three point function of the stress-energy tensor in a conformal field
theory. You should use the embedding formalism to encode the operator T ab(x) in a field
T (P,Z) obeying T (λP, αZ + βP ) = λdα2T (P,Z). Then, the general solution compatible
with conformal symmetry (and permutation symmetry and parity invariance) is

〈T (P1, Z1)T (P2, Z2)T (P3, Z3)〉 =
a1G000 + a2G100 + a3G110 + a4G200 + a5G111

(P12P13P23)
d+2

2

(2.222)
where Pij = −2Pi · Pj and

G000 = V 2
1 V

2
2 V

2
3 (2.223)

G100 = H12V1V2V
2

3 + permutations (2.224)
G110 = H12H13V2V3 + permutations (2.225)

G200 = H2
12V

2
3 + permutations (2.226)

G111 = H12H13H23 (2.227)

with V1 = V1,23, V2 = V2,31 and V3 = V3,12. The coefficients ak are further constrained by
requiring conservation of the stress-energy tensor. This corresponds to the condition[(

h− 1 + Z · ∂
∂Z

)
∂

∂Z
· ∂
∂P
− 1

2
Z · ∂

∂P

∂2

∂Z · ∂Z

]
〈T (P,Z)T (P2, Z2)T (P3, Z3)〉 = 0

(2.228)
a. Implement this condition in Mathematica and show that it is equivalent to

0 = a1 − h(h+ 3)a3 + 2h(h+ 5)a4 − 4(h2 − 1)a5 (2.229)

0 = a2 − (h+ 1)a3 + 4ha4 − 2(h2 − 1)a5 (2.230)

Tips

1. Define a scalar product to represent Zi · Zj, Zi · Pj and Pi · Pj. You can use the
function CenterDot and give it some useful properties like Zi · Zi = 0.
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2. Define a derivative operator ∂
∂MA with respect to a vector with an open index (MA

could be ZAi or PAi ). The basic rules that you need to give are ∂
∂MAMB = ηAB and

∂
∂MAM ·Q = QA.

3. Implement rules for index contraction.

4. After acting on the ansatz (2.222) with the differential operator that takes the
divergence, as in (2.228), you will need to identify the independent building blocks
in the result. produced by the action of the operator in (2.228). After performing all
index contractions, you should be able to rewrite all Zi · Zj in terms of Hij and all
Zi · Pj in terms of Vi.

b. In 3 dimensions not all building blocks are independent. This follows from the fact
that the 6 vectors Zi and Pi can not be linearly independent in 3 + 2 = 5 dimensions.
Show that this reduces the number of independent tensor structures of the 3pt function of
the stress-energy tensor from 3 to 2. Hint: show that the determinant of the 6× 6 matrix
of dot products Zi · Zj, with Zi → Pi−3 for i = 4, 5, 6, is proportional to the numerator of
(2.222) with (a1, a2, a3, a4, a5) = (4, 4, 2, 1, 2).

Exercise 2.15.8 Conformal Ward Identity in 2D
Consider the Ward identity

δε〈O1(z1) . . .On(zn)〉 =
1

2πi

˛
ε(z)〈T (z)O1(z1) . . .On(zn)〉 (2.231)

where δε denotes the variation under a conformal transformation parametrized by ε(z),
T (z) is the holomorphic part of the stress-energy tensor and the integration contour
encircles the insertion points zi of the local operators Oi.

a) Derive the variation δεO of a Virasoro primary field under a conformal transfor-
mation, from the Ward identity above and the OPE

T (z)O(w) ∼ h

(z − w)2
O(w) +

1

z − w∂O(w) (2.232)

b) Derive the OPE of the stress tensor T (z) with itself from

δεT (z) = ε(z)∂T (z) + 2ε′(z)T (z) +
c

12
ε′′′(z) (2.233)

c) Use this OPE to derive the following recursion formula for n-point functions of
T (z),

〈T (z)T (z1)...T (zn)〉 =
n∑
i=1

c

2(z − zi)4
〈T (z1)...T (zi−1)T (zi+1) . . . T (zn)〉 (2.234)

+
n∑
i=1

(
2

(z − zi)2
+

1

z − zi
∂

∂zi

)
〈T (z1)...T (zn)〉 .
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Notice that this shows that all n-point functions of the stress tensor T (z) are entirely fixed
given the central charge c. Do you think this simplicity extends to higher dimensional
CFTs?

d) Use the recursion formula (2.234) to determine the 3-point function

〈T (z1)T (z2)T (z3)〉 . (2.235)

Exercise 2.15.9 Compactified Free Boson
Consider the Euclidean action for a real scalar field ϕ on a two dimensional torus

S[ϕ] =
1

2

ˆ β

0
dτ

ˆ L

0
dσ
[
(∂τϕ)2 + (∂σϕ)2

]
. (2.236)

The partition function is given by the functional integral

Z =

ˆ
[dϕ]e−S[ϕ] , (2.237)

where we sum over all possible field configurations on the torus. The field ϕ takes values
on a circle of radius R. In other words, we identify ϕ with ϕ + 2πR and, in the path
integral, we sum over all field configurations that obey the periodicity conditions

ϕ(τ, σ) = ϕ(τ, σ + L) + 2πRw1 = ϕ(τ + β, σ) + 2πRw2 , w1, w2 ∈ Z . (2.238)

In order to evaluate the path integral it is convenient to expand the field in Fourier modes

ϕ(τ, σ) = 2πRw
σ

L
+

∞∑
n=−∞

an(τ)e2πin σ
L (2.239)

where a−n(τ) = a∗n(τ) and w ∈ Z is often called the winding number.
a) Show that the partition function factorizes into a quantum mechanical path integral

for each mode,

Z =
∑
w∈Z

e−β
2π2R2w2

L

ˆ
[da0]e−

L
2

´ β
0 dτ (∂τa0)2

∞∏
n=1

Zn , (2.240)

where
Zn =

ˆ
[danda

∗
n]e
−L
´ β
0 dτ

[
|∂τan|2+( 2πn

L )
2|an|2

]
. (2.241)

b) Show that

Zn
Zm

=
sinh2 πβm

L

sinh2 πβn
L

=

∑∞
Nn=0

∑∞
N̄n=0 e

−β 2πn
L

(Nn+N̄n+1)∑∞
Nm=0

∑∞
N̄m=0 e

−β 2πm
L

(Nm+N̄m+1)
. (2.242)

Suggestion: Expand an(τ) and am(τ) in Fourier modes. The following identity might be
useful

∞∏
k=1

(
1 +

x2

k2

)
=

sinh(πx)

πx
. (2.243)
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c) Notice that the zero mode a0(τ) behaves like a free particle in a periodic box of size
2πR. More precisely, argue that

Z0 =

ˆ
[da0]e−

L
2

´ β
0 dτ (∂τa0)2

= Tr e−βĤ Ĥ =
1

2L
p̂ 2 , (2.244)

with p̂ the momentum conjugate to a0. Use this canonical language to show that

Z0 =
∑
k∈Z

e−β
k2

2LR2 . (2.245)

d) From (2.242) and the expected partition function for an harmonic oscillator, we
conclude that

Zn =

∞∑
Nn=0

∞∑
N̄n=0

e−β
2πn
L

(Nn+N̄n+1) . (2.246)

The product over all non-zero modes then gives

∞∏
n=1

Zn = e−βE0

∞∏
n=1

∞∑
Nn=0

∞∑
N̄n=0

e−β
2πn
L

(Nn+N̄n) , (2.247)

where E0 = 2π
L

∑∞
n=1 n is the sum over all zero-point energies of the harmonic oscillators.

Renormalize this vacuum energy by regulating the sum
∑∞

n=1 n→
∑∞

n=1 ne
−εn, with ε > 0,

and keeping only the constant term in the series expansion around ε = 0.
e) By putting everything together, determine the spectrum of the original theory

(2.236) and show that it is invariant under R → 1/(2πR) (this is called T-duality in
String Theory).
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Anti-de Sitter Spacetime

Euclidean AdS spacetime is the hyperboloid

−
(
X0
)2

+
(
X1
)2

+ · · ·+
(
Xd+1

)2
= −R2 , X0 > 0 , (3.1)

embedded in Rd+1,1. For large values of X0 this hyperboloid approaches the light-cone of
the embedding space that we discussed in section 2.12. It is clear from the definition that
Euclidean AdS is invariant under SO(d+ 1, 1). The generators are given by

JAB = −i
(
XA

∂

∂XB
−XB

∂

∂XA

)
. (3.2)

Poincaré coordinates are defined by

X0 = R
1 + x2 + z2

2z

Xµ = R
xµ

z
(3.3)

Xd+1 = R
1− x2 − z2

2z

where xµ ∈ Rd and z > 0. In these coordinates, the metric reads

ds2 = R2dz
2 + δµνdx

µdxν

z2
. (3.4)

This shows that AdS is conformal to R+ ×Rd whose boundary at z = 0 is just Rd. These
coordinates make explicit the subgroup SO(1, 1)× ISO(d) of the full isometry group of
AdS. These correspond to dilatation and Poincaré symmetries inside the d−dimensional
conformal group. In particular, the dilatation generator is

D = −i J0,d+1 = −X0
∂

∂Xd+1
+Xd+1

∂

∂X0
= −z ∂

∂z
− xµ ∂

∂xµ
. (3.5)

Another useful coordinate system is

X0 = R cosh τ cosh ρ

Xµ = RΩµ sinh ρ (3.6)
Xd+1 = −R sinh τ cosh ρ

61
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where Ωµ (µ = 1, . . . , d) parametrizes a unit (d− 1)−dimensional sphere, Ω · Ω = 1. The
metric is given by

ds2 = R2
[
cosh2 ρ dτ2 + dρ2 + sinh2 ρ dΩ2

d−1

]
. (3.7)

To understand the global structure of this spacetime it is convenient to change the radial
coordinate via tanh ρ = sin r so that r ∈ [0, π2 [. Then, the metric becomes

ds2 =
R2

cos2 r

[
dτ2 + dr2 + sin2 r dΩ2

d−1

]
, (3.8)

which is conformal to a solid cylinder whose boundary at r = π
2 is R × Sd−1. In these

coordinates, the dilatation generator D = −i J0,d+1 = − ∂
∂τ is the hamiltonian conjugate

to global time.

Exercise 3.0.1 Anderson localization and diffusion on the Poincaré disk
Consider a conducting wire. We model the small defects in the wire by a random

potential V (x). We shall consider that the defects are rare and spaced by the typical length
L. Away from the defects, we assume the potential vanishes and therefore the electron
wavefunction is given by

a eikx + b e−ikx . (3.9)

Show that the effect of the n-th defect can be described by the matching conditions[
an
bn

]
= Un

[
an+1

bn+1

]
Un =

[
1/tn r∗n/t

∗
n

rn/tn 1/t∗n

]
(3.10)

where tn and rn are the transmission and reflection coefficients of the n-th defect. Recall
that conservation of probability implies that |tn|2 + |rn|2 = 1. Show that the effective
reflection coefficient Rn of the first n defects obeys the following recursion relation

Rn+1 =
Rn + wn

1 +R∗nwn
, wn =

Tn
T ∗n
rn+1 . (3.11)

We model each defect by a random (complex) reflection coefficient with average 〈r〉 = 0 and
variance 〈rr∗〉 = ε2 � 1. Notice that wn is a random variable with the same statistical
properties as rn+1. For ε� 1, we can approximate

Rn+1 = Rn + wn
(
1− |Rn|2

)
+O(w2

n) . (3.12)

Show that this random process leads to the following diffusion equation

1

D

∂P

∂z
=

1

4

∂2

∂R∂R∗
(
1− |R|2

)2
P , D =

4ε2

L
, (3.13)

where P (R, z) is the probability that the reflection coefficient for a length z of the wire
takes the value R. Notice that this can be written more geometrically has a diffusion
equation on the Poincare disk (or Euclidean AdS2)

1

D

∂F

∂z
= ∇2F , P =

√
gF , (3.14)
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where the metric is given by

ds2 =
4dRdR∗

(1− |R|2)2 = dρ2 + sinh2 ρ dφ2 =
du2

u2 − 1
+ (u2 − 1)dφ2 , (3.15)

with the parametrizations R = eiφ tanh ρ
2 and u = cosh ρ.

Show that

1

D

d

dz
〈u〉 = 2〈u〉 , 〈u〉 =

ˆ ∞
1

du

ˆ 2π

0
dφF (z, u, φ)u , (3.16)

Using the initial condition 〈u〉 = 1 for z = 0 (zero reflection coefficient for a short wire),
this gives

〈u〉 = e2zD , (3.17)

which implies that the average reflection coefficient tends to 1 exponentially fast with the
length of the wire. Therefore, any small disorder generates localized states in 1D. This is
called Anderson localization and the length scale 1/(2D) is called the localization length.

Challenge: Find (an integral representation of) the solution of the diffusion equation
with initial condition

F (z = 0, u, φ) = δ(u− 1) . (3.18)

3.1 Particle dynamics in AdS

For most purposes it is more convenient to work in Euclidean signature and analytically
continue to Lorentzian signature only at the end of the calculation. However, it is
important to discuss the Lorentzian signature to gain some intuition about real time
dynamics. In this case, AdS is defined by the universal cover of the manifold

−
(
X0
)2

+
(
X1
)2

+ · · ·+
(
Xd
)2
−
(
Xd+1

)2
= −R2 , (3.19)

embedded in Rd,2. The universal cover means that we should unroll the non-contractible
(timelike) cycle. To see this explicitly it is convenient to introduce global coordinates1

X0 = R cos t cosh ρ

Xµ = RΩµ sinh ρ (3.20)
Xd+1 = −R sin t cosh ρ

where Ωµ (µ = 1, . . . , d) parametrizes a unit (d− 1)−dimensional sphere. The original
hyperboloid is covered with t ∈ [0, 2π[ but we consider t ∈ R. The metric is given by

ds2 = R2
[
− cosh2 ρ dt2 + dρ2 + sinh2 ρ dΩ2

d−1

]
. (3.21)

1Notice that this is just the analytic continuation τ → i t and Xd+1 → iXd+1 of the Euclidean global
coordinates (3.6).
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To understand the global structure of this spacetime it is convenient to change the
radial coordinate via tanh ρ = sin r so that r ∈ [0, π2 [. Then, the metric becomes

ds2 =
R2

cos2 r

[
−dt2 + dr2 + sin2 r dΩ2

d−1

]
, (3.22)

which is conformal to a solid cylinder whose boundary at r = π
2 is R× Sd−1.

Geodesics are given by the intersection of AdS with 2-planes through the origin of
the embedding space. In global coordinates, the simplest timelike geodesic describes a
particle sitting at ρ = 0. This corresponds to (the universal cover of) the intersection of
Xµ = 0 for µ = 1, . . . , d with the hyperboloid (3.19). Performing a boost in the X1, Xd+1

plane we can obtain an equivalent timelike geodesic X1 coshβ = Xd+1 sinhβ and Xµ = 0
for µ = 2, . . . , d. In global coordinates, this gives an oscillating trajectory

tanh ρ = tanhβ sin t , (3.23)

with period 2π. In fact, all timelike geodesics oscillate with period 2π in global time.
One can say AdS acts like a box that confines massive particles. However, it is a very
symmetric box that does not have a center because all points are equivalent.

Null geodesics in AdS are also null geodesics in the embedding space. For example,
the null ray Xd+1 −X1 = X0 −R = Xµ = 0 for µ = 2, . . . , d is a null ray in AdS which
in global coordinates is given by cosh ρ = 1

cos t . This describes a light ray that passes
through the origin at t = 0 and reaches the conformal boundary ρ =∞ at t = ±π

2 . All
light rays in AdS start and end at the conformal boundary traveling for a global time
interval equal to π.

One can also introduce Poincaré coordinates

Xµ = R
xµ

z

Xd =
R

2

1− x2 − z2

z
(3.24)

Xd+1 =
R

2

1 + x2 + z2

z

where now µ = 0, 1, . . . , d − 1 and x2 = ηµνx
µxν . However, in Lorentzian signature,

Poincaré coordinates do not cover the entire spacetime. Surfaces of constant z approach
the light-like surface Xd +Xd+1 = 0 when z →∞. This null surface is often called the
Poincaré horizon.

We have seen that AdS acts like a box for classical massive particles. Quantum
mechanically, this confining potential gives rise to a discrete energy spectrum. Consider
the Klein-Gordon equation

∇2φ = m2φ , (3.25)

in global coordinates (3.21). In order to emphasize the correspondence with CFT we will
solve this problem using an indirect route. Firstly, consider the action of the quadratic
Casimir of the AdS isometry group on a scalar field

1

2
JABJ

BAφ =
[
−X2∂2

X +X · ∂X (d+X · ∂X)
]
φ . (3.26)
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Formally, we are extending the function φ from AdS, defined by the hypersurface X2 =
−R2, to the embedding space. However, the action of the quadratic Casimir is independent
of this extension because the generators JAB are interior to AdS, i.e.

[
JAB, X

2 +R2
]

= 0.
If we foliate the embedding space Rd,2 with AdS surfaces of different radii R, we obtain
that the laplacian in the embedding space can be written as

∂2
X = − 1

Rd+1

∂

∂R
Rd+1 ∂

∂R
+∇2

AdS . (3.27)

Substituting this in (3.26) and noticing that X · ∂X = R∂R we conclude that

1

2
JABJ

BAφ = R2∇2
AdSφ . (3.28)

Therefore, we should identify m2R2 with the quadratic Casimir of the conformal group.
The Lorentzian version of the conformal generators (2.122) is

D = −J0,d+1 , Pµ = Jµ0 + i Jµ,d+1 , (3.29)
Mµν = Jµν , Kµ = Jµ0 − i Jµ,d+1 . (3.30)

Exercise 3.1.1 Show that, in global coordinates, the conformal generators take the form

D = i
∂

∂t
, Mµν = −i

(
Ωµ

∂

∂Ων
− Ων

∂

∂Ωµ

)
,

Pµ = −ie−it
[
Ωµ (∂ρ − i tanh ρ ∂t) +

1

tanh ρ
∇µ
]
,

Kµ = ieit
[
Ωµ (−∂ρ − i tanh ρ ∂t)−

1

tanh ρ
∇µ
]
,

where ∇µ = ∂
∂Ωµ − ΩµΩν ∂

∂Ων is the covariant derivative on the unit sphere Sd−1.

In analogy with the CFT construction we can look for primary states, which are
annihilated by Kµ and are eigenstates of the hamiltonian, Dφ = ∆φ. The condition
Kµφ = 0 splits in one term proportional to Ωµ and one term orthogonal to Ωµ. The
second term implies that φ is independent of the angular variables Ωµ. The first term
gives (∂ρ + ∆ tanh ρ)φ = 0, which implies that

φ ∝
(

e−it

cosh ρ

)∆

=

(
R

X0 − iXd+1

)∆

. (3.31)

This is the lowest energy state. One can get excited states acting with Pµ. Notice that
all this states will have the same value of the quadratic Casimir

1

2
JABJ

BAφ = ∆(∆− d)φ . (3.32)

This way one can generate all normalizable solutions of∇2φ = m2φ withm2R2 = ∆(∆−d).
This shows that the one-particle energy spectrum is given by ω = ∆ + l + 2n where
l = 0, 1, 2, . . . is the spin, generated by acting with Pµ1 . . . Pµl−traces , and n = 0, 1, 2, . . .
is generated by acting with

(
P 2
)n.
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Exercise 3.1.2 Given the symmetry of the metric (3.22) we can look for solutions of the
form

φ = eiωtYl(Ω)F (r) , (3.33)

where Yl(Ω) is a spherical harmonic with eigenvalue −l(l + d− 2) of the laplacian on the
unit sphere Sd−1. Derive a differential equation for F (r) and show that it is solved by

F (r) = (cos r)∆ (sin r)l 2F1

(
l + ∆− ω

2
,
l + ∆ + ω

2
, l +

d

2
, sin2 r

)
, (3.34)

with 2∆ = d+
√
d2 + 4(mR)2. We chose this solution because it is smooth at r = 0. We

also need to impose another boundary condition at the boundary of AdS r = π
2 . Imposing

that there is no energy flux through the boundary leads to the quantization of the energies
|ω| = ∆ + l + 2n with n = 0, 1, 2, . . . (see reference [9]).

If there are no interactions between the particles in AdS, then the Hilbert space is a
Fock space and the energy of a multi-particle state is just the sum of the energies of each
particle. Turning on small interactions leads to small energy shifts of the multi-particle
states. This structure is very similar to the space of local operators in large N CFTs if
we identify single-particle states with single-trace operators.

3.2 Quantum Field Theory in AdS

Let us now return to Euclidean signature and consider QFT on the AdS background. For
simplicity, consider a free scalar field with action

S =

ˆ
AdS

dX

[
1

2
(∇φ)2 +

1

2
m2φ2

]
. (3.35)

The two-point function 〈φ(X)φ(Y )〉 is given by the propagator Π(X,Y ), which obeys[
∇2
X −m2

]
Π(X,Y ) = −δ(X,Y ) . (3.36)

From the symmetry of the problem it is clear that the propagator can only depend on
the invariant X · Y or equivalently on the chordal distance ζ = (X − Y )2/R2. From now
on we will set R = 1 and all lengths will be expressed in units of the AdS radius.

Exercise 3.2.1 Use (3.26) and (3.28) to show that

Π(X,Y ) =
C∆

ζ∆ 2F1

(
∆,∆− d

2
+

1

2
, 2∆− d+ 1,−4

ζ

)
, (3.37)

where 2∆ = d+
√
d2 + (2m)2 and

C∆ =
Γ(∆)

2π
d
2 Γ
(
∆− d

2 + 1
) . (3.38)
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For a free field, higher point functions are simply given by Wick contractions. For
example,

〈φ(X1)φ(X2)φ(X3)φ(X4)〉 = Π(X1, X2)Π(X3, X4) + Π(X1, X3)Π(X2, X4)

+ Π(X1, X4)Π(X2, X3) . (3.39)

Weak interactions of φ can be treated perturbatively. Suppose the action includes a cubic
term,

S =

ˆ
AdS

dX

[
1

2
(∇φ)2 +

1

2
m2φ2 +

1

3!
gφ3

]
. (3.40)

Then, there is a non-vanishing three-point function

〈φ(X1)φ(X2)φ(X3)〉 = −g
ˆ
AdS

dY Π(X1, Y )Π(X2, Y )Π(X3, Y ) +O(g3) ,

and a connected part of the four-point function of order g2. This is very similar to
perturbative QFT in flat space.

Given a correlation function in AdS we can consider the limit where we send all points
to infinity. More precisely, we introduce

O(P ) =
1√
C∆

lim
λ→∞

λ∆ φ (X = λP + . . . ) , (3.41)

where P is a future directed null vector in Rd+1,1 and the . . . denote terms that do not
grow with λ whose only purpose is to enforce the AdS condition X2 = −1. In other words,
the operator O(P ) is the limit of the field φ(X) when X approaches the boundary point
P of AdS. Notice that, by definition, the operator O(P ) obeys the homogeneity condition
(2.115). Correlation functions of O are naturally defined by the limit of correlation
functions of φ in AdS. For example, the two-point function is given by

〈O(P1)O(P2)〉 =
1

(−2P1 · P2)∆
+O(g2) , (3.42)

which is exactly the CFT two-point function of a primary operator of dimension ∆. The
three-point function 〈O(P1)O(P2)O(P3)〉 is given by

− g C−
3
2

∆

ˆ
AdS

dX Π(X,P1)Π(X,P2)Π(X,P3) +O(g3) , (3.43)

where

Π(X,P ) = lim
λ→∞

λ∆ Π (X,Y = λP + . . . ) =
C∆

(−2P ·X)∆
(3.44)

is the bulk to boundary propagator.

Exercise 3.2.2 Write the bulk to boundary propagator in Poincaré coordinates.
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Exercise 3.2.3 Compute the following generalization of the integral in (3.43),

ˆ
AdS

dX
3∏
i=1

1

(−2Pi ·X)∆i
, (3.45)

and show that it reproduces the expected formula for the CFT three-point function
〈O1(P1)O2(P2)O3(P3)〉. It is helpful to use the integral representation

1

(−2P ·X)∆
=

1

Γ(∆)

ˆ ∞
0

ds

s
s∆e2sP ·X (3.46)

to bring the AdS integral to the form
ˆ
AdS

dXe2X·Q (3.47)

with Q a future directed timelike vector. Choosing the X0 direction along Q and using the
Poincaré coordinates (3.3) it is easy to show that

ˆ
AdS

dXe2X·Q = π
d
2

ˆ ∞
0

dz

z
z−

d
2 e−z+Q

2/z . (3.48)

To factorize the remaining integrals over s1, s2, s3 and z it is helpful to change to the
variables t1, t2, t3 and z using

si =

√
z t1t2t3
ti

. (3.49)

3.2.1 State-Operator Map

We have seen that the correlation functions of the boundary operator (3.41) have the
correct homogeneity property and SO(d+ 1, 1) invariance expected of CFT correlators of
a primary scalar operator with scaling dimension ∆. We will now argue that they also
obey an associative OPE. The argument is very similar to the one used in CFT. We think
of the correlation functions as vacuum expectation values of time ordered products

〈φ(X1)φ(X2)φ(X3) . . . 〉 = 〈0| . . . φ̂(τ3, ρ3,Ω3)φ̂(τ2, ρ2,Ω2)φ̂(τ1, ρ1,Ω1) |0〉 ,

where we assumed τ1 < τ2 < 0 < τ3 < . . . . We then insert a complete basis of states at
τ = 0,

〈φ(X1)φ(X2)φ(X3) . . . 〉 (3.50)

=
∑
ψ

〈0| . . . φ̂(τ3, ρ3,Ω3) |ψ〉 〈ψ| φ̂(τ2, ρ2,Ω2)φ̂(τ1, ρ1,Ω1) |0〉 .

Using φ̂(τ, ρ,Ω) = eτDφ̂(0, ρ,Ω)e−τD and choosing an eigenbasis of the Hamiltonian
D = − ∂

∂τ it is clear that the sum converges for the assumed time ordering. The next
step, is to establish a one-to-one map between the states |ψ〉 and boundary operators.
It is clear that every boundary operator (3.41) defines a state. Inserting the boundary
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operator at PA =
(
P 0, Pµ, P d+1

)
=
(

1
2 , 0,

1
2

)
, which is the boundary point defined by

τ → −∞ in global coordinates, we can write

〈. . . φ(X3)O(P )〉 = 〈0| . . . φ̂(τ3, ρ3,Ω3) |O〉 , (3.51)

where

|O〉 = lim
τ→−∞

(
e−τ cosh ρ

)∆
φ̂(τ, ρ,Ω) |0〉 (3.52)

=
∑
ψ

|ψ〉 (cosh ρ)∆ lim
τ→−∞

〈ψ| eτ(D−∆)φ̂(0, ρ,Ω) |0〉 .

The limit τ → −∞ projects onto the primary state with wave function (3.31).
The map from states to boundary operators can be established using global time

translation invariance,

〈0| . . . φ̂(τ3, ρ3,Ω3) |ψ(0)〉 (3.53)

= lim
τ→−∞

〈0| . . . φ̂(τ3, ρ3,Ω3)eτD |ψ(τ)〉 ≡ 〈. . . φ(X3)Oψ(P )〉

where |ψ(τ)〉 = e−τD|ψ〉 and PA =
(

1
2 , 0,

1
2

)
is again the boundary point defined by

τ → −∞ in global coordinates. The idea is that |ψ(τ)〉 prepares a boundary condition
for the path integral on a surface of constant τ and this surface converges to a small cap
around the boundary point PA =

(
1
2 , 0,

1
2

)
when τ → −∞. This is depicted in figure 3.1.

τ = −∞ τ = ∞

Figure 3.1 Curves of constant τ (in blue) and constant ρ (in red) for AdS2 stereographically
projected to the unit disk (Poincaré disk). This shows how surfaces of constant τ converge to a
boundary bound when τ → −∞. The cartesian coordinates in the plane of the figure are given
by ~w = (cosh ρ sinh τ,sinh ρ)

1+cosh ρ cosh τ which puts the AdS2 metric in the form ds2 = 4d~w2

1−~w2 .

The Hilbert space of the bulk theory can be decomposed in irreducible representations
of the isometry group SO(d+ 1, 1). These are the highest weight representations of the
conformal group, labelled by the scaling dimension and SO(d) irrep of the the primary
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state. Therefore, the CFT conformal block decomposition of correlators follows from the
partial wave decomposition in AdS, i.e. the decomposition in intermediate eigenstates of
the Hamiltonian organized in irreps of the isometry group SO(d+ 1, 1). For example, the
conformal block decomposition of the disconnected part of the four-point function,

〈O(P1) . . .O(P4)〉 =
1

(P12P34)∆
+

1

(P13P24)∆
+

1

(P14P23)∆
, (3.54)

where Pij = −2Pi · Pj , is given by a sum of conformal blocks associated with the vacuum
and two-particle intermediate states

〈O(P1) . . .O(P4)〉 = G0,0(P1, . . . , P4) +

∞∑
l=0
even

∞∑
n=0

cn,lG2∆+2n+l,l(P1, . . . , P4) .

Exercise 3.2.4 Check this statement in d = 2 using the formula [30]

GE,l(P1, P2, P3, P4) =
k(E + l, z)k(E − l, z̄) + k(E − l, z)k(E + l, z̄)

(−2P1 · P2)∆ (−2P3 · P4)∆ (1 + δl,0)
(3.55)

where
k(2β, z) = (−z)β 2F1(β, β, 2β, z) . (3.56)

Determine the coefficients cn,l for n ≤ 1 by matching the Taylor series expansion around
z = z̄ = 0. Extra: using a computer you can compute many coefficients and guess the
general formula.

3.2.2 Generating function

There is an equivalent way of defining CFT correlation functions from QFT in AdS. We
introduce the generating function

W [φb] =
〈
e
´
∂AdS dPφb(P )O(P )

〉
, (3.57)

where the integral over ∂AdS denotes an integral over a chosen section of the null cone in
Rd+1,1 with its induced measure. We impose that the source obeys φb(λP ) = λ∆−dφb(P )
so that the integral is invariant under a change of section, i.e. conformal invariant. For
example, in the Poincaré section the integral reduces to

´
ddxφb(x)O(x). Correlation

functions are easily obtained with functional derivatives

〈O(P1) . . .O(Pn)〉 =
δ

δφb(P1)
. . .

δ

δφb(Pn)
W [φb]

∣∣∣∣
φb=0

. (3.58)

If we set the generating function to be equal to the path integral over the field φ in AdS

W [φb] =

´
φ→φb [dφ] e−S[φ]

´
φ→0 [dφ] e−S[φ]

, (3.59)
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with the boundary condition that it approaches the source φb at the boundary,

lim
λ→∞

λd−∆φ(X = λP + . . . ) =
1

2∆− d
1√
C∆

φb(P ) , (3.60)

then we recover the correlation functions of O defined above as limits of the correlation
functions of φ.

For a quadratic bulk action, tha ratio of path intagrals in (3.59) is given e−S computed
on the classical solution obeying the required boundary conditions. A natural guess for
this solution is

φ(X) =
√
C∆

ˆ
∂AdS

dP
φb(P )

(−2P ·X)∆
. (3.61)

This automatically solves the AdS equation of motion ∇2φ = m2φ, because it is an
homogeneous function of weight −∆ and it obeys ∂A∂Aφ = 0 in the embedding space
(see equations (3.26) and (3.28)). To see that it also obeys the boundary condition (3.60)
it is convenient to use the Poincaré section.

Exercise 3.2.5 In the Poincaré section (2.114) and using Poincaré coordinates (3.3),
formula (3.61) reads

φ (z, x) =
√
C∆

ˆ
ddy

z∆φb(y)

(z2 + (x− y)2)∆
(3.62)

and (3.60) reads

lim
z→0

z∆−dφ(z, x) =
1

2∆− d
1√
C∆

φb(x) . (3.63)

Show that (3.63) follows from (3.62). You can assume 2∆ > d.

The cubic term 1
3!gφ

3 in the action will lead to (calculable) corrections of order g in
the classical solution (3.61). To determine the generating function W [φb] in the classical
limit we just have to compute the value of the bulk action (3.40) on the classical solution.
However, before doing that, we have to address a small subtlety. We need to add a
boundary term to the action (3.40) in order to have a well posed variational problem.

Exercise 3.2.6 The coefficient β should be chosen such that the quadratic action 2

S2 =

ˆ
AdS

dw
√
G

[
1

2
(∇φ)2 +

1

2
m2φ2

]
+ β

ˆ
AdS

dw
√
G∇α (φ∇αφ) (3.64)

is stationary around a classical solution obeying (3.63) for any variation δφ that preserves
the boundary condition, i.e.

δφ(z, x) = z∆ [f(x) +O(z)] . (3.65)
2Here w stands for a generic coordinate in AdS and the index α runs over the d+ 1 dimensions of

AdS.
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Show that β = ∆−d
d and that the on-shell action is given by a boundary term

S2 =
2∆− d

2d

ˆ
AdS

dw
√
g∇α (φ∇αφ) . (3.66)

Finally, show that for the classical solution (3.62) this action is given by 3

S2 = −1

2

ˆ
ddy1d

dy2φb(y1)φb(y2)K(y1, y2) , (3.67)

where

K(y1, y2) = C∆
2∆− d
d

lim
z→0

ˆ
ddx

zd−1

z∆

(z2 + (x− y1)2)∆
∂z

z∆

(z2 + (x− y2)2)∆

=
1

(y1 − y2)2∆
(3.68)

is the CFT two point function (3.42).

Exercise 3.2.7 Using φ = φ0 + O(g) with φ0 given by (3.61), show that the complete
on-shell action is given by

S = −1

2

ˆ
ddy1d

dy2φb(y1)φb(y2)K(y1, y2) +
1

3!
g

ˆ
AdS

dX [φ0(X)]3 +O(g2) ,

and that this leads to the three-point function (3.43). Extra: Compute the terms of O(g2)
in the on-shell action.

We have seen that QFT on an AdS background naturally defines conformal correlation
functions living on the boundary of AdS. Moreover, we saw that a weakly coupled theory
in AdS gives rise to factorization of CFT correlators like in a large N expansion. However,
there is one missing ingredient to obtain a full-fledged CFT: a stress-energy tensor. In the
next section, we will see that this requires dynamical gravity in AdS. The next exercise
also shows that a free QFT in AdSd+1 can not be dual to a local CFTd.

Exercise 3.2.8 Compute the free-energy of a gas of free scalar particles in AdS. Since
particles are free and bosonic one can create multi-particle states by populating each single
particle state an arbitrary number of times. That means that the total partition function is
a product over all single particle states and it is entirely determined by the single particle
partition function. More precisely, show that

F = −T logZ = −T log
∏
ψsp

( ∞∑
k=0

qkEψsp

)
= −T

∞∑
n=1

1

n
Z1 (qn) , (3.69)

Z1(q) =
∑
ψsp

qEψsp =
q∆

(1− q)d , (3.70)

3This integral is divergent if the source φb is a smooth function and ∆ > d
2
. The divergence comes

from the short distance limit y1 → y2 and does not affect the value of correlation functions at separate
points. Notice that a small value of z > 0 provides a UV regulator.
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where q = e−
1
RT and we have used the single-particle spectrum of the hamiltonian D = − ∂

∂τ
of AdS in global coordinates. Show that

F ≈ −ζ(d+ 1)RdT d+1 (3.71)

in the high temperature regime and compute the entropy using the thermodynamic relation
S = −∂F

∂T . Compare this result with the expectation

S ∼ (RT )d−1 , (3.72)

for the high temperature behaviour of the entropy of a CFT on a sphere Sd−1 of radius R.
See section 4.3 of reference [31] for more details.

3.3 Gravity with AdS boundary conditions

Consider general relativity in the presence of a negative cosmological constant

I[G] =
1

`d−1
P

ˆ
dd+1w

√
G [R− 2Λ] . (3.73)

The AdS geometry

ds2 = R2dz
2 + dxµdx

µ

z2
, (3.74)

is a maximally symmetric classical solution with Λ = −d(d−1)
2R2 . When the AdS radius R

is much larger than the Planck length `P the metric fluctuations are weakly coupled and
form an approximate Fock space of graviton states. One can compute the single graviton
states and verify that they are in one-to-one correspondence with the CFT stress-tensor
operator and its descendants (with AdS energies matching scaling dimensions). One can
also obtain CFT correlation functions of the stress-energy tensor using Witten diagrams in
AdS. The new ingredients are the bulk to boundary and bulk to bulk graviton propagators
[32, 33, 34, 35, 36].

In the gravitational context, it is nicer to use the partition function formulation

Z[gµν , φb] =

ˆ
G→g
φ→φb

[dG] [dφ] e−I[G,φ] (3.75)

where

I[G,φ] =
1

`d−1
P

ˆ
dd+1w

√
G

[
R− 2Λ +

1

2
(∇φ)2 +

1

2
m2φ2

]
(3.76)

and the boundary condition are

ds2 = Gαβdw
αdwβ = R2dz

2 + dxµdxν [gµν(x) +O(z)]

z2
, (3.77)

φ =
zd−∆

2∆− d [φb(x) +O(z)] .
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By construction the partition function is invariant under diffeomorphisms of the boundary
metric gµν . Therefore, this definition implies the Ward identity (2.72). The generating
function is also invariant under Weyl transformations

Z
[
Ω2gµν ,Ω

∆−dφb

]
= Z [gµν , φb] (naive) (3.78)

This follows from the fact that the boundary condition

ds2 = R2dz
2 + dxµdxν

[
Ω2(x)gµν(x) +O(z)

]
z2

(3.79)

φ =
zd−∆

2∆− d
[
Ω∆−d(x)φb(x) +O(z)

]
can be mapped to (3.77) by the following coordinate transformation

z → zΩ− 1

4
z3Ω (∂µ log Ω)2 +O(z5) (3.80)

xµ → xµ − 1

2
z2∂µ log Ω +O(z4)

where indices are raised and contracted using the metric gµν and its inverse. In other
words, a bulk geometry that satisfies (3.77) also satisfies (3.79) with an appropriate choice
of coordinates. If the partition function (3.75) was a finite quantity this would be the end
of the story. However, even in the classical limit, where Z ≈ e−I , the partition function
needs to be regulated. The divergences originate from the z → 0 region and can be
regulated by cutting off the bulk integrals at z = ε (as it happened for the scalar case
discussed above). Since the coordinate transformation (3.80) does not preserve the cutoff,
the regulated partition function is not obviously Weyl invariant. This has been studied in
great detail in the context of holographic renormalization [37, 38]. In particular, it leads
to the Weyl anomaly gµνTµν 6= 0 when d is even. The crucial point is that this is a UV
effect that does not affect the connected correlation functions of operators at separate
points. In particular, the integrated form (2.75)=(2.77) of the conformal Ward identity is
valid.

We do not now how to define the quantum gravity path integral in (3.75). The best
we can do is a semiclassical expansion when `P � R. This semiclassical expansion gives
rise to connected correlators of the stress tensor Tµν that scale as

〈Tµ1ν1(x1) . . . Tµnνn(xn)〉c ∼
(
R

`P

)d−1

. (3.81)

This is exactly the scaling (2.165) we found from large N factorization if we identify

N2 ∼
(
R
`P

)d−1
. This suggests that CFTs related to semiclassical Einstein gravity in AdS,

should have a large number of local degrees of freedom. This can be made more precise.
The two-point function of the stress tensor in a CFT is given by

〈Tµν(x)Tσρ(0)〉 =
CT
S2
d

1

x2d

[
1

2
IµσIνρ +

1

2
IµρIνσ −

1

d
δµνδσρ

]
, (3.82)
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where Sd = 2πd/2

Γ(d/2) is the volume of a (d− 1)-dimensional unit sphere and

Iµν = δµν − 2
xµxν
x2

. (3.83)

The constant CT provides an (approximate) measure of the number of degrees of freedom.4

For instance, for nϕ free scalar fields and nψ free Dirac fields we find [39]

CT = nϕ
d

d− 1
+ nψ2[ d2 ]−1d , (3.84)

where [x] is the integer part of x. If the CFT is described by Einstein gravity in AdS, we
find [32]

CT = 8
d+ 1

d− 1

π
d
2 Γ(d+ 1)

Γ3
(
d
2

) Rd−1

`d−1
P

, (3.85)

which shows that the CFT dual of a semiclassical gravitational theory with R� `P , must
have a very large number of degrees of freedom.

In summary, semiclassical gravity with AdS boundary conditions gives rise to a set of
correlation functions that have all the properties (conformal invariance, Ward identities,
large N factorization) expected for the correlation functions of the stress tensor of a large
N CFT. Therefore, it is natural to ask if a CFT with finite N is a quantum theory of
gravity.

4However, for d > 2, CT is not a c-function that always decreases under Renormalization Group flow.
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The AdS/CFT Correspondence

4.1 Quantum Gravity as CFT

What is quantum gravity? The most conservative answer is a standard quantum me-
chanical theory whose low energy dynamics around a weakly curved background is well
described by general relativity (or some other theory with a dynamical metric). This
viewpoint is particularly useful with asymptotically AdS boundary conditions. In this
case, we can view the AdS geometry with a radius much larger than the Planck length
as a background for excitations (gravitons) that are weakly coupled at low energies.
Therefore, we just need to find a quantum system that reproduces the dynamics of low
energy gravitons in a large AdS. In fact, we should be more precise about the word
“reproduces”. We should define observables in quantum gravity that our quantum system
must reproduce. This is not so easy because the spacetime geometry is dynamical and we
can not define local operators. In fact, the only well defined observables are defined at
the (conformal) boundary like the partition function (3.75) and the associated correlation
functions obtained by taking functional derivatives. But in the previous section we saw
that these observables have all the properties expected for the correlation functions of a
large N CFT. Thus, quantum gravity with AdS boundary conditions is equivalent to a
CFT.

There are many CFTs and not all of them are useful theories of quantum gravity.
Firstly, it is convenient to consider a family of CFTs labeled by N , so that we can match

the bulk semiclassical expansion using N2 ∼
(
R
`P

)d−1
. In the large N limit, every CFT

single-trace primary operator of scaling dimension ∆ gives rise to a weakly coupled field
in AdS with mass m ∼ ∆/R. Therefore, if are looking for a UV completion of pure
gravity in AdS without any other low energy fields, then we need to find a CFT where all
single-trace operators have parametrically large dimension, except the stress tensor. This
requires strong coupling and seems rather hard to achieve. Notice that a weakly coupled
CFT with gauge group SU(N) and fields in the adjoint representation has an infinite
number of primary single-trace operators with order 1 scaling dimension. It is natural to
conjecture that large N factorization and correct spectrum of single-trace operators are
sufficient conditions for a CFT to provide a UV completion of General Relativity (GR)
[40]. However, this is not obvious because we still have to check if the CFT correlation

76
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functions of Tµν match the prediction from GR in AdS. For example, the stress tensor
three-point function is fixed by conformal symmetry to be a linear combination of 3
independent conformal invariant structures. 1 On the other hand, the action (3.73)
predicts a specific linear combination. It is not obvious that all large N CFTs with the
correct spectrum will automatically give rise to the same three-point function. There has
been some recent progress in this respect. The authors of [41] used causality to show
that this is the case. Unfortunately, their argument uses the bulk theory and can not be
formulated entirely in CFT language. In any case, this is just the three-point fuction and
GR predicts the leading large N behaviour of all n-point functions. It is an important
open problem to prove the following conjecture:

Any large N CFT where all single-trace operators, except the stress tensor, have
parametrically large scaling dimensions, has the stress tensor correlation functions predicted
by General Relativity in AdS.

Perhaps the most pressing question is if such CFTs exist at all. At the moment, we
do not know the answer to this question but in the next section we will discuss closely
related examples that are realized in the context of string theory.

If some CFTs are theories of quantum gravity, it is natural to ask if there are other
CFT observables with a nice gravitational interpretation. One interesting example that
will be extensively discussed in this school is the entanglement entropy of a subsystem.
In section 4.3, we will discuss how CFT thermodynamics compares with black hole
thermodynamics in AdS. In addition, in section 4.4 we will give several examples of QFT
phenomena that have beautiful geometric meaning in the holographic dual.

4.2 String Theory

The logical flow presented above is very different from the historical route that led to
the AdS/CFT correspondence. Moreover, from what we said so far AdS/CFT looks like
a very abstract construction without any concrete examples of CFTs that have simple
gravitational duals. If this was the full story probably I would not be writing these lecture
notes. The problem is that we have stated properties that we want for our CFTs but we
have said nothing about how to construct these CFTs besides the fact that they should
be strongly coupled and obey large N factorization. Remarkably, string theory provides
a “method” to find explicit examples of CFTs and their dual gravitational theories.

The basic idea is to consider the low energy description of D-brane systems from
the perspective of open and closed strings. Let us illustrate the argument by quickly
summarizing the prototypical example of AdS/CFT [5]. Consider N coincident D3-
branes of type IIB string theory in 10 dimensional Minkowski spacetime. Closed strings
propagating in 10 dimensions can interact with the D3-branes. This interaction can be
described in two equivalent ways:

(a) D3-branes can be defined as a submanifold where open strings can end. This
means that a closed string interacts with the D3-branes by breaking the string loop into
an open string with endpoints attached to the D3-branes.

1Here we are assuming d ≥ 4. For d = 3 there are only 2 independent structures.
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(b) D3-branes can be defined as solitons of closed string theory. In other words, they
create a non-trivial curved background where closed strings propagate.

(a) (b)

Figure 4.1 (a) Closed string scattering off branes in flat space. (b) Closed string propagating in
a curved background.

These two alternatives are depicted in figure 4.1. Their equivalence is called open/closed
duality. The AdS/CFT correspondence follows from the low-energy limit of open/closed
duality. We implement this low-energy limit by taking the string length `s → 0, keeping
the string coupling gs, the number of branes N and the energy fixed. In description (a), the
low energy excitations of the system form two decoupled sectors: massless closed strings
propagating in 10 dimensional Minkoski spacetime and massless open strings attached
to the D3-branes, which at low energies are well described by N = 4 Supersymmetric
Yang-Mills (SYM) with gauge group SU(N). In description (b), the massless closed
strings propagate in the following geometry

ds2 =
1√
H(r)

ηµνdx
µdxν +

√
H(r)

[
dr2 + r2dΩ2

5

]
, (4.1)

where ηµν is the metric of the 4 dimensional Minkowski space along the branes and

H(r) = 1 +
R4

r4
, R4 = 4πgsN`

4
s . (4.2)

Naively, the limit `s → 0 just produces 10 dimensional Minkowski spacetime. However,
one has to be careful with the region close to the branes at r = 0. A local high energy
excitation in this region will be very redshifted from the point of view of the observer at
infinity. In order to determine the correct low-energy limit in the region around r = 0 we
introduce a new coordinate z = R2/r, which we keep fixed as `s → 0. This leads to

ds2 = R2dz
2 + ηµνdx

µdxν

z2
+R2dΩ2

5 , (4.3)
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which is the metric of AdS5 × S5 both with radius R. Therefore, description (b) also
leads to 2 decoupled sectors of low energy excitations: massless closed strings in 10D and
full type IIB string theory on AdS5 × S5. This led Maldacena to conjecture that

SU(N) SYM ⇔ IIB strings on AdS5 × S5

g2
YM = 4πgs

R4

`4s
= g2

YMN ≡ λ

SYM is conformal for any value of N and the coupling constant g2
YM . The lagrangian

of the theory involves the field strength

Fµν = ∂µAν − ∂νAµ − i [Aµ, Aν ] , (4.4)

6 scalars fields Φm and 4 Weyl fermions Ψa, which are all valued in the adjoint represen-
tation of SU(N). The lagrangian is given by

1

g2
YM

Tr
[

1

4
FµνFµν +

1

2
(DµΦm)2 + Ψ̄aσµDµΨa (4.5)

−1

4
[Φm,Φn]2 − CabmΨa [Φm,Ψb]− C̄mabΨ̄a

[
Φm, Ψ̄b

]]
,

where Dµ is the gauge covariant derivative and Cabm and C̄mab are constants fixed by
the SO(6) = SU(4) global symmetry of the theory. Notice that the isometry group of
AdS5 × S5 is SO(5, 1)× SO(6), which matches precisely the bosonic symmetries of SYM:
conformal group × global SO(6). There are many interesting things to say about SYM.
In some sense, SYM is the simplest interacting QFT in 4 dimensions [42]. However, this
is not the focus of these lectures and we refer the reader to the numerous existing reviews
about SYM [11, 43].

The remarkable conjecture of Maldacena has been extensively tested since it was first
proposed in 1997 [5]. To test this conjecture one has to be able to compute the same
observable on both sides of the duality. This is usually a very difficult task. On the SYM
side, the regime accessible to perturbation theory is g2

YMN � 1. This implies gs � 1,
which on the string theory side suppresses string loops. However, it also implies that the
AdS radius of curvature R is much smaller than the string length `s. This means that the
string worldsheet theory is very strongly coupled. In fact, the easy regime on the string
theory side is gs � 1 and R� `s, so that (locally) strings propagate in an approximately
flat space. Thus, directly testing the conjecture is a formidable task. There are three
situations where a direct check can be made analitycally.

The first situation arises when some observable is independent of the coupling constant.
In this case, one can compute it at weak coupling λ� 1 using the field theory description
and at strong coupling λ� 1 using the string theory description. Usually this involves
completely different techniques but in the end the results agree. Due to the large
supersymmetry of SYM there are many observables that do not depend on the coupling
constant. Notable examples include the scaling dimensions of half BPS single-trace
operators and their three-point functions [44].

The second situation involves observables that depend on the coupling constant λ
but preserve enough supersymmetry that can be computed at any value of λ using a
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technique called localization. Important examples of this type are the sphere partition
function and the expectation value of circular Wilson loops [?, 45].

Finally, the third situation follows from the conjectured integrability of SYM in
the planar limit. Assuming integrability one can compute the scaling dimension of
non-protected single-trace operators at any value of λ and match this result with SYM
perturbative calculations for λ� 1 and with weakly coupled string theory for λ� 1 (see
figure 1 from [46]). Planar scattering amplitudes an three-point functions of single-trace
operators can also be computed using integrability [47, 48].

There are also numerical tests of the gauge/gravity duality. The most impressive
study in this context, was the Monte-Carlo simulation of the BFSS matrix model [49]
at finite temperature that reproduced the predictions from its dual black hole geometry
[50, 51, 52, 53, 54, 55, 56].

How does the Maldacena conjecture fit into the general discussion of the previous
sections? One important novelty is the presence of a large internal sphere on the
gravitational side. We can perform a Kaluza-Klein reduction on S5 and obtain an effective
action for AdS5

1

(2π)7`8s

ˆ
d10x
√
g10e

−2Φ [R10 + . . . ]→ R5

8(2π)4g2
s`

8
s

ˆ
d5x
√
g5 [R5 + . . . ] .

This allows us to identify the 5 dimensional Planck length

`3P =
8(2π)4g2

s`
8
s

R5
(4.6)

and verify the general prediction N2 ∼ R3/`3P . Remarkably, at strong coupling λ� 1 all
single-trace non-protected operators of SYM have parametrically large scaling dimensions.
This is simple to understand from the string point of view. Massive string states have
masses m ∼ 1/`s. But we saw in the previous sections that the dual operator to an
AdS field of mass m has a scaling dimension ∆ ∼ mR ∼ R/`s ∼ λ

1
4 . The only CFT

operators that have small scaling dimension for λ� 1 are dual to massless string states
that constitute the fields of type IIB supergravity (SUGRA). Therefore, one can say that
SYM (with N � λ � 1) provides a UV completion of IIB SUGRA with AdS5 × S5

boundary conditions.
String theory provides more concrete examples of AdS/CFT dual pairs. These

examples usually involve SCFTs (or closely related non-supersymmetry theories). This is
surprising because SUSY played no role in our general discussion. At the moment, it is
not known if SUSY is an essential ingredient of AdS/CFT or if it is only a useful property
that simplifies the calculations. The latter seems more likely but notice that SUSY might
be essential to stabilize very strong coupling and allow the phenomena of large scaling
dimensions for almost all single-trace operators. Another observation is that it turns out
to be very difficult to construct AdS duals with small internal spaces (for SYM we got a
5-sphere with the same radius of AdS5). It is an open problem to find CFTs with gravity
duals in less than 10 dimensions (see [57, 58] for attempts in this direction).

Another interesting class of examples are the dualities between vector models and
Higher Spin Theories (HST) [59, 60]. Consider for simplicity the free O(n) model in 3
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dimensions

S =

ˆ
d3x

n∑
i=1

1

2
∂µϕ

i∂µϕi . (4.7)

In this case, the analogue of single-trace operators are theO(n) singletsOl =
∑

i ϕ
i∂µ1 . . . ∂µlϕ

i

with even spin l and dimension ∆ = 1 + l. At large n, the correlation functions of these
operators factorize with n playing the role of N2 in a SU(N) gauge theory with adjoint
fields. The AdS dual of this CFT is a theory with one massless field for each even spin.
These theories are rather non-local and they can not be defined in flat spacetime. Even
if we introduce the relevant interaction

(
ϕiϕi

)2 and flow to the IR fixed point (Wilson-
Fisher fixed point), the operators Ol with l > 2 get anomalous dimensions of order 1

n and
therefore the classical AdS theory still contains the same number of massless higher spin
fields. This duality has been extended to theories with fermions and to theories where the
global O(n) symmetry is gauged using Chern-Simons gauge fields. It is remarkable that
HST in AdS seems to have the correct structure to reproduce the CFT observables that
have been computed so far. Notice that in these examples of AdS/CFT supersymmetry
plays no role. However, it is unclear if the AdS description is really useful in this case.2

In practice, the large n limit of these vector models is solvable and the dual HST in AdS
is rather complicated to work with even at the classical level. There are also analogous
models in AdS3/CFT2 duality [63].

4.3 Finite Temperature

In section 3.3, we argued that holographic CFTs must have a large number of local degrees
of freedom, using the two-point function of the stress tensor. Another way of counting
degrees of freedom is to look at the entropy density when the system is put at finite
temperature. For a CFT in flat space and infinite volume, the temperature dependence
of the entropy density is fixed by dimensional analysis because there is no other scale
available,

s = csT
d−1 . (4.8)

The constant cs is a physical measure of the number of degrees of freedom.
The gravitational dual of the system at finite temperature is a black brane in asymp-

totically AdS space. The Euclidean metric is given by

ds2 =
R2

z2

[
dz2

1− (z/zH)d
+

(
1− zd

zdH

)
dτ2 + δijdx

idxj
]
. (4.9)

Exercise 4.3.1 Show that in order to avoid a conical defect at the horizon z = zH , we
need to identify Euclidean time τ with period 4πzH

d . This fixes the Hawking temperature
T = d

4πzH
.

2In practice it was very useful because it led to an intensive study of Chern-Simons matter theories,
which gave rise to the remarkable conjecture of fermion/boson duality in 3 dimensions [61, 62].
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The formula T = d
4πzH

illustrates a general phenomena in holography: high energy
corresponds to the region close to the boundary and low energy corresponds to the deep
interior of the dual geometry.

The entropy of the system is given by the Bekenstein-Hawking formula

S =
AH
4GN

=
4π

`d−1
P

Rd−1

zd−1
H

ˆ
dd−1x ⇒ cs =

(4π)d

dd−1

Rd−1

`d−1
P

. (4.10)

As expected cs is very large in the bulk classical limit R� `P . Interestingly, the ratio

cs
CT

=
π
d
2

8

(
4

d

)d d− 1

d+ 1

Γ3
(
d
2

)
Γ(d)

(4.11)

only depends on the spacetime dimension d if the CFT has a classical bulk dual [64]. It
would be very nice to prove that all large N CFTs where all single-trace operators, except
the stress tensor, have parametrically large scaling dimensions, satisfy (4.11). Notice that
(4.11) is automatic in d = 2 because CT = 2c and cs = π

3 c are uniquely fixed in terms of
the central charge c. In planar SYM, CT = 40N2 is independent of the ’t Hooft coupling
but cs varies with λ (although not much, cs(λ =∞) = 3

4cs(λ = 0)). In this case, (4.11) is
only satisfied at strong coupling, when all primary operators with spin greater than 2
have parametrically large scaling dimensions.

Exercise 4.3.2 Consider a CFT on a sphere of radius L and at temperature T . In
this case, the entropy is a non-trivial function of the dimensioless combination LT . Let
us compute this function assuming the CFT is well described by Einstein gravity with
asymptotically AdS boundary conditions. There are two possible bulk geometries that
asymptote to the Euclidean boundary S1 × Sd−1. The first is pure AdS

ds2 = R2

[
dr2

1 + r2
+
(
1 + r2

)
dτ2 + r2dΩ2

d−1

]
(4.12)

with Euclidean time periodically identified and the second is Schwarzschild-AdS

ds2 = R2

[
dr2

f(r)
+ f(r)dτ̃2 + r2dΩ2

d−1

]
, (4.13)

where f(r) = 1 + r2 − m
rd−2 . At the boundary r = rmax � 1, both solutions should be

conformal to S1 × Sd−1 with the correct radii. Show that this fixes the periodicities

∆τ =
1

TL

rmax√
1 + r2

max

, ∆τ̃ =
1

TL

rmax√
f(rmax)

. (4.14)

Show also that regularity of the metric (4.13) implies the periodicity

∆τ̃ =
4π

f ′(rH)
=

4π

rHd+ d−2
rH

, (4.15)

where r = rH is the largest zero of f(r). Notice that this implies a minimal temperature

for Schwarzschild black holes in AdS, T >

√
d(d−2)

2πL .
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Both (4.12) and (4.13) are stationary points of the Euclidean action (3.73). Therefore,
we must compute the value of the on-shell action in order to decide which one dominates
the path integral. Show that the difference of the on-shell actions is given by

IBH − IAdS = −2Sd
Rd−1

`d−1
P

[
rdmax∆τ −

(
rdmax − rdH

)
∆τ̃
]

(4.16)

−→ Sd
Rd−1

`d−1
P

1

TL
rd−2
H (1− r2

H) (4.17)

where Sd is the area of a unit (d− 1)-dimensional sphere and in the last step we took the
limit rmax →∞. Conclude that the black hole only dominates the bulk path integral when
rH > 1, which corresponds to T > d−1

2πL . This is the Hawking-Page phase transition [65].
It is natural to set the free-energy of the AdS phase to zero because this phase corresponds
to a gas of gravitons around the AdS background whose free energy does not scale with the
large parameter (R/`P )d−1. Therefore, the free energy of the black hole phase is given by

FBH =
1

L
Sd
Rd−1

`d−1
P

rd−2
H (1− r2

H) . (4.18)

Verify that the thermodynamic relation ∂F
∂T = −S agrees with the Bekenstein-Hawking

formula for the black hole entropy. Since this a first order phase transition you can also
compute its latent heat.

In the last exercise, we saw that for a holographic CFT on a sphere of radius L,
the entropy is a discontinuous function of the temperature. In fact, we found that for
sufficiently high temperatures T > d−1

2πL , the entropy was very large S ∼ CT , while for
lower temperatures the entropy was small because it did not scale with CT . This can be
interpreted as deconfinement of the numerous degrees of freedom measured by CT � 1
which do not contribute to the entropy below the transition temperature Tc = d−1

2πL . How
can this bevavior be understood from the point of view of a large N gauge CFT?

4.4 Applications

The AdS/CFT correspondence (or the gauge/gravity duality more generally) is a useful
framework for thinking about strong coupling phenomena in QFT. Besides the specific
examples of strongly coupled CFTs that can be studied in great detail using the gravita-
tional dual description, AdS/CFT provides a geometric reformulation of many effects in
QFT. Usually, we do not know the precise gravitational dual of a given QFT of interest
(like QCD) but it is still very useful to study gravitational toy models that preserve the
main features we are interested in. These models enlarge our intuition because they
are very different from QFT models based on weakly interacting quasi-particles. There
are many examples of QFT observables that have a nice geometric interpretation in
the dual gravitational description. Perhaps the most striking one is the computation of
entanglement entropy as the area of a minimal surface in the dual geometry [66]. Let
us illustrate this approach in the context of confinig gauge theories like pure Yang-Mills
theory.
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Confinement means that the quark anti-quark potential between static quarks grows
linearly with the distance L at large distances

V (L) ≈ σL , L→∞ , (4.19)

where σ is the tension of the flux tube or effective string. This potential can be defined
through the expectation value of a Wilson loop (in the fundamental representation)

W [C] = Tr P exp

˛
C
Aµdx

µ , (4.20)

for a rectangular contour C with sides T × L,

〈W [C]〉 ∼ e−TV (L) , T →∞ . (4.21)

This is equivalent to the area law 〈W [C]〉 ∼ e−σArea[C] for large contours. In the
gauge/string duality there is a simple geometric rule to compute expectation values of
Wilson loops [67]. One should evaluate the path integral

〈W [C]〉 =

ˆ
∂Σ=C

[dΣ]e−Ss[Σ] (4.22)

summing over all surfaces Σ in the dual geometry that end at the contour C at the
boundary. The path integral is weighted using the dual string world-sheet action. At large
N , we expect that the dominant contribution comes from surfaces Σ with disk topology.
In specific examples, like SYM, this can be made very precise. For example, at large ’t
Hooft coupling the world-sheet action reduces to 3

Ss[Σ] =
1

4π`2s
Area[Σ] . (4.23)

In this case, since the theory is conformal, there is no confinement and the quark anti-quark
potential is Coulomb like,

V (L) =
a(N,λ)

L
. (4.24)

For most confining gauge theories (e.g. pure Yang-Mills theory) we do not know
neither the dual geometry nor the dual string world-sheet action. However, we can get a
nice qualitative picture if we assume (4.23) and only change the background geometry.
The most general (d+ 1)-dimensional geometry that preserves d-dimensional Poincaré
invariance can be written as

ds2 = R2

[
dz2

z2
+A2(z)dxµdxµ

]
. (4.25)

The profile of the function A2(z) encodes many properties of the dual QFT. For a CFT,
scale invariance fixes A(z) ∝ z−1. For asymptotically free gauge theories, we still expect

3In fact, the total area of Σ is infinite but the divergence comes from the region close to the boundary
of AdS. This can be regulated by cutting of AdS at z = ε, and renormalized by subtracting a divergent
piece proportional to the length of the contour C.
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that A(z) diverges for z → 0 however the function should be very different for larger
values of z. In particular, it should have a minimum for some value z = z? > 0. Let us
see what this implies for the expectation value of a large Wilson loop. The string path
integral (4.22) will be dominated by the surface Σ with minimal area. For large contours
C, this surface will sink inside AdS until the value z = z? that minimizes A2(z) and the
worldsheet area will be given by

R2A2(z?)Area[C] +O(Length[C]) . (4.26)

Therefore, we find a confining potential with flux tube tension

σ =
A2(z?)

4π

R2

`2s
. (4.27)

What happens if we put the QFT at finite temperature? In this case, we can probe
confinement by computing 〈

W (Cx)W̄ (Cx+L)
〉
β

= e−βFqq̄(β,L) (4.28)

where Cx is the contour around the Euclidean time circle at the spatial position x
(Polyakov loop). Fqq̄(β, L) denotes the free energy of a static quark anti-quark pair at
distance L and temperature 1/β. If Fqq̄(β, L)→∞ as we separate the pair, then we are
in the confined phase. On the other hand, if Fqq̄(β, L) remains finite when L→∞, we
are in the deconfined phase. Let us see how this works in the holographic dual. For low
temperatures, the dual geometry is simply given by (4.25) with Euclidean time identified
with period β. Therefore, the bulk minimal surface that ends on Cx and Cx+L will have
a cylindrical topology and its area will scale linearly with L at large L. In fact, we find
Fqq̄(β, L) ≈ σL like in the vacuum. On the other hand, for high enough temperature we
expect the bulk path integral to be dominated by a black hole geometry (see exercise
4.3.2 about Hawking-Page phase transition). The metric can then be written as

ds2 = R2

[
dz2

z2f(z)
+ f(z)dτ2 + g(z)dxidxi

]
, (4.29)

where f(z) vanishes for some value z = zH . This means that the Euclidean time circle is
contractible in the bulk. Therefore, for large L, the minimal surface has two disconnected
pieces with disk topology ending on Cx and Cx+L whose area remains finite when L→∞.
This means deconfinement

lim
L→∞

〈
W (Cx)W̄ (Cx+L)

〉
β

= 〈W (Cx)〉2β = e−2βFq(β) > 0 . (4.30)

Another feature of a confining gauge theory is a mass gap and a discrete spectrum of
mesons and glueballs. To compute this spectrum using the bulk dual one should study
fluctuations around the vacuum geometry (4.25). Consider for simplicity, a scalar field
obeying ∇2φ = m2φ. Since we are interested in finding the spectrum of the operator
PµP

µ we look for solutions of the form φ = eik·xψ(z), which leads to

z

Ad(z)
∂z

(
zAd(z)∂zψ

)
− k2

A2(z)
ψ = m2R2ψ . (4.31)
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The main idea is that this equation will only have solutions that obey the boundary
conditions ψ(0) = ψ(∞) = 0 for special discrete values of k2. In other words, we obtain a
discrete mass spectrum as expected for a confining gauge theory.

Exercise 4.4.1 Consider the simplest holographic model of a confining gauge theory: the
hard wall model. This is just a slice of AdS, i.e. we take A(z) = 1/z and cutoff space at
z = z?. Show that (4.31) reduces to the Bessel equation[

z2∂2
z + z∂z − α2 − k2z2

]
h(z) = 0 , (4.32)

where α2 = m2R2 +d2/4 and h(z) = z−
d
2ψ(z). Finally, show that the boundary conditions

h(0) = h(z?) = 0, lead to the quantization

hn(z) = Jα

(
z

z?
uα,n

)
, m2

n = −k2 =
u2
α,n

z2
?

, n = 1, 2, . . . (4.33)

where uα,n is the nth zero of the Bessel function Jα.

It is instructive to compare the lightest glueball mass m1 with the flux tube tension
σ = 1

4πz2
?

R2

`2s
in the hard wall model. We find that σ

m2
1
∼ R2

`2s
. The fact that this ratio is of

order 1 in pure Yang-Mills theory is another indication that its holographic dual must be
very stringy (curvature radius of the same order of the string length).

Above the deconfinement temperature, the system is described by a plasma of decon-
fined partons (quarks and gluons in QCD). The gauge/gravity duality is also very useful
to describe this strongly coupled plasma. The idea is that the hydrodynamic behavior of
the plasma is dual to the long wavelength fluctuations of the black hole horizon. This
map can be made very precise and has led to significant developments in the theory of
relativistic hydrodynamics. One important feature of the gravitational description is
that dissipation is built in because black hole horizons naturally relax to equilibrium.
A famous result from this line of work was the discovery of a universal ratio of shear
viscosity η to entropy density s. Any CFT dual to Einstein gravity in AdS has η

s = 1
4π .

This is a rather small number (water at room temperature has η
s ∼ 30) but remarkably it

is of the same order of magnitude of that observed in the quark-gluon plasma produced
in heavy ion collisions [68].

There are also many interesting applications of the gauge/gravity duality to Condensed
Matter physics [15, 10]. There are many materials that are not well described by weakly
coupled quasi-particles. In this case, it is useful to have alternative models based on
gravitational theories in AdS that share the same qualitative features. This can give
geometric intuition about the system in question.

The study of holographic models is also very useful for the discovery of general
properties of CFT (and QFT more generally). If one observes that a given property
holds both in weakly coupled and in holographic CFTs, it is natural to conjecture that
such property holds in all CFTs. This reasoning has led to the discovery (and sometimes
proof) of several important facts about CFTs, like the generalization of Zamolodchikov’s
c-theorem to d > 2 (known as F-theorem in d = 3 and a-theorem in d = 4) [69, 70, ?, 71]
or the existence of universal bounds on the three-point function of the stress tensor and
its relation to the idea of energy correlators [72, 73, 74].
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4.5 Universal long range forces

Another example along this line is the existence of “double-trace” operators with large
spin in any CFT. The precise statement is that in the OPE of two operators O1 and O2

there is an infinite number of operators On,l of spin l� 1 and scaling dimension

∆n,l ≈ ∆1 + ∆2 + 2n+ l +
γn
lτmin

(4.34)

where τmin is the minimal twist (dimension minus spin) of all the operators that appear
in both OPEs O1×O1 and O2×O2. In a generic CFT, this will be the stress tensor with
τmin = d− 2 and one can derive explicit formulas for γn [75, 76, 77, 78]. This statement
has been proven using the conformal bootstrap equations but its physical meaning is more
intuitive in the dual AdS language. Consider two particle primary states in AdS. Without
interactions the energy of such states is given by ∆1 + ∆2 + 2n+ l where n = 0, 1, 2, . . .
is a radial quantum number and l is the spin. Turning on interactions will change the
energies of these two-particle states. However, the states with large spin and fixed n
correspond to two particles orbitating each other at large distances and therefore they
will suffer a small energy shift due to the gravitational long range force. At large spin,
all other interactions (corresponding to operators with higher twist) give subdominant
contributions to this energy shift. In other words, the general result (4.34) is the CFT
reflection of the simple fact that interactions decay with distance in the dual AdS picture.
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Mellin amplitudes

Correlation functions of local operators in CFT are rather complicated functions of the
cross-ratios. Since these are crucial observables in AdS/CFT it is useful to find simpler
representations. This is the motivation to study Mellin amplitudes. They were introduced
by G. Mack in 2009 [79, 80] following earlier work [81, 82]. Mellin amplitudes share
many of the properties of scattering amplitudes of dual resonance models. In particular,
they are crossing symmetric and have a simple analytic structure (related to the OPE).
As we shall see, in the case of holographic CFTs, we can take this analogy further and
obtain bulk flat space scattering amplitudes as a limit of the dual CFT Mellin amplitudes.
Independently of AdS/CFT applications, Mellin amplitudes can be useful to describe
CFTs in general.

5.1 Definition

Consider the n-point function of scalar primary operators 1

〈O1(P1) . . .On(Pn)〉 =

ˆ
[dγ]M(γij)

∏
1≤i<j≤n

Γ(γij)

(−2Pi · Pj)γij
(5.1)

Conformal invariance requires weight −∆i in each Pi. This leads to constraints in the
Mellin variables which can be conveniently written as

n∑
j=1

γij = 0 , γij = γji , γii = −∆i . (5.2)

Notice that for n = 2 and n = 3 the Mellin variables are entirely fixed by these constraints.
In these cases, there is no integral to do and the Mellin representation just gives the
known form of the conformal two and three point function. The integration measure [dγ]
is over the n(n − 3)/2 independent Mellin variables (including a factor of 1

2πi for each
variable) and the integration contours run parallel to the imaginary axis. The precise
contour in the complex plane is dictated by the requirement that it should pass to the
right/left of the semi-infinite sequences of poles of the integrand that run to the left/right.
This will become clear in the following example.

1We shall use the notation M(γij) to denote a function M(γ12, γ13, . . . ) of all Mellin variables.

88
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Figure 5.1 Integration contour for the Mellin variable γ12. The crosses represent (double)
poles of the Γ-functions given by (5.5) and (5.6). In general, the Mellin amplitude has several
semi-infinite sequence of poles. Each sequence should stay entirely on one side of the contour.

Consider the case of a four-point function of a scalar operator of dimension ∆. In this
case, there are two independent Mellin variables which we can choose to be γ12 and γ14.
This leads to

〈O(P1) . . .O(P4)〉 =
1

(P13P24)∆

ˆ i∞

−i∞

dγ12γ14

(2πi)2
M̂(γ12, γ14)u−γ12v−γ14 , (5.3)

where u and v are the cross ratios (2.39) and

M̂(γ12, γ14) = M(γ12, γ14)Γ2(γ12)Γ2(γ14)Γ2(∆− γ12 − γ14) . (5.4)

Consider the first the complex plane of γ12 depicted in figure 5.1. The Γ-functions give
rise to semi-infinite sequences of (double) poles at

γ12 = 0,−1,−2, . . . (5.5)
γ12 = ∆− γ14,∆− γ14 + 1,∆− γ14 + 2, . . . (5.6)

As we shall see in the next section, the Mellin amplitude M(γij) also has the same type
of semi-infinite sequences of poles. The integration contour should pass in the middle
of these sequences of poles as shown in figure 5.1. Invariance of the four-point function
under permutation of the insertion points Pi, leads to crossing symmetry of the Mellin
amplitude

M(γ12, γ13, γ14) = M(γ13, γ12, γ14) = M(γ14, γ13, γ12) , (5.7)

where we used 3 variables obeying a single constraint γ12 + γ13 + γ14 = ∆. This is
reminiscent of crossing symmetry of scattering amplitudes written in terms of Mandelstam
invariants.

It is convenient to introduce fictitious momenta pi such that γij = pi · pj . Imposing
momentum conservation

∑n
i=1 pi = 0 and the on-shell condition p2

i = −∆i automatically
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leads to the constraints (5.2). These fictitious momenta are a convenient trick but we
do not know how to define them directly. In all formulas, we will only use their inner
products γij = pi · pj . In particular, it is not clear in what vector space do the momenta
pi live. 2

Let us be more precise about the number of independent cross ratios. The correct
formula is

n(n− 3)

2
, n ≤ d+ 2 (5.8)

nd− (d+ 1)(d+ 2)

2
, n ≥ d+ 2 (5.9)

In fact, for n > d+ 2 one can write identities like

det
i,j
Pi · Pj = 0 (5.10)

using d+ 3 embedding space vectors. Notice that this makes the Mellin representation
non-unique. We can shift the Mellin amplitude by the Mellin transform of

F (P1, . . . , Pn) det
i,j
Pi · Pj = 0 (5.11)

where F is any scalar function with the appropriate homogeneity properties. This non-
uniqueness of the Mellin amplitude is analogous to the non-uniqueness of the n-particle
scattering amplitudes (as functions of the invariants ki ·kj) in (d+1)-dimensional spacetime
if n > d+ 2.

5.2 OPE ⇒ Factorization

Consider the OPE

O1(x1)O1(x2) =
∑
k

C12k

(
x2

12

)∆k−∆1−∆2
2

[
Ok(x2) + c x2

12∂
2Ok(x2) + . . .

]
(5.12)

where the sum is over primary operators Ok and, for simplicity, we wrote the contribution
of a scalar operator. The term proportional to the constant c is a descendant and is fixed
by conformal symmetry like all the other terms represented by . . . . Let us compare this
with the Mellin representation. When x2

12 → 0, it is convenient to integrate over γ12

closing the contour to the left in the γ12-complex plane. This gives

〈O1(x1)O1(x2) . . . 〉 =
∑
γ̄12

(
x2

12

)−γ̄12

ˆ
[dγ]′Resγ̄12M̂(γij)

′∏(
x2
ij

)−γij (5.13)

where [dγ]′ and
∏′ stand for the integration measure and product excluding ij = 12.

Comparing the two expressions we conclude that M̂ must have poles at

γ12 =
∆1 + ∆2 −∆k − 2m

2
, m = 0, 1, 2, . . . (5.14)

2The flat space limit of AdS discussed in section 5.3.2, suggests a d+ 1 dimensional space but this is
unclear before the limit.
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where the poles with m > 0 correspond to descendant contributions. If the CFT has a
discrete spectrum of scaling dimensions then its Mellin amplitudes are analytic functions
with single poles as its only singularities (meromorphic functions). It is also clear that
the residues of these poles will be proportional to the product of the OPE coefficient C12k

and the Mellin amplitude of the lower point correlator 〈Ok . . . 〉. The precise formulas are
derived in [79, 83]. Here we shall just list the main results without derivation.

5.2.1 Four-point function

In the case of the four-point function it is convenient to write the Mellin amplitude in
terms of ‘Mandelstam invariants’

s = −(p1 + p2)2 = ∆1 + ∆2 − 2γ12 (5.15)

t = −(p1 + p3)2 = ∆1 + ∆3 − 2γ13 (5.16)

Then, the poles and residues of the Mellin amplitude take the following form [79]

M(s, t) ≈ C12kC34k
Qlk,m(t)

s−∆k + lk − 2m
, m = 0, 1, 2, . . . (5.17)

where Ql,m(t) is a kinematical polynomial of degree l in the variable t.
This strengthens the analogy with scattering amplitudes. Each operator of spin l in

the OPE O1 ×O2 gives rise to poles in the Mellin amplitude very similar to the poles in
the scattering amplitude associated to the exchange of a particle of the same spin.

5.2.2 Planar correlators

Notice that the polynomial behaviour of the residues requires the inclusion of the Γ-
functions in the definition (5.1) of Mellin amplitudes. On the other hand, the Γ-functions
themselves have poles at fixed positions. For example, Γ(γ12) gives rise to poles at
s = ∆1 + ∆2 + 2m with m = 0, 1, 2, . . . . In a generic CFT, there are no operators with
these scaling dimensions and therefore the Mellin amplitude must have zeros at these
values to cancel these unwanted OPE contributions. However, in correlation functions of
single-trace operators in large N CFTs we expect precisely this type of contributions. At
the planar level, the Γ-functions account for all multi-trace OPE contributions and the
Mellin amplitude only has poles associated to single-trace operators.

5.2.3 n-point function

Considering the OPE of k scalar operators, one can derive more general factorization
formulas [83]. For example, for each primary operator O of dimension ∆ and spin l that
appears in the OPEs O1×· · ·×Ok and Ok+1×· · ·×On, we obtain the following sequence
of poles in the n-point Mellin amplitude,

Mn ≈
Qm

γLR −∆ + l − 2m
, m = 0, 1, 2, . . . (5.18)
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where

γLR = −
(

k∑
i=1

pi

)2

=
k∑
i=1

n∑
j>k

γij . (5.19)

In general, the residue can be written in terms of lower point Mellin amplitudes. For
example, if l = 0 the residue factorizes

Q0 = −2Γ(∆)ML
k+1M

R
n−k+1 , (5.20)

with ML
k+1 the Mellin amplitude of 〈O1 . . .OkO〉 and MR

n−k+1 the Mellin amplitude of
〈OOk+1 . . .On〉 . The satellite poles also factorize but give rise to more complicated
formulae

Qm =
−2Γ(∆)m!(
∆− d

2 + 1
)
m

LmRm , (5.21)

with
Lm =

∑
nab≥0∑
nab=m

ML(γab + nab)
∏

1≤a<b≤k

(γab)nab
nab!

(5.22)

and similarly for Rm.
There also factorization formulas for the residues associated with operators with

non-zero spin [83]. However, the general case including external operators with spin has
not been worked out.

5.3 Holographic CFTs

As discussed in section 4.1, holographic CFTs have two special properties: large N
factorization and a small number of low dimension single-trace operators. Therefore, one
should expect that the corresponding Mellin amplitudes are particularly simple, at least
at the planar level. We shall now confirm this expectation with a few simple examples.

O1(P1)

O2(P2)

On(Pn)

X

Figure 5.2 Witten diagram for a n-point contact interaction in AdS. The interior of the disk
represents the bulk of AdS and the circumference represents its conformal boundary. The lines
connecting the boundary points Pi to the bulk point X represent bulk to boundary propagators.
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5.3.1 Witten diagrams

Consider the contact Witten diagram of figure 5.2. It corresponds to an interaction vertex
λφ1 . . . φn in the bulk lagrangian and it contributes 3

〈O1(P1) . . .On(Pn)〉 = λ

ˆ
AdS

dX
n∏
i=1

√
C∆i

(−2Pi ·X)∆i
(5.23)

to the dual CFT correlation function. One can show that this corresponds to a constant
Mellin amplitude,

M = λ
1

2
π
d
2 Γ

(∑
∆i − d

2

) n∏
i=1

√
C∆i

Γ(∆i)
. (5.24)

Exercise 5.3.1 Check the last statement. Start by using the integral representation of
the bulk to boundary propagators and performing the integral over AdS using Poincare
coordinates as explained in exercise 3.2.3. This turns (5.23) into

λπ
d
2 Γ

(∑
∆i − d

2

)ˆ ∞
0

e−
∑
i<j sisjPij

n∏
i=1

√
C∆i

Γ(∆i)
s∆i−1
i dsi . (5.25)

Next, use the Mellin representation (c > 0)

e−sisjPij =

ˆ c+i∞

c−i∞

dγij
2πi

Γ(γij)(sisjPij)
−γij (5.26)

for n(n− 3)/2 exponential factors. A good choice is to keep n factors, corresponding to
the exponential

e−s1
∑n
i=2 siP1i−s2s3P23 . (5.27)

The integrals over s4, . . . , sn can be easily done in terms of Γ-functions. Finally, do the
integrals over s1, s2, s3 using the same type of change of variables as in exercise 3.2.3.

This result can be easily generalized to interaction vertices with derivatives. For
example, the vertex λ(∇αφ1∇αφ2)φ3 . . . φn gives rise to

〈O1(P1) . . .On(Pn)〉 = λ

ˆ
AdS

dX

n∏
i=3

√
C∆i

(−2Pi ·X)∆i
× (5.28)

× (ηAB +XAXB)
∂

∂XA

√
C∆1

(−2P1 ·X)∆1

∂

∂XB

√
C∆2

(−2P2 ·X)∆2
.

Here we have used the fact that covariant derivatives in AdS can be computed as partial
derivatives in the embedding space projected to the AdS sub-manifold.4 This gives

λ∆1∆2 (−2P12D∆1+1,∆2+1,∆3,...,∆n +D∆1,∆2,∆3,...,∆n)
n∏
i=1

√
C∆i (5.29)

3We are using CFT operators Oi normalized to have unit two point function.
4See appendix F.1 of [84] for a derivation of this statement in the analogous case of a sphere embedded

in Euclidean space.
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where we introduced the D-function [35]

D∆1,...,∆n ≡
ˆ
AdS

dX
n∏
i=1

1

(−2Pi ·X)∆i
. (5.30)

More generally, it is clear that the contact Witten diagram associated with a generic
vertex λ∇ . . .∇φ1∇ . . .∇φ2 . . .∇ . . .∇φn with all derivatives contracted among different
fields, gives rise to a linear combination of terms of the form

D∆1+Λ1,...,∆n+Λn

n∏
i<j

P
λij
ij (5.31)

where λij are non-negative integers and Λi =
∑

j 6=i λij . As we will see in the next exercise,
the Mellin amplitude of (5.31) is a polynomial in the Mellin variables. Therefore, the
Mellin amplitude associated to contact Witten diagrams is polynomial. The absence
of poles in the Mellin amplitude means that the conformal block decomposition of the
contact diagram only contains multi-trace operators, in agreement with previous results
[85, 86].

Exercise 5.3.2 If the vertex λ∇ . . .∇φ1∇ . . .∇φ2 . . .∇ . . .∇φn has 2N = 2
∑

i<j αij
derivatives with αij contractions of derivatives acting on φi and φj, show that the contact
Witten diagram is given by

λ

(
n∏
i=1

√
C∆i

)
D∆1+Λ1,...,∆n+Λn

n∏
i<j

(−2Pij)
αij + . . . (5.32)

where Λi =
∑

j 6=i αij and the . . . represent similar terms with less Pij factors. Hint: use
the trick of writing covariant derivatives in AdS as partial derivatives in the embedding
space projected to the AdS sub-manifold.

The Mellin representation of the D-functions is very simple. As we saw in exercise
5.3.1, the Mellin amplitude associated to D∆1,...,∆n is simply

π
d
2 Γ
(∑

∆i−d
2

)
2
∏n
i=1 Γ(∆i)

. (5.33)

Show that the Mellin amplitude associated to the correlation function (5.32) is given by
the polynomial

λ

(
n∏
i=1

√
C∆i

)
π
d
2 Γ
(∑

∆i+2N−d
2

)
2
∏n
i=1 Γ(∆i + Λi)

n∏
i<j

(−2γij)
αij + . . . (5.34)

where the . . . represent terms of lower degree in γij. Hint: this follows easily from shifting
the integration variables in the Mellin representation (5.1).
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Figure 5.3 Witten diagram describing the exchange of a bulk field dual to an operator of
dimension ∆ and spin l.

Consider now the Witten diagram shown in figure 5.3 describing the exchange of a bulk
field dual to a single-trace boundary operator O of dimension ∆ and spin l. The conformal
block decomposition of this diagram in the (12)(34) channel contains the single-trace
operator O plus double-trace operators schematically of the form O1(∂2)n∂µ1...µjO2 and
O3(∂2)n∂µ1...µjO4. Moreover, the OPE in the crossed channels only contains double-trace
operators. This means that the Mellin amplitude is of the form

M = C12OC34O

∞∑
m=0

Ql,m(t)

s−∆ + l − 2m
+R(s, t) (5.35)

where the OPE coefficients C12O and C34O are proportional to the bulk cubic couplings
and R(s, t) is an analytic function. The residues are proportional to degree l Mack
polynomials Ql,m(t) which are entirely fixed by conformal symmetry as we saw in 5.2.1.
If we choose minimal coupling between the spin l bulk field and the external scalars, then
R(s, t) is a polynomial of degree ≤ l − 1. This is particularly simple in the case of a
scalar exchange (l = 0). Then the residues are independent of t and R = 0 [87]. Notice
that this simple looking Mellin amplitude gives rise to a rather involved function of the
cross-ratios in position space. This example illustrates clearly the advantage of using the
Mellin reprsentation to describe Witten diagrams.

The Mellin amplitude of a general tree-level scalar Witten diagrams was determined
in [88, 89, 90, 91]. The final result can be summarized in the following Feynman rules:

• Associate a momentum pj to every line (propagator) in the Witten diagram. External
lines have incoming momentum pi satisfying −p2

i = ∆i. Momentum is conserved at
every vertex of the diagram.

• Assign an integer mj to every line. External lines have mi = 0.
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• Every internal line (bulk-to-bulk propagator) contributes a factor5

S
∆j
mj

p2
j + ∆j + 2mj

(5.37)

where ∆j is the dimension of the propagating scalar field.

• Every vertex, gφ1 . . . φk joining k lines, contributes a factor6

g V ∆1...∆k
m1...mk

(5.38)

• Sum over all integers mj associated with internal lines. Each sum runs from 0 to
∞.

• Multiply by

N =
π
d
2

2

n∏
i=1

√
C∆i

Γ(∆i)
(5.39)

to get the n-point Mellin amplitude in our normalization of the external operators.

As an example, the Witten diagram in figure 5.4 gives rise to the following Mellin
amplitude

N
∞∑

m6=0

∞∑
m7=0

V ∆1∆2∆6
0 0m6

S∆6
m6

p2
6 + ∆6 + 2m6

V ∆6∆3∆7
m6 0m7

S∆7
m7

p2
7 + ∆7 + 2m7

V ∆7∆4∆5
m7 0 0

where p2
6 = (p1 + p2)2 = 2γ12 −∆1 −∆2 and p2

7 = (p4 + p5)2 = 2γ45 −∆4 −∆5. These
Feynman rules suggest that we should think of the Mellin amplitude as an amputated
amplitude because the bulk to boundary propagators do not contribute. In the case of
scalar tree level diagrams (with non-derivative interaction vertices), the only dependence
in the Mellin variables γij comes from the bulk-to-bulk propagators. It is not known
how to generalize these Feynman rules for loop diagrams or tree-level diagrams involving
fields with spin. There are partial results in literature [89, 83] but nothing systematic.
Mellin amplitudes are also useful in the context of weakly coupled CFTs. The associated
Feynman rules for tree level diagrams were given in [92].

Exercise 5.3.3 Consider the residue of the Mellin amplitude at the first pole (m = 0)
associated to a bulk-to-bulk propagator. Show that the Feynman rules above are compatible
with the factorization property (5.20) of this residue. Extra: check the factorization
formula (5.21) for the satellite poles with m > 0.

5 The propagator numerator is given by

S∆
m =

Γ
(
∆− d

2
+ 1 +m

)
2(m!)Γ2

(
∆− d

2
+ 1
) . (5.36)

6 The vertex factor is given by

V ∆1...∆k
m1...mk

=

m1∑
n1=0

· · ·
mk∑
nk=0

Γ

(∑
j(∆j + 2nj)− d

2

)
k∏
j=1

(−mj)nj

nj !
(
∆j − d

2
+ 1
)
nj

.
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Figure 5.4 A tree level scalar Witten diagram contributing to a 5-point function. The auxiliary
momenta pi is conserved at each vertex, i.e. p6 = p1 + p2 and p7 = p4 + p5.

5.3.2 Flat space limit of AdS

If we consider a scattering process where all length scales are much smaller than the AdS
radius R then the curvature effects should be negligible. Consider a relativistic invariant
theory in flat spacetime with a characteristic length scale `s (this scale could come from
a mass or from a dimensionful coupling). Then, a scattering amplitude Tn of n massless
scalar particles in this theory will depend on `s and on the relativistic invariants ki · kj ,
where ki are the momenta of the external particles. On the other hand, this theory in AdS
will give rise to Mellin amplitudes that depend on the dimensionless parameter θ = R/`s
and the Mellin variables γij . We claim that these two quantities are related by

Tn(`s, ki)

`
n d−1

2
−d−1

s

= lim
θ→∞

1

N

ˆ
Γ

dα

2πi
α
d−

∑
∆i

2 eα
Mn

(
θ, γij = θ2

2α`
2
s ki · kj

)
θn

1−d
2

+d+1
(5.40)

where the contour Γ runs parallel to the imaginary axis and passes to the right of the
branch point at α = 0 and to the left of all poles ofMn. The powers of `s where introduced
to make both sides of the equation dimensionless and the constant N was given in (5.39).
The external particles are massless in flat space but in AdS they can have any scaling
dimension ∆i of order 1. We expect this equation to hold when both sides of the equation
are well defined. In case the flat space scattering amplitude Tn is IR divergent, we expect
that the limit θ →∞ of the Mellin amplitude will not be finite.7

Exercise 5.3.4 Consider the vertex λ∇ . . .∇φ1 . . .∇ . . .∇φn discussed in exercise 5.3.2
in d+ 1 spacetime dimensions. Start by writing the coupling constant λ as a power (`s)

q

of a characteristic length scale `s and determine the value of q. Then, use the Mellin
7It might be useful to think of large θ as an IR regulator for the scattering amplitude.
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amplitude (5.34) in the flat space limit formula (5.40) and obtain the expected n-particle
scattering amplitude

Tn = λ
∏
i<j

(−ki · kj)αij . (5.41)

The last exercise can be seen as a derivation of the flat space limit formula (5.40).
The point is that a generic Feynman diagram can be written as a (infinite) sum of contact
diagrams with any number of derivatives. This corresponds to integrating out the internal
particles and replacing there effect by contact vertices among the external particles. Since
formula (5.40) works for any contact diagram it should work in general. This has been
tested in several explicit examples, including 1-loop diagrams [87, 88, 93]. In addition, the
same formula was derived in [90] using a wave-packet construction where the scattering
region was limited to a small flat region of AdS.

In principle, formula (5.40) provides a non-perturbative definition of string theory
scattering amplitudes in terms of SYM correlation functions. However, we do not know
how to directly compute SYM correlators at strong coupling. In practice, what we can do
is to use formula (5.40) in the opposite direction, i.e. we can use known string scattering
amplitudes in flat space to obtain information about the strong coupling expansion of
SYM correlators [87, 94]. If the external particles are massive in flat space then formula
(5.40) is not adequate. This case was studied in [95].

5.4 Open questions

The study of Mellin amplitudes is still very incomplete. Firstly, it is important to
understand in what conditions do we have a well defined analytic Mellin amplitude. For
example, in free CFTs the Mellin representation requires some form of regularization.
This might be a technical detail but it would be useful to understand in general the status
of the Mellin representation. Another important question is the asymptotic behavior of
the Mellin amplitude when the Mellin variables are large. In the case of the four-point
Mellin amplitude discussed in 5.2.1, the limit of large s with fixed t is called the Regge
limit in analogy with flat space scattering amplitudes. In [96], we studied this limit using
Regge theory techniques and making some reasonable assumptions about the large spin
behaviour of the conformal partial amplitudes. Proving these assumptions is an important
open question. The bound on chaos [97] is another possible approach to the Regge limit
of Mellin amplitudes. Notice that if we can tame the asymptotic behaviour of M(s, t)
when s → ∞, then we can write a dispersion relation that expresses M(s, t) in terms
of its poles in s, which are given by (5.17). This could provide a reformulation of the
conformal bootstrap approach.

In the holographic context, it would be interesting to establish more general Feynman
rules for Mellin amplitudes associated to Witten diagrams involving loops and particles
with spin. It would also be useful to generalize more modern approaches to scattering
amplitudes, like BCFW [98] or CHY [99], to Mellin amplitudes.



Bibliography

[1] J. L. Cardy, Scaling and renormalization in statistical physics. 1996.

[2] D. Simmons-Duffin, “TASI Lectures on the Conformal Bootstrap,”
arXiv:1602.07982 [hep-th].

[3] S. Rychkov, “EPFL Lectures on Conformal Field Theory in D ≥ 3 Dimensions,”
arXiv:1601.05000 [hep-th].

[4] J. D. Qualls, “Lectures on Conformal Field Theory,” arXiv:1511.04074 [hep-th].

[5] J. M. Maldacena, “The Large N limit of superconformal field theories and
supergravity,” Int.J.Theor.Phys. 38 (1999) 1113–1133, arXiv:hep-th/9711200
[hep-th].

[6] S. S. Gubser, I. R. Klebanov, and A. M. Polyakov, “Gauge theory correlators from
noncritical string theory,” Phys. Lett. B428 (1998) 105–114,
arXiv:hep-th/9802109 [hep-th].

[7] E. Witten, “Anti-de Sitter space and holography,” Adv. Theor. Math. Phys. 2 (1998)
253–291, arXiv:hep-th/9802150 [hep-th].

[8] A. Almheiri, D. Marolf, J. Polchinski, and J. Sully, “Black Holes: Complementarity
or Firewalls?,” JHEP 02 (2013) 062, arXiv:1207.3123 [hep-th].

[9] O. Aharony, S. S. Gubser, J. M. Maldacena, H. Ooguri, and Y. Oz, “Large N field
theories, string theory and gravity,” Phys. Rept. 323 (2000) 183–386,
arXiv:hep-th/9905111 [hep-th].

[10] J. McGreevy, “Holographic duality with a view toward many-body physics,” Adv.
High Energy Phys. 2010 (2010) 723105, arXiv:0909.0518 [hep-th].

[11] E. D’Hoker and D. Z. Freedman, “Supersymmetric gauge theories and the AdS /
CFT correspondence,” arXiv:hep-th/0201253 [hep-th].

[12] D. Mateos, “String Theory and Quantum Chromodynamics,” Class. Quant. Grav.
24 (2007) S713–S740, arXiv:0709.1523 [hep-th].

99

http://arxiv.org/abs/1602.07982
http://arxiv.org/abs/1601.05000
http://arxiv.org/abs/1511.04074
http://dx.doi.org/10.1023/A:1026654312961
http://arxiv.org/abs/hep-th/9711200
http://arxiv.org/abs/hep-th/9711200
http://dx.doi.org/10.1016/S0370-2693(98)00377-3
http://arxiv.org/abs/hep-th/9802109
http://arxiv.org/abs/hep-th/9802150
http://dx.doi.org/10.1007/JHEP02(2013)062
http://arxiv.org/abs/1207.3123
http://dx.doi.org/10.1016/S0370-1573(99)00083-6
http://arxiv.org/abs/hep-th/9905111
http://dx.doi.org/10.1155/2010/723105
http://dx.doi.org/10.1155/2010/723105
http://arxiv.org/abs/0909.0518
http://arxiv.org/abs/hep-th/0201253
http://dx.doi.org/10.1088/0264-9381/24/21/S01
http://dx.doi.org/10.1088/0264-9381/24/21/S01
http://arxiv.org/abs/0709.1523


100 Bibliography

[13] H. Nastase, “Introduction to AdS-CFT,” arXiv:0712.0689 [hep-th].

[14] S. S. Gubser and A. Karch, “From gauge-string duality to strong interactions: A
Pedestrian’s Guide,” Ann. Rev. Nucl. Part. Sci. 59 (2009) 145–168,
arXiv:0901.0935 [hep-th].

[15] S. A. Hartnoll, “Lectures on holographic methods for condensed matter physics,”
Class. Quant. Grav. 26 (2009) 224002, arXiv:0903.3246 [hep-th].

[16] J. Polchinski, “Introduction to Gauge/Gravity Duality,” arXiv:1010.6134
[hep-th].

[17] S. A. Hartnoll, “Horizons, holography and condensed matter,” arXiv:1106.4324
[hep-th].

[18] J. Kaplan, “Lectures on AdS/CFT from the Bottom Up.”
http://www.pha.jhu.edu/~jaredk/AdSCFTCourseNotesPublic.pdf.

[19] A. Pelissetto and E. Vicari, “Critical phenomena and renormalization group theory,”
Phys. Rept. 368 (2002) 549–727, arXiv:cond-mat/0012164 [cond-mat].

[20] P. A. M. Dirac, “Wave equations in conformal space,” Annals Math. 37 (1936)
429–442.

[21] G. Mack and A. Salam, “Finite component field representations of the conformal
group,” Annals Phys. 53 (1969) 174–202.

[22] D. G. Boulware, L. S. Brown, and R. D. Peccei, “Deep-inelastic electroproduction
and conformal symmetry,” Phys. Rev. D2 (1970) 293–298.

[23] S. Ferrara, R. Gatto, and A. F. Grillo, “Conformal algebra in space-time and
operator product expansion,” Springer Tracts Mod. Phys. 67 (1973) 1–64.

[24] S. Ferrara, A. F. Grillo, and R. Gatto, “Tensor representations of conformal algebra
and conformally covariant operator product expansion,” Annals Phys. 76 (1973)
161–188.

[25] L. Cornalba, M. S. Costa, and J. Penedones, “Deep Inelastic Scattering in
Conformal QCD,” JHEP 03 (2010) 133, arXiv:0911.0043 [hep-th].

[26] S. Weinberg, “Six-dimensional Methods for Four-dimensional Conformal Field
Theories,” Phys. Rev. D82 (2010) 045031, arXiv:1006.3480 [hep-th].

[27] M. S. Costa, J. Penedones, D. Poland, and S. Rychkov, “Spinning Conformal
Correlators,” JHEP 11 (2011) 071, arXiv:1107.3554 [hep-th].

[28] G. ’t Hooft, “A Planar Diagram Theory for Strong Interactions,” Nucl.Phys. B72
(1974) 461.

[29] E. Witten, “Baryons in the 1/n Expansion,” Nucl. Phys. B160 (1979) 57–115.

http://arxiv.org/abs/0712.0689
http://dx.doi.org/10.1146/annurev.nucl.010909.083602
http://arxiv.org/abs/0901.0935
http://dx.doi.org/10.1088/0264-9381/26/22/224002
http://arxiv.org/abs/0903.3246
http://arxiv.org/abs/1010.6134
http://arxiv.org/abs/1010.6134
http://arxiv.org/abs/1106.4324
http://arxiv.org/abs/1106.4324
http://www.pha.jhu.edu/~jaredk/AdSCFTCourseNotesPublic.pdf
http://dx.doi.org/10.1016/S0370-1573(02)00219-3
http://arxiv.org/abs/cond-mat/0012164
http://dx.doi.org/10.2307/1968455
http://dx.doi.org/10.2307/1968455
http://dx.doi.org/10.1016/0003-4916(69)90278-4
http://dx.doi.org/10.1103/PhysRevD.2.293
http://dx.doi.org/10.1007/BFb0111104
http://dx.doi.org/10.1016/0003-4916(73)90446-6
http://dx.doi.org/10.1016/0003-4916(73)90446-6
http://dx.doi.org/10.1007/JHEP03(2010)133
http://arxiv.org/abs/0911.0043
http://dx.doi.org/10.1103/PhysRevD.82.045031
http://arxiv.org/abs/1006.3480
http://dx.doi.org/10.1007/JHEP11(2011)071
http://arxiv.org/abs/1107.3554
http://dx.doi.org/10.1016/0550-3213(74)90154-0
http://dx.doi.org/10.1016/0550-3213(74)90154-0
http://dx.doi.org/10.1016/0550-3213(79)90232-3


Bibliography 101

[30] F. A. Dolan and H. Osborn, “Conformal four point functions and the operator
product expansion,” Nucl. Phys. B599 (2001) 459–496, arXiv:hep-th/0011040
[hep-th].

[31] S. El-Showk and K. Papadodimas, “Emergent Spacetime and Holographic CFTs,”
JHEP 10 (2012) 106, arXiv:1101.4163 [hep-th].

[32] H. Liu and A. A. Tseytlin, “D = 4 superYang-Mills, D = 5 gauged supergravity, and
D = 4 conformal supergravity,” Nucl. Phys. B533 (1998) 88–108,
arXiv:hep-th/9804083 [hep-th].

[33] H. Liu and A. A. Tseytlin, “On four point functions in the CFT / AdS
correspondence,” Phys. Rev. D59 (1999) 086002, arXiv:hep-th/9807097
[hep-th].

[34] E. D’Hoker, D. Z. Freedman, S. D. Mathur, A. Matusis, and L. Rastelli, “Graviton
and gauge boson propagators in AdS(d+1),” Nucl. Phys. B562 (1999) 330–352,
arXiv:hep-th/9902042 [hep-th].

[35] E. D’Hoker, D. Z. Freedman, S. D. Mathur, A. Matusis, and L. Rastelli, “Graviton
exchange and complete four point functions in the AdS / CFT correspondence,”
Nucl. Phys. B562 (1999) 353–394, arXiv:hep-th/9903196 [hep-th].

[36] M. S. Costa, V. Gonçalves, and J. Penedones, “Spinning AdS Propagators,” JHEP
09 (2014) 064, arXiv:1404.5625 [hep-th].

[37] V. Balasubramanian and P. Kraus, “A Stress tensor for Anti-de Sitter gravity,”
Commun. Math. Phys. 208 (1999) 413–428, arXiv:hep-th/9902121 [hep-th].

[38] K. Skenderis, “Lecture notes on holographic renormalization,” Class. Quant. Grav.
19 (2002) 5849–5876, arXiv:hep-th/0209067 [hep-th].

[39] H. Osborn and A. C. Petkou, “Implications of conformal invariance in field theories
for general dimensions,” Annals Phys. 231 (1994) 311–362, arXiv:hep-th/9307010
[hep-th].

[40] I. Heemskerk, J. Penedones, J. Polchinski, and J. Sully, “Holography from
Conformal Field Theory,” JHEP 10 (2009) 079, arXiv:0907.0151 [hep-th].

[41] X. O. Camanho, J. D. Edelstein, J. Maldacena, and A. Zhiboedov, “Causality
Constraints on Corrections to the Graviton Three-Point Coupling,” JHEP 02 (2016)
020, arXiv:1407.5597 [hep-th].

[42] N. Arkani-Hamed, F. Cachazo, and J. Kaplan, “What is the Simplest Quantum
Field Theory?,” JHEP 09 (2010) 016, arXiv:0808.1446 [hep-th].

[43] N. Beisert et al., “Review of AdS/CFT Integrability: An Overview,” Lett. Math.
Phys. 99 (2012) 3–32, arXiv:1012.3982 [hep-th].

http://dx.doi.org/10.1016/S0550-3213(01)00013-X
http://arxiv.org/abs/hep-th/0011040
http://arxiv.org/abs/hep-th/0011040
http://dx.doi.org/10.1007/JHEP10(2012)106
http://arxiv.org/abs/1101.4163
http://dx.doi.org/10.1016/S0550-3213(98)00443-X
http://arxiv.org/abs/hep-th/9804083
http://dx.doi.org/10.1103/PhysRevD.59.086002
http://arxiv.org/abs/hep-th/9807097
http://arxiv.org/abs/hep-th/9807097
http://dx.doi.org/10.1016/S0550-3213(99)00524-6
http://arxiv.org/abs/hep-th/9902042
http://dx.doi.org/10.1016/S0550-3213(99)00525-8
http://arxiv.org/abs/hep-th/9903196
http://dx.doi.org/10.1007/JHEP09(2014)064
http://dx.doi.org/10.1007/JHEP09(2014)064
http://arxiv.org/abs/1404.5625
http://dx.doi.org/10.1007/s002200050764
http://arxiv.org/abs/hep-th/9902121
http://dx.doi.org/10.1088/0264-9381/19/22/306
http://dx.doi.org/10.1088/0264-9381/19/22/306
http://arxiv.org/abs/hep-th/0209067
http://dx.doi.org/10.1006/aphy.1994.1045
http://arxiv.org/abs/hep-th/9307010
http://arxiv.org/abs/hep-th/9307010
http://dx.doi.org/10.1088/1126-6708/2009/10/079
http://arxiv.org/abs/0907.0151
http://dx.doi.org/10.1007/JHEP02(2016)020
http://dx.doi.org/10.1007/JHEP02(2016)020
http://arxiv.org/abs/1407.5597
http://dx.doi.org/10.1007/JHEP09(2010)016
http://arxiv.org/abs/0808.1446
http://dx.doi.org/10.1007/s11005-011-0529-2
http://dx.doi.org/10.1007/s11005-011-0529-2
http://arxiv.org/abs/1012.3982


102 Bibliography

[44] S. Lee, S. Minwalla, M. Rangamani, and N. Seiberg, “Three point functions of chiral
operators in D = 4, N=4 SYM at large N,” Adv. Theor. Math. Phys. 2 (1998)
697–718, arXiv:hep-th/9806074 [hep-th].

[45] J. K. Erickson, G. W. Semenoff, and K. Zarembo, “Wilson loops in N=4
supersymmetric Yang-Mills theory,” Nucl. Phys. B582 (2000) 155–175,
arXiv:hep-th/0003055 [hep-th].

[46] N. Gromov, V. Kazakov, and P. Vieira, “Exact Spectrum of Planar N = 4
Supersymmetric Yang-Mills Theory: Konishi Dimension at Any Coupling,” Phys.
Rev. Lett. 104 (2010) 211601, arXiv:0906.4240 [hep-th].

[47] B. Basso, A. Sever, and P. Vieira, “Spacetime and Flux Tube S-Matrices at Finite
Coupling for N=4 Supersymmetric Yang-Mills Theory,” Phys. Rev. Lett. 111 no. 9,
(2013) 091602, arXiv:1303.1396 [hep-th].

[48] B. Basso, S. Komatsu, and P. Vieira, “Structure Constants and Integrable Bootstrap
in Planar N=4 SYM Theory,” arXiv:1505.06745 [hep-th].

[49] T. Banks, W. Fischler, S. H. Shenker, and L. Susskind, “M theory as a matrix
model: A Conjecture,” Phys. Rev. D55 (1997) 5112–5128, arXiv:hep-th/9610043
[hep-th].

[50] S. Catterall and T. Wiseman, “Towards lattice simulation of the gauge theory duals
to black holes and hot strings,” JHEP 12 (2007) 104, arXiv:0706.3518 [hep-lat].

[51] K. N. Anagnostopoulos, M. Hanada, J. Nishimura, and S. Takeuchi, “Monte Carlo
studies of supersymmetric matrix quantum mechanics with sixteen supercharges at
finite temperature,” Phys. Rev. Lett. 100 (2008) 021601, arXiv:0707.4454
[hep-th].

[52] S. Catterall and T. Wiseman, “Black hole thermodynamics from simulations of
lattice Yang-Mills theory,” Phys. Rev. D78 (2008) 041502, arXiv:0803.4273
[hep-th].

[53] M. Hanada, Y. Hyakutake, J. Nishimura, and S. Takeuchi, “Higher derivative
corrections to black hole thermodynamics from supersymmetric matrix quantum
mechanics,” Phys. Rev. Lett. 102 (2009) 191602, arXiv:0811.3102 [hep-th].

[54] S. Catterall and T. Wiseman, “Extracting black hole physics from the lattice,”
JHEP 04 (2010) 077, arXiv:0909.4947 [hep-th].

[55] M. Hanada, J. Nishimura, Y. Sekino, and T. Yoneya, “Direct test of the
gauge-gravity correspondence for Matrix theory correlation functions,” JHEP 12
(2011) 020, arXiv:1108.5153 [hep-th].

[56] M. Hanada, Y. Hyakutake, G. Ishiki, and J. Nishimura, “Holographic description of
quantum black hole on a computer,” Science 344 (2014) 882–885, arXiv:1311.5607
[hep-th].

http://arxiv.org/abs/hep-th/9806074
http://dx.doi.org/10.1016/S0550-3213(00)00300-X
http://arxiv.org/abs/hep-th/0003055
http://dx.doi.org/10.1103/PhysRevLett.104.211601
http://dx.doi.org/10.1103/PhysRevLett.104.211601
http://arxiv.org/abs/0906.4240
http://dx.doi.org/10.1103/PhysRevLett.111.091602
http://dx.doi.org/10.1103/PhysRevLett.111.091602
http://arxiv.org/abs/1303.1396
http://arxiv.org/abs/1505.06745
http://dx.doi.org/10.1103/PhysRevD.55.5112
http://arxiv.org/abs/hep-th/9610043
http://arxiv.org/abs/hep-th/9610043
http://dx.doi.org/10.1088/1126-6708/2007/12/104
http://arxiv.org/abs/0706.3518
http://dx.doi.org/10.1103/PhysRevLett.100.021601
http://arxiv.org/abs/0707.4454
http://arxiv.org/abs/0707.4454
http://dx.doi.org/10.1103/PhysRevD.78.041502
http://arxiv.org/abs/0803.4273
http://arxiv.org/abs/0803.4273
http://dx.doi.org/10.1103/PhysRevLett.102.191602
http://arxiv.org/abs/0811.3102
http://dx.doi.org/10.1007/JHEP04(2010)077
http://arxiv.org/abs/0909.4947
http://dx.doi.org/10.1007/JHEP12(2011)020
http://dx.doi.org/10.1007/JHEP12(2011)020
http://arxiv.org/abs/1108.5153
http://dx.doi.org/10.1126/science.1250122
http://arxiv.org/abs/1311.5607
http://arxiv.org/abs/1311.5607


Bibliography 103

[57] J. Polchinski and E. Silverstein, “Dual Purpose Landscaping Tools: Small Extra
Dimensions in AdS/CFT,” arXiv:0908.0756 [hep-th].

[58] S. de Alwis, R. K. Gupta, F. Quevedo, and R. Valandro, “On KKLT/CFT and
LVS/CFT Dualities,” JHEP 07 (2015) 036, arXiv:1412.6999 [hep-th].

[59] I. R. Klebanov and A. M. Polyakov, “AdS dual of the critical O(N) vector model,”
Phys. Lett. B550 (2002) 213–219, arXiv:hep-th/0210114 [hep-th].

[60] E. Sezgin and P. Sundell, “Massless higher spins and holography,” Nucl. Phys. B644
(2002) 303–370, arXiv:hep-th/0205131 [hep-th]. [Erratum: Nucl.
Phys.B660,403(2003)].

[61] S. Giombi, S. Minwalla, S. Prakash, S. P. Trivedi, S. R. Wadia, and X. Yin,
“Chern-Simons Theory with Vector Fermion Matter,” Eur. Phys. J. C72 (2012)
2112, arXiv:1110.4386 [hep-th].

[62] O. Aharony, G. Gur-Ari, and R. Yacoby, “Correlation Functions of Large N
Chern-Simons-Matter Theories and Bosonization in Three Dimensions,” JHEP 12
(2012) 028, arXiv:1207.4593 [hep-th].

[63] M. R. Gaberdiel and R. Gopakumar, “Minimal Model Holography,” J. Phys. A46
(2013) 214002, arXiv:1207.6697 [hep-th].

[64] P. Kovtun and A. Ritz, “Black holes and universality classes of critical points,” Phys.
Rev. Lett. 100 (2008) 171606, arXiv:0801.2785 [hep-th].

[65] S. W. Hawking and D. N. Page, “Thermodynamics of Black Holes in anti-De Sitter
Space,” Commun. Math. Phys. 87 (1983) 577.

[66] S. Ryu and T. Takayanagi, “Holographic derivation of entanglement entropy from
AdS/CFT,” Phys. Rev. Lett. 96 (2006) 181602, arXiv:hep-th/0603001 [hep-th].

[67] J. M. Maldacena, “Wilson loops in large N field theories,” Phys. Rev. Lett. 80 (1998)
4859–4862, arXiv:hep-th/9803002 [hep-th].

[68] P. Romatschke and U. Romatschke, “Viscosity Information from Relativistic Nuclear
Collisions: How Perfect is the Fluid Observed at RHIC?,” Phys. Rev. Lett. 99 (2007)
172301, arXiv:0706.1522 [nucl-th].

[69] A. B. Zamolodchikov, “Irreversibility of the Flux of the Renormalization Group in a
2D Field Theory,” JETP Lett. 43 (1986) 730–732. [Pisma Zh. Eksp. Teor.
Fiz.43,565(1986)].

[70] R. C. Myers and A. Sinha, “Holographic c-theorems in arbitrary dimensions,” JHEP
01 (2011) 125, arXiv:1011.5819 [hep-th].

[71] H. Casini and M. Huerta, “On the RG running of the entanglement entropy of a
circle,” Phys. Rev. D85 (2012) 125016, arXiv:1202.5650 [hep-th].

http://arxiv.org/abs/0908.0756
http://dx.doi.org/10.1007/JHEP07(2015)036
http://arxiv.org/abs/1412.6999
http://dx.doi.org/10.1016/S0370-2693(02)02980-5
http://arxiv.org/abs/hep-th/0210114
http://dx.doi.org/10.1016/S0550-3213(02)00739-3, 10.1016/S0550-3213(03)00267-0
http://dx.doi.org/10.1016/S0550-3213(02)00739-3, 10.1016/S0550-3213(03)00267-0
http://arxiv.org/abs/hep-th/0205131
http://dx.doi.org/10.1140/epjc/s10052-012-2112-0
http://dx.doi.org/10.1140/epjc/s10052-012-2112-0
http://arxiv.org/abs/1110.4386
http://dx.doi.org/10.1007/JHEP12(2012)028
http://dx.doi.org/10.1007/JHEP12(2012)028
http://arxiv.org/abs/1207.4593
http://dx.doi.org/10.1088/1751-8113/46/21/214002
http://dx.doi.org/10.1088/1751-8113/46/21/214002
http://arxiv.org/abs/1207.6697
http://dx.doi.org/10.1103/PhysRevLett.100.171606
http://dx.doi.org/10.1103/PhysRevLett.100.171606
http://arxiv.org/abs/0801.2785
http://dx.doi.org/10.1007/BF01208266
http://dx.doi.org/10.1103/PhysRevLett.96.181602
http://arxiv.org/abs/hep-th/0603001
http://dx.doi.org/10.1103/PhysRevLett.80.4859
http://dx.doi.org/10.1103/PhysRevLett.80.4859
http://arxiv.org/abs/hep-th/9803002
http://dx.doi.org/10.1103/PhysRevLett.99.172301
http://dx.doi.org/10.1103/PhysRevLett.99.172301
http://arxiv.org/abs/0706.1522
http://dx.doi.org/10.1007/JHEP01(2011)125
http://dx.doi.org/10.1007/JHEP01(2011)125
http://arxiv.org/abs/1011.5819
http://dx.doi.org/10.1103/PhysRevD.85.125016
http://arxiv.org/abs/1202.5650


104 Bibliography

[72] D. M. Hofman and J. Maldacena, “Conformal collider physics: Energy and charge
correlations,” JHEP 05 (2008) 012, arXiv:0803.1467 [hep-th].

[73] D. M. Hofman, D. Li, D. Meltzer, D. Poland, and F. Rejon-Barrera, “A Proof of the
Conformal Collider Bounds,” JHEP 06 (2016) 111, arXiv:1603.03771 [hep-th].

[74] T. Faulkner, R. G. Leigh, O. Parrikar, and H. Wang, “Modular Hamiltonians for
Deformed Half-Spaces and the Averaged Null Energy Condition,”
arXiv:1605.08072 [hep-th].

[75] A. L. Fitzpatrick, J. Kaplan, D. Poland, and D. Simmons-Duffin, “The Analytic
Bootstrap and AdS Superhorizon Locality,” JHEP 12 (2013) 004, arXiv:1212.3616
[hep-th].

[76] Z. Komargodski and A. Zhiboedov, “Convexity and Liberation at Large Spin,”
JHEP 11 (2013) 140, arXiv:1212.4103 [hep-th].

[77] A. Kaviraj, K. Sen, and A. Sinha, “Analytic bootstrap at large spin,” JHEP 11
(2015) 083, arXiv:1502.01437 [hep-th].

[78] A. Kaviraj, K. Sen, and A. Sinha, “Universal anomalous dimensions at large spin
and large twist,” JHEP 07 (2015) 026, arXiv:1504.00772 [hep-th].

[79] G. Mack, “D-independent representation of Conformal Field Theories in D
dimensions via transformation to auxiliary Dual Resonance Models. Scalar
amplitudes,” arXiv:0907.2407 [hep-th].

[80] G. Mack, “D-dimensional Conformal Field Theories with anomalous dimensions as
Dual Resonance Models,” Bulg. J. Phys. 36 (2009) 214–226, arXiv:0909.1024
[hep-th].

[81] K. Symanzik, “On Calculations in conformal invariant field theories,” Lett. Nuovo
Cim. 3 (1972) 734–738.

[82] V. K. Dobrev, V. B. Petkova, S. G. Petrova, and I. T. Todorov, “Dynamical
Derivation of Vacuum Operator Product Expansion in Euclidean Conformal
Quantum Field Theory,” Phys. Rev. D13 (1976) 887.

[83] V. Gonçalves, J. Penedones, and E. Trevisani, “Factorization of Mellin amplitudes,”
JHEP 10 (2015) 040, arXiv:1410.4185 [hep-th].

[84] M. S. Costa, T. Hansen, J. Penedones, and E. Trevisani, “Projectors and seed
conformal blocks for traceless mixed-symmetry tensors,” JHEP 07 (2016) 018,
arXiv:1603.05551 [hep-th].

[85] H. Liu, “Scattering in anti-de Sitter space and operator product expansion,” Phys.
Rev. D60 (1999) 106005, arXiv:hep-th/9811152 [hep-th].

[86] E. D’Hoker and D. Z. Freedman, “General scalar exchange in AdS(d+1),” Nucl.
Phys. B550 (1999) 261–288, arXiv:hep-th/9811257 [hep-th].

http://dx.doi.org/10.1088/1126-6708/2008/05/012
http://arxiv.org/abs/0803.1467
http://dx.doi.org/10.1007/JHEP06(2016)111
http://arxiv.org/abs/1603.03771
http://arxiv.org/abs/1605.08072
http://dx.doi.org/10.1007/JHEP12(2013)004
http://arxiv.org/abs/1212.3616
http://arxiv.org/abs/1212.3616
http://dx.doi.org/10.1007/JHEP11(2013)140
http://arxiv.org/abs/1212.4103
http://dx.doi.org/10.1007/JHEP11(2015)083
http://dx.doi.org/10.1007/JHEP11(2015)083
http://arxiv.org/abs/1502.01437
http://dx.doi.org/10.1007/JHEP07(2015)026
http://arxiv.org/abs/1504.00772
http://arxiv.org/abs/0907.2407
http://arxiv.org/abs/0909.1024
http://arxiv.org/abs/0909.1024
http://dx.doi.org/10.1007/BF02824349
http://dx.doi.org/10.1007/BF02824349
http://dx.doi.org/10.1103/PhysRevD.13.887
http://dx.doi.org/10.1007/JHEP10(2015)040
http://arxiv.org/abs/1410.4185
http://dx.doi.org/10.1007/JHEP07(2016)018
http://arxiv.org/abs/1603.05551
http://dx.doi.org/10.1103/PhysRevD.60.106005
http://dx.doi.org/10.1103/PhysRevD.60.106005
http://arxiv.org/abs/hep-th/9811152
http://dx.doi.org/10.1016/S0550-3213(99)00169-8
http://dx.doi.org/10.1016/S0550-3213(99)00169-8
http://arxiv.org/abs/hep-th/9811257


Bibliography 105

[87] J. Penedones, “Writing CFT correlation functions as AdS scattering amplitudes,”
JHEP 03 (2011) 025, arXiv:1011.1485 [hep-th].

[88] A. L. Fitzpatrick, J. Kaplan, J. Penedones, S. Raju, and B. C. van Rees, “A Natural
Language for AdS/CFT Correlators,” JHEP 11 (2011) 095, arXiv:1107.1499
[hep-th].

[89] M. F. Paulos, “Towards Feynman rules for Mellin amplitudes,” JHEP 10 (2011) 074,
arXiv:1107.1504 [hep-th].

[90] A. L. Fitzpatrick and J. Kaplan, “Analyticity and the Holographic S-Matrix,” JHEP
10 (2012) 127, arXiv:1111.6972 [hep-th].

[91] D. Nandan, A. Volovich, and C. Wen, “On Feynman Rules for Mellin Amplitudes in
AdS/CFT,” JHEP 05 (2012) 129, arXiv:1112.0305 [hep-th].

[92] A. A. Nizami, A. Rudra, S. Sarkar, and M. Verma, “Exploring Perturbative
Conformal Field Theory in Mellin space,” arXiv:1607.07334 [hep-th].

[93] A. L. Fitzpatrick and J. Kaplan, “Unitarity and the Holographic S-Matrix,” JHEP
10 (2012) 032, arXiv:1112.4845 [hep-th].

[94] V. Gonçalves, “Four point function of N = 4 stress-tensor multiplet at strong
coupling,” JHEP 04 (2015) 150, arXiv:1411.1675 [hep-th].

[95] M. F. Paulos, J. Penedones, J. Toledo, B. C. van Rees, and P. Vieira, “The S-matrix
Bootstrap I: QFT in AdS,” arXiv:1607.06109 [hep-th].

[96] M. S. Costa, V. Goncalves, and J. Penedones, “Conformal Regge theory,” JHEP 12
(2012) 091, arXiv:1209.4355 [hep-th].

[97] J. Maldacena, S. H. Shenker, and D. Stanford, “A bound on chaos,”
arXiv:1503.01409 [hep-th].

[98] R. Britto, F. Cachazo, B. Feng, and E. Witten, “Direct proof of tree-level recursion
relation in Yang-Mills theory,” Phys. Rev. Lett. 94 (2005) 181602,
arXiv:hep-th/0501052 [hep-th].

[99] F. Cachazo, S. He, and E. Y. Yuan, “Scattering of Massless Particles in Arbitrary
Dimensions,” Phys. Rev. Lett. 113 no. 17, (2014) 171601, arXiv:1307.2199
[hep-th].

http://dx.doi.org/10.1007/JHEP03(2011)025
http://arxiv.org/abs/1011.1485
http://dx.doi.org/10.1007/JHEP11(2011)095
http://arxiv.org/abs/1107.1499
http://arxiv.org/abs/1107.1499
http://dx.doi.org/10.1007/JHEP10(2011)074
http://arxiv.org/abs/1107.1504
http://dx.doi.org/10.1007/JHEP10(2012)127
http://dx.doi.org/10.1007/JHEP10(2012)127
http://arxiv.org/abs/1111.6972
http://dx.doi.org/10.1007/JHEP05(2012)129
http://arxiv.org/abs/1112.0305
http://arxiv.org/abs/1607.07334
http://dx.doi.org/10.1007/JHEP10(2012)032
http://dx.doi.org/10.1007/JHEP10(2012)032
http://arxiv.org/abs/1112.4845
http://dx.doi.org/10.1007/JHEP04(2015)150
http://arxiv.org/abs/1411.1675
http://arxiv.org/abs/1607.06109
http://dx.doi.org/10.1007/JHEP12(2012)091
http://dx.doi.org/10.1007/JHEP12(2012)091
http://arxiv.org/abs/1209.4355
http://arxiv.org/abs/1503.01409
http://dx.doi.org/10.1103/PhysRevLett.94.181602
http://arxiv.org/abs/hep-th/0501052
http://dx.doi.org/10.1103/PhysRevLett.113.171601
http://arxiv.org/abs/1307.2199
http://arxiv.org/abs/1307.2199

	Introduction
	Scaling and Renormalization 
	Phase transitions
	Critical exponents

	Renormalization
	Block spin transformation
	Scaling variables
	Free energy
	Scaling operators
	RG flows

	Problems

	Conformal Field Theory 
	Conformal Transformations
	Conformal Algebra
	Local operators
	Primary operators and their correlation functions
	Stress-energy tensor
	Ward identities
	Quantization
	Conjugation
	Reflection positivity

	Radial quantization and the state-operator map
	Unitarity bounds
	Operator Product Expansion
	Conformal Bootstrap
	Embedding Space Formalism
	Conformal anomalies
	The story in d=2

	Large N Factorization
	Problems

	Anti-de Sitter Spacetime 
	Particle dynamics in AdS
	Quantum Field Theory in AdS
	State-Operator Map
	Generating function

	Gravity with AdS boundary conditions

	The AdS/CFT Correspondence 
	Quantum Gravity as CFT 
	String Theory
	Finite Temperature 
	Applications
	Universal long range forces

	Mellin amplitudes 
	Definition
	OPE  Factorization
	Four-point function 
	Planar correlators
	n-point function

	Holographic CFTs
	Witten diagrams
	Flat space limit of AdS 

	Open questions

	Bibliography

