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Comparing the Buckling Strength
of Spherical Shells With Dimpled
Versus Bumpy Defects
We investigate the effect of defect geometry in dictating the sensitivity of the critical buckling
conditions of spherical shells under external pressure loading. Specifically, we perform a
comparative study between shells containing dimpled (inward) versus bumpy (outward)
Gaussian defects. The former has become the standard shape in many recent shell-buckling
studies, whereas the latter has remained mostly unexplored. We employ finite-element sim-
ulations, which were validated previously against experiments, to compute the knockdown
factors for the two cases while systematically exploring the parameter space of the defect
geometry. For the same magnitudes of the amplitude and angular width of the defect, we
find that shells containing bumpy defects consistently exhibit significantly higher knock-
down factors than shells with the more classic dimpled defects. Furthermore, the relation-
ship of the knockdown as a function of the amplitude and the width of the defect is
qualitatively different between the two cases, which also exhibit distinct post-buckling beha-
vior. A speculative interpretation of the results is provided based on the qualitative differ-
ences in the mean-curvature profiles of the two cases. [DOI: 10.1115/1.4056801]
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1 Introduction
The mechanical response of thin elastic shells under compression

is highly nonlinear [1,2], with a strong sensitivity to imperfections
[3–6]. Predicting the buckling strength of shells is a long-standing
canonical problem in the structural mechanics community [7,8].
The classic prediction for the perfect spherical shell case was first
obtained by Zoelly in 1915 [9] from linear buckling analysis:

pc =
2E

����������
3(1 − ν2)

√ η−2 (1)

where E, ν, and η=R/h are the Young’s modulus, Poisson’s ratio,
and slenderness ratio of the shell of radius R and thickness h, respec-
tively. However, experimental measurements for the critical buck-
ling pressure of a thin spherical shell containing imperfections
[10–16] are always found to be lower than the theoretical prediction
in Eq. (1) due to their extreme sensitivity to imperfections [5]. The
discrepancies between theory and experiments have been attributed
to the nonuniformity of loading [17], the boundary conditions [18],
the influence of pre-buckling deformations [19], and the deviations
from perfect shell geometry [20]. The ratio between the measured
critical pressure, pmax, and the corresponding classic prediction
for the perfect geometry, pc, is known as the knockdown factor,

κ =
pmax

pc
(2)

which is always smaller than unity (κ< 1) for realistic shells that inev-
itably contain material and geometric imperfections. Despite the
classic, albeit still challenging, nature of the problem, there has
been a recent revival in the interest and research of shell buckling.
The study of the critical buckling conditions of spherical shells has
been reinvigorated by recent advances in experiments and com-
putation [16,21–28]. For a contemporary perspective and overview
of the recent activity in the field, we point the reader to the following

recent studies [16,22–24,29–36]. Even if similar results are
also found for cylindrical shells [7,17,20,25,27,37–40], the present
study will focus on spherical shells exclusively.
Most of the recent investigations on spherical shell buckling

mentioned in the previous paragraphs [33–35,41–43] have consid-
ered standardized dimpled (Gaussian) defects. Other types of imper-
fections (e.g., through-thickness defects [23,44,45], and dent
imperfections [46]) have also been considered, but such cases are
sparser. A benefit of focusing on standardized dimples is that they
allow for a better contextualization and interpretation of results
across different studies. These dimpled imperfections are axisym-
metric, localized, and characterized by a radial modulation of the
shell mid-surface from a perfect sphere of radius R, by

wI = cδe− β/β◦( )2 (3)

where β is the polar angle measured from the north pole (β = 0,
where the center of the defect is located), and the constants β°
and δ control the width and amplitude of the defect (see Fig. 1).
The defect amplitude, which is typically normalized by the thick-
ness of the shell, δ = δ/h, corresponds to the maximum radial devia-
tion at the center of the defect. It is also common to define a
geometric parameter [47],

λ = 12 1 − ν2
( ){ }1/4

η1/2β◦ (4)

Fig. 1 Schematic diagrams of the two types of geometry consid-
ered for our imperfect shells containing (a) a dimpled defect
and (b) a bumpy defect, with c=−1 and c=+1 (compared with
Eq. (3)), respectively. In both cases, the hemispherical shells
have radius R and thickness h, and the defect is located at the
pole (β= 0) with a geometry characterized by the amplitude, δ,
and half-angular width, β◦.
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to rescale the defect width, normalizing effects arising from the
radius-to-thickness ratio, η, of the shell.
In the existing literature, the prefactor c in Eq. (3) has been con-

sistently set to c=−1, corresponding to inward-pointing dimples, as
shown schematically in Fig. 1(a). The knockdown factor, κ, of such
shells containing dimpled defects was found in experiments, as well
as theoretical and computational analyses, to depend strongly on δ,
dropping sharply from unity for 0 < δ ≲ 1 and reaching a plateau
for δ ≳ 1 [16]. Moreover, these results demonstrated that the geo-
metric parameter λ governs the onset and level of the plateau in
the κ(δ) curves, as characterized thoroughly in Ref. [29]. The
authors revealed a lower bound of the plateau level that depends
solely on η and λ.
Here, we revisit the buckling of a spherical shell containing a

single Gaussian defect according to Eq. (3). We perform a compar-
ative study of the knockdown factor for the previously considered
dimpled (inward) defects (c=−1; see Fig. 1(a)) compared to the
symmetric case for bumpy (outward) defects (c=+1; see
Fig. 1(b)). Recently, Derveni et al. [32] have studied the buckling
of shells containing a large distribution of defects, validating
FEM simulations against experiments using bumpy defects, a
choice that was driven by practical experimental constraints, but
the difference between dimples and bumps was not explored in
detail. Otherwise, to the best of our knowledge, bumpy defects
have not been investigated systematically to date. We will focus
on the following research question: How does the buckling strength
compare between single-imperfection shells containing a dimpled
versus a bumpy defect?

2 Methodology: Finite Element Analysis
In Fig. 1, we present schematic diagrams of the two types of

geometries for the imperfect hemispherical shells that we will con-
sider, containing either a dimpled defect (c=−1 in (a)) or a bumpy
defect (c=+1 in (b)). We will focus on hemispherical shells of
radius R= 24.85 mm, thickness h= 0.23 mm, and thus, η=R/h=
108 with a single imperfection located at the pole, without loss of
generality [41] given the large value of η. This generality assumes
there is essentially no dependence of knockdown factor characteri-
zation on η for sufficiently slender shells as long as the defect width
is scaled according to Eq. (4). Each shell is clamped at the equator
and (de)pressurized to load it under compression until buckling
occurs.
The initial shell geometry considered in the simulations is axi-

symmetric. As such, the 2D cross-sectional profiles of the imperfect
shells presented in Fig. 2 for different values of δ and λ (see color
bar) suffice to fully describe this initial geometry. The perfectly

spherical case (δ = 0, λ= 0) is represented by the dashed line.
(a, c) and (b, d) represent the shell with dimpled (c=−1) and
bumpy (c=+1) defects, respectively. Representative defects with
the same defect width, λ= 2.5, in a range of amplitudes,
δ ∈ {1, 2, 3, 4, 5}, are shown in Figs. 2(a) and 2(b). In Figs. 2(c)
and 2(d ), we present representative shell profiles with the same
defect amplitude, δ = 2.5, in a range of widths, λ∈ {1, 2, 3, 4, 5}.
The corresponding lower panels in Fig. 2 show magnified views
of the defect profiles localized at the pole. Beyond these represen-
tative cases, our investigation will consider the following ranges
for the geometric parameters space of the defect: δ ∈ [0.1, 5] in
steps of Δδ = 0.1 for the defect amplitude and λ∈ [0.25, 5] in
steps of Δλ= 0.25 for λ≤ 1 and Δλ= 0.5 for λ≥ 1 for the (normal-
ized) defect width, while fixing all other parameters mentioned
earlier. Although these initial geometries are axisymmetric, it is
important to anticipate, as our results will evidence, that the post-
buckling modes can be asymmetric, especially for shells with
bumpy defects.
The material was modeled as a neo-Hookean solid, with

Young’s modulus of E= 1.26 MPa and a Poisson’s ratio of ν≈
0.5 (assuming incompressibility). These material-specific material
properties were chosen to align with the previous experimental
studies in Refs. [16,22,23,30,32], where they were measured
directly from experiments and used to validate the finite-element
simulations.
The set of geometric and physical parameters mentioned earlier

was chosen to match with Ref. [16] toward enabling a direct com-
parison with this previous study. However, for the present simula-
tion framework, instead of using the axisymmetry model of Refs.
[16,29], we use a three-dimensional description of the structure
using shell elements to capture possible asymmetry buckling beha-
vior. This finite-element modeling (FEM) approach has been vali-
dated against precision experiments for the specific problem of
shell buckling [30,32]. We followed the same FEM methodology
to perform simulations with the commercial package ABAQUS/STAN-
DARD; the details are given in Ref. [32]. We employed four-node
S4R shell elements with reduced integration points to discretize
the shell using sweep meshing, with 300 and 1200 elements in
meridional and azimuthal directions, respectively. A mesh conver-
gence study was also conducted to ensure that the results were not
influenced by mesh size. A Riks solver [48] was used to capture the
progress of the simulation along the arc length of the load–displace-
ment curve. Geometric nonlinearities were considered throughout
the study.
In the FEM simulations, each imperfect shell geometry was pres-

surized until the onset of buckling, at which point the maximum
pressure value, pmax, was recorded. Then, the knockdown factor
was computed using Eq. (2). Throughout the article, for ease of

Fig. 2 Representative examples of the initial geometric profiles of the imperfect shells considered. The shells contain defects
with (a, b) λ=2.5 and 0 ≤ δ ≤ 5, and (c, d) δ= 2.5 and 0≤ λ≤5. The defects correspond to dimple, c=−1 in (a, c) and bump,
c = +1 in (b, d). The lower panels show amplified views near the defects. These geometric profiles serve as input to the
FEM simulations.
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comparison, we will refer to the knockdown factor of the imperfect
shell with a dimpled defect as κD and κB for the bumpy defect. The
FEM results for the dimpled shells were first verified against
Ref. [16] in the previously explored range of parameters and then
expanded to a systematic parameter exploration of dimpled and
bumpy defects.

3 Results
Following the methodology introduced earlier, we start our

investigation to explore the parameter space of dimpled and
bumpy defects. We will characterize and compare the effects of
bumps and dimples on the buckling behavior, especially the knock-
down factor, of the pressurized imperfect shells.
In Fig. 3, we present surface plots with all the data we obtained

from the FEM simulations for the knockdown factor of shells with a
dimpled and bumpy imperfection in the whole parameter space
(δ, λ) specified in Sec. 2: Fig. 3(a) for κD and Fig. 3(b) for κB.
Color coding is used to quantify the knockdown factor (see the col-
orbar). Contour lines for constant values of κD and κB, in intervals of
0.1, are superposed on the surface plots. For the dimpled shells

(Fig. 3(a)), the minimum value of the knockdown factor, κD≈
0.15, is found on the upper extremity of the (δ, λ) parameter
space. This means that a shell with the deepest and widest defect
has the lowest knockdown factor, a fact that is well established in
the literature. By contrast, for bumpy shells (Fig. 3(b)), in the
explored range, the minimum knockdown factor (κB≈ 0.37)
occurs for the defects with the largest amplitude but intermediate
width (2 ≲ λ ≲ 3). Overall, the values of κB are consistently
larger than those of κD; the geometry of dimples plays a more sig-
nificant role in reducing the knockdown factor of an imperfect shell
compared to bumps. These features highlight the first and major
qualitative differences between the two cases.
Next, we elaborate on the data presented in Fig. 3 to more com-

prehensively describe the impact of the various parameters of the
defect geometric on the knockdown factor, κD for dimples and κB
for bumps. For this purpose, we first characterize the dependence
of the knockdown factor on the defect amplitude and then on the
normalized defect width, for both cases.
In Fig. 4, we present κD and κB as functions of δ, each curve cor-

responding to a different value of λ (see colorbar and marker
symbols). The data for shells with dimpled imperfections are
shown in Fig. 4(a) and those with bumpy imperfections in Fig. 4(b).

Fig. 3 Surface plots of the knockdown factor of shells con-
taining (a) a dimpled imperfection, κD, and (b) a bumpy imperfec-
tion, κB, for different values of the dimensionless geometric
parameter (width), 0.25≤ λ≤5, and normalized defect amplitude,
0.1 ≤ δ ≤ 5. Counter lines are superposed for the corresponding
values of κD and κB, in steps of 0.1. Panels (a) and (b) share the
same scale for κD and κB.

Fig. 4 Knockdown factor, κ, as a function of the normalized
defect amplitude, δ, for imperfect shells with defects in a range
of λ∈ [0.25,5] (see colorbar andmarker symbols): (a) Knockdown
factor, κD(δ), for a shell with a dimpled imperfection; i.e., c=−1 in
Eq. (3) and (b) Knockdown factor, κB(δ), for a shell with a bumpy
imperfection; i.e., c=+1 in Eq. (3).
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Note that the κD(δ) data in Fig. 4(a) are a recomputation of what
is already presented in Ref. [16], while the range of geometric
parameters for λ< 1 and δ > 3 is further expanded herein. Still,
for verification purposes, we selected a specific set of parameters
(λ(0 < δ ≤ 3) = {1.5, 5}) and confirmed identical results to those
in Ref. [16]. We recall that in this previously studied case of
dimpled imperfections, κD decreases monotonically with δ and
eventually reaches a plateau. Both the plateau level and its onset
depend on λ, as characterized previously in Ref. [29]. The plateau
is less pronounced when λ< 1 (regime not explored previously).
For example, in the extreme case of λ= 0.25 (the narrowest
defects), no plateau is reached; after an initially fast decay, the
knockdown factor continues to decrease as the amplitude increases
all the way to high-amplitude defects of δ = 5. We emphasize that
there is little novelty in these results for dimpled shells, which
were already presented in Ref. [16] and are presented here for com-
pleteness to enable a direct comparison with the case of bumpy
imperfections discussed next.
Imperfect shells with bumpy defects exhibit a κB(δ) behavior

(Fig. 4(b)) that is qualitatively different from the dimpled case dis-
cussed earlier (Fig. 4(a)). The main feature is that the values of κB
tend to be higher overall than κD, with smoother decays as a func-
tion of δ, and nonmonotonic behavior in some of the curves. More-
over, the κB curves do not exhibit the prominent plateaux observed
in κD. Three regimes are observed. First, for shells with relatively
narrow defects, λ= {0.25, 0.5}, κB remains close to unity across
the entire range of δ; these shells are nearly insensitive to imperfec-
tions. Second, for shells with intermediate-width defects, λ= {0.75,
1}, the κD(δ) curves are nonmonotonic; κB decreases for 0.1 ≤ δ ≲
3 and then increases beyond δ ≈ 3. Third, for λ≥ 1.5, κB(δ)
decreases again monotonically.
In Fig. 5, to characterize the knockdown factor behavior with

respect to the defect width, we present κD for dimpled shells
(Fig. 5(a)) and κB for bumpy shells (Fig. 5(b)), as functions of λ.
The results are qualitatively the same as shown in Fig. 4. In the
case of dimpled shells (Fig. 5(a)), for small defect amplitudes,
δ ≤ 3, the κD(λ) curves are nonmonotonic. First, κD(λ) decreases
until a threshold defect amplitude and then increases. However,
for larger defect amplitudes, δ ≥ 3, κD decreases monotonically.
We highlight the fact that the threshold defect amplitude, δ ≈ 3, cor-
responds to the largest dimple amplitude before the onset of any of
the plateaux for the whole range of λ considered. Past δ ≈ 3, the
κD(λ) curves are monotonic due to the insensitivity of shells to
defect amplitude in this regime, for all λ values explored (compared
with Fig. 4(a)).
Turning to bumpy defects, in Fig. 5(b), we plot κB versus λ,

noting that the behavior is different than their dimpled counterpart
(Fig. 5(a)). We find that κB(λ) is always non-monotonic, decreasing
up to λ ≲ 2.5, and then increasing for λ ≳ 2.5. By contrast, for the
dimpled shells (Fig. 5(a)), κD(λ) was only nonmonotonic when
δ ≤ 3. This distinguishing feature between bumpy and dimpled
shells can be attributed to the fact that, in the dimple case, the
plateau region is insensitive to defect amplitude, when δ ≥ 3 for
all values of λ; this behavior does not exist in bumpy shells given
the absence of any plateauing.
Representative snapshots of post-buckling configurations

obtained in the FEM simulations are shown in Fig. 6. The top
(x-y) view of the shells is presented in the top row and the isometric
(x-y-z) view is in the lower row. We refer to the post-buckling con-
figuration as the first stable mode captured along the pressure–
volume path [16] immediately after the onset of buckling. By the
way of example, we consider imperfect shells containing a
dimpled defect with λ= 2.5 and δ = 1.8 in Fig. 6(a) and bumpy
defects with λ= 2.5 and δ = {0.3, 1.3, 2.9, 4.4} in Figs. 6(b)–
6(e). The axisymmetric post-buckling configuration in Fig. 6(a) is
representative of all the dimpled imperfect shells within the
explored range of parameters: the buckling initiates at the defect
location and expands axisymmetrically outward. The post-buckling
configurations are qualitatively distinct for shells with bumpy
defects and depend on the value of δ; see Figs. 6(b)–6(e). For

small defect amplitudes (e.g., δ = 0.3, Fig. 6(b)), the shell buckles
with a periodic deformation mode (akin to wrinkling) near the
clamped equator, far from the bumpy defect located at the north
pole. It is possible that these results for small-imperfection shells
are dominated by imperfections induced by the clamping conditions
or by numerical imperfections (artifacts) caused by the meshing.
However, in the experimental observations of Ref. [32], we did
find that the buckling location is close to the boundary for
small bumpy defects, which would tend to suggest that the periodic
deformation mode is not an artifact. For higher values of δ, the loci
of buckling occur near the bumpy defect but nonaxisymmetrically
to its side. For example, these post-buckling configurations are
lobed with three, two, or one inverted-cap region for
δ = 1.3, 2.9, and 4.4 , respectively. A detailed analysis of these
post-buckling configurations for bumpy shells is beyond the
scope of the present study.
Finally, for an even more direct comparison between the dimpled

and bumpy cases, in Fig. 7, we convey an alternative representation
of the same data reported earlier by plotting κD as a function of κB.
Each data point corresponds to the same pair of (δ, λ) parameters
for bumps and dimples. Different marker symbols and colors
define various values of λ, while the marker size indicates the var-
iation of δ. Beyond the specific quantitative observations uncovered

Fig. 5 Knockdown factor, κ, as a function of the normalized
defect width, λ, for imperfect shells with defect amplitudes in a
range of δ ∈ [0.1, 5]: (a) Knockdown factor, κD(λ), for a shell
with a dimpled imperfection; i.e., c=−1 in Eq. (3) and (b) Knock-
down factor, κB(λ), for a shell with a bumpy imperfection; i.e., c=
+1 in Eq. (3).
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from the data in Figs. 4 and 5, this representation highlights that
bumpy shells consistently have a higher buckling strength than
dimpled shells, with all of the data lying above the κB= κD line
(dashed line in Fig. 7). Three different regimes of behavior are
observed, similar to Fig. 4(b). First, for λ= {0.25, 0.5}, both κB
and κD decrease with the increasing defect amplitude, but the reduc-
tion in κD is more pronounced than κB ought to the lower sensitivity
of bumps to defect amplitude in this regime. Second, for λ= {0.75,
1}, we observe a nonmonotonic behavior; with increasing δ, first,
both κD and κB decrease until a specific value of δ after which, κB
increases, while κD continues to decreases. Two distinct regions
are obvious in the third and last regime for λ≥ 1.5. Initially,
decreasing κD follows a decrease in κB until the defect amplitude
of the plateau onset [29]. After this onset, κB continues to decrease,
while κD remains approximately unchanged (plateau region of
insensitivity to defect amplitude).

4 Discussion
In this section, we provide a discussion that seeks to address,

even if speculatively, the following emerging questions: Why are

bumps stronger than dimples? Why do bumps show different buck-
ling modes of deformation compared to dimples?
The dimpled and bumpy shells are only distinguishable by their

defect region located at the pole, with c=±1 in Eq. (3). We focus
on the difference in the geometry of their undeformed (initial) con-
figuration, as measured by the mean and Gaussian curvatures pro-
files defined, respectively, as follows:

KH(β) =
1
2
(k1 + k2)

KG(β) = k1k2

(5)

where k1 and k2 are the two principal (local) curvatures of the shell
surface. We have numerically computed KH and KG with the func-
tion surfature [49] in MATLAB, taking the point-cloud data repre-
sentation of the undeformed surface as input for the FEM
simulations. We will add the subscripts D and B to denote the cor-
responding quantities for dimples and bumps, respectively, i.e.,
(KHD, KHB) and (KGD, KGB).
In Fig. 8, we plot the mean curvature, KH, in (a) and (b), and the

Gaussian curvature, KG, in (c) and (d), as functions of the polar
angle, β. The angular width of the defect, β°, defined in Eq. (3), is
represented by the vertical dashed lines. We restrict our results to
the representative case with λ= 2.5 (where the knockdown factor
of bumpy shells is lowest) while varying the defect amplitudes δ =
{1, 2, 3, 4, 5} (see color bar). Figures 8(a) and 8(c) correspond to
the dimpled shells, and Figs. 8(b) and 8(d ) correspond to the
bumpy shells. Qualitatively similar behavior to what we describe
next is found for other values of λ, but a detailed quantitative anal-
ysis is beyond the scope of the present work and unnecessary to the
qualitative interpretation that we will provide.
Hereon, we shall refer to the β< β° region as the core of the defect

and to the neighboring region right past the defect, β ≳ β◦, as the
rim of the defect. The mean-curvature curves for dimpled shells,
KHD(β) (Fig. 8(a)), exhibit a maximum located at the defect rim.
Within the defect core, by construction, the dimples have a
minimum mean curvature that is typically negative and always
lower than that of the nominal spherical shell. By contrast, for the
bumpy shells, all the KHB(β) curves have a minimum located at
the defect rim (Fig. 8(b)). At the defect core, the bumps have pos-
itive mean curvature, always greater than that far away in the shell.
Rewording the aforementioned observations, it is important to

highlight that the minimum of KH occurs at the core for dimples
and at the rim for bumps. Conversely, the maximum of KH
occurs at the rim for dimples and at the core for bumps. As evi-
denced in Fig. 6 and studied extensively in the literature, a depres-
surized imperfect spherical shell exhibits a buckling mode with one

Fig. 6 Representative post-buckling configurations: (a) A dimpled post-buckling configuration is representative of all shells
containing a dimpled defect (even if the exact values of the radial displacement may differ) and (b–e) post-buckling configura-
tions of shells containing a bumpy defect, for the selected cases of λ=2.5 and δ= {0.3, 1.3, 2.9, 4.4}, respectively.

Fig. 7 Knockdown factor of bumpy shells, κB, versus that of
dimpled shells, κD, for a range of dimensionless defect geometric
parameters, 0.25≤ λ≤5, and defect amplitudes, 0.1 ≤ δ ≤ 5. The
values of λ are coded by the shade in the adjacent bar, and the
values of δ are represented by the size of the symbol (see
legend). The dashed line represents κB= κD.
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(or more) inward-inverted cap, whose mean curvature has the oppo-
site sign of the nominal sphere. It is reasonable to envision that
regions of mean curvature lower (or higher) than that of the
nominal sphere will serve as weak (or strong) spots, respectively.
This reasoning, even if speculative, is compatible with the results
shown in Fig. 6. For dimples (Fig. 6(a)), the post-buckling config-
uration does indeed occur at the defect core, whereKH is minimum.
For bumps (Figs. 6(b)–6(d )), the buckling appears to nucleate at the
defect rim, where KH is minimum, and repelled by the defect core,
which appears to have a stiffening effect. Moreover, the fact thatKH
is always positive in the considered range of δ may be the source of
why the knockdown factor of bumpy shells is consistently higher
than that of dimpled shells.
Regarding the Gaussian curvature data presented in Figs. 8(c)

and 8(d ), the results are, as far as we can tell, less insightful. We
observe that at the defect core, KG is higher for the bumpy than
the dimpled shells, which may further contribute to the lower buck-
ling strength of the latter (for the same magnitude of geometric
parameters). Otherwise, both cases display Gaussian curvature pro-
files that are qualitatively similar. All KG curves are nonmonotonic
with a minimum near the defect rim, occurring before (or after) β°
for dimples (or bumps), respectively. In both cases, this minimum
can be negative for defects with larger amplitudes (δ ≳ 1 for the
dimples and δ ≳ 3 for the bumps) but always positive other-
wise. Outside of this region of the minimum neighboring the rim,
KG > 0 in both cases. Overall, we do not see any salient qualitative
differences in the KG between the dimpled and bumpy cases that
correlate to the κD> κB reported in Fig. 7 and earlier plots.
There are similarities between the geometry of the bumpy shells

we considered and the classical literature for the Cohn-Vossen’s
shape [50]. Shells with nonconstant and sign-changing Gaussian
curvature can be a source of an exceptional bending mode on a
surface of revolution [51]. It is possible that this behavior can be
related to the different buckling modes we observed in our
bumpy shells, although we have no formal ground other than rea-
soning by analogy to support this statement. Future theoretical
work will be necessary to further rationalize the present findings,

which point to the importance of the detailed curvature profiles of
doubly curved imperfect shells, with a special spotlight on their
mean curvature.

5 Conclusion
We used an existing finite-element simulations approach, which

was validated previously against experiments, to study the buckling
strength of imperfect shells containing either a dimpled or a bumpy
imperfection. Although dimpled shells have been studied previ-
ously in much detail, bumpy shells have remained largely unex-
plored. We considered defects with a standard Gaussian profile
(compared with Eq. (3)), enabling direct and detailed comparisons
across the dimpled (c=−1) and bumpy (c=+1) cases. Our results
evidence that the role of bumps in reducing the buckling strength of
the spherical shell is less dramatic than for dimples, at least within
the ranges of parameters we explored. The knockdown factor sen-
sitivity to the detailed defect geometry is also less prominent in
bumps. Overall, the knockdown factor of a bumpy shell is always
greater than that of a dimpled one, κB > κD, for the same magnitude
of geometric parameters. In both cases, the knockdown factor is not
always reduced when the defect is widened.
We attempted to discuss the differences in knockdown factor

between dimpled and bumpy shells under the light of their mean
and Gaussian curvature profiles. Our interpretation suggests that
regions of the imperfect shell with minimal mean curvature serve
as weak points for the onset of buckling. These minima occur at
the defect core for dimpled shells and at the defect rim for bumpy
shells. For the latter, the core appears to have a stiffening effect,
which repels the post-buckling inverted caps making the buckling
mode asymmetric and potentially multi-lobed.
We acknowledge that our investigation was mostly descriptive

and observational. In the absence of the formal theoretical frame-
work, it is difficult to devise a predictive rationale for these obser-
vations. Still, we hope that our thorough comparative study will be
valuable in the ongoing revival of shell-buckling studies. A

Fig. 8 Curvature profiles of the initial geometry of the imperfect shell as a func-
tion of the polar angle, β. Representative cases are chosen with the dimension-
less geometric parameter of λ=2.5, and amplitudes in a range of δ ∈ [1, 5]: (a)
Mean curvature, KHD, and (c) Gauss curvature, KGD, for a shell with a dimpled
imperfection; i.e., c=−1 in Eq. (3). (b) Mean curvature, KHB, and (d) Gauss curva-
ture,KGB, for a shell with a bumpy imperfection; i.e., c=+1 in Eq. (3). The vertical
dashed line indicates β°, the defect opening angle corresponding to λ=2.5.
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systematic theoretical investigation will be a much-needed next step
in rationalizing the current findings. In addition, it would be inter-
esting to consider other imperfection geometries and establish
direct relations between the mean/Gaussian curvature profiles and
the resulting critical buckling conditions. Shell buckling is a
highly nonlinear and nontrivial phenomenon, and we believe that
specific case studies like ours are essential to gaining insight and
motivating modeling directions.
From a practical viewpoint, our research is aligned with efforts

currently underway by NASA and others interested in large-scale
shell structures [52–54]. These efforts aim to replace the purely
empirical knockdown factors guidelines in design codes of aero-
space structures with mechanics-based predictive methods that
take manufacturing-based data on the imperfection distributions
as input. Our results demonstrate that different types of defects,
even if characterized by similar geometric parameters, can yield
quantitatively and qualitatively different reductions of buckling
strength. For example, the design of shells containing only
bumpy defects can be tackled less conservatively than dimpled
shells.
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