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The buckling of spherical shells is plagued by a strong
sensitivity to imperfections. Traditionally, imperfect
shells tend to be characterized empirically by the
knockdown factor, the ratio between the measured
buckling strength and the corresponding classic
prediction for a perfect shell. Recently, it has been
demonstrated that the knockdown factor of a shell
containing a single imperfection can be predicted
when there is detailed a priori knowledge of the defect
geometry. Still, addressing the analogous problem for
a shell containing many defects remains an open
question. Here, we use finite element simulations,
which we validate against precision experiments, to
investigate hemispherical shells containing a well-
defined distribution of imperfections. Our goal is to
characterize the resulting knockdown factor statistics.
First, we study the buckling of shells containing
only two defects, uncovering non-trivial regimes of
interactions that echo existing findings for cylindrical
shells. Then, we construct statistical ensembles
of imperfect shells, whose defect amplitudes are
sampled from a lognormal distribution. We find that
a 3-parameter Weibull distribution is an excellent
description for the measured statistics of knockdown
factors, suggesting that shell buckling can be regarded
as an extreme-value statistics phenomenon.

This article is part of the theme issue ‘Probing and
dynamics of shock sensitive shells’.
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1. Introduction
Thin shell structures with their inherent curved, slender configurations, have been studied
extensively across a wide range of length scales, from viruses [1], pollen grains [2] and plants
[3], to drug-delivery capsules [4], gas tanks [5] and aeronautical structures [6]. Owing to their
slenderness, shells are prone to buckling, whose subcritical nature can cause the catastrophic
loss of load-bearing capacity and sudden changes in the deformation mode [7]. Whereas shell
buckling is often regarded as a phenomenon to avoid in traditional structural mechanics, recent
studies have enlightened the benefits of leveraging the buckled configurations in attaining
advantageous mechanical properties [8–10]. These studies reflect the change in perspective from
buckliphobia to buckliphilia [11].

For the design of shell structures, it is desirable to have accurate predictions for their limits of
stability. The pioneering work of Zoelly [12] provides the widely used prediction for the critical
buckling condition of a pressurized perfect spherical shell:

pc = 2E√
3(1 − ν2)

η−2, (1.1)

where E is Young’s modulus, ν is Poisson’s ratio and η = R/t is the radius (R) to thickness (t)
ratio, measuring the slenderness of the spherical shell. Subsequently, a large body of experimental
studies has shown that equation (1.1) systematically overpredicts experimental measurements
[13–18], due to a strong sensitivity of the buckling to material and/or geometric imperfections.
Koiter [19] proposed a general theory of elastic stability to study the post-buckling behaviour of
structures. Instigated by this seminal work, much theoretical effort has been dedicated to study
shell buckling in the presence of assumed imperfections in geometry, loading and boundary
conditions [20–24]. Still, given the lack of theoretical bases to predict their critical buckling
strength, realistic (imperfect) shells tend to be characterized empirically by the knockdown factor,

κ = pmax

pc
, (1.2)

where pmax is the measured maximum buckling pressure supported by the shell and pc is the
corresponding classic prediction from equation (1.1) if the shell were to be perfect. For example,
NASA has largely relied on knockdown factors in the characterization of shell structures [25,26],
using vast experimental datasets to devise empirical guidelines to aid the design of imperfection-
sensitive shells.

Significant progress in the experimental study of shell buckling was made recently, in part
due to the introduction of a versatile shell fabrication technique proposed by Lee et al. [27]. By
coating a rigid hemispherical mould with a liquid polymer solution, this technique yields a shell
of nearly uniform thickness upon curing. Lee et al. [28] then used a flexible mould, deformed by an
indenter applied at the pole, to produce shells containing a single, precisely engineered, dimple-
like defect. Importantly, this technique by Lee et al. [28] offers precise and systematic control
over the geometry of the engineered defect, enabling accurate and thorough measurements
of the knockdown factor as a function of the imperfections characteristics. Their experimental
results evidenced that, as the amplitude of a single dimple-like defect increases, the knockdown
factor decreases rapidly until it reaches a plateau, the onset of which occurs when the defect
amplitude is approximately equal to the shell thickness. The authors also demonstrated that when
the geometry of the imperfection is known in detail, the knockdown factor can be predicted
accurately, either through finite-element modelling or reduced-order shell theory models. The
dependence of the knockdown factor and its plateau on the geometric parameters of the defect
and the shell has also been studied in detail [29]. All of these results for imperfect spherical shells
are qualitatively consistent with much earlier theoretical analyses for cylindrical shells [21], but
this time with accurate quantitative predictions validated by precision experiments. The case of a
through-thickness single imperfection on a hemispherical shell has also been studied [30].
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All the aforementioned studies measured the knockdown factor by buckling the imperfect
shells. As an alternative, a non-destructive poking technique was proposed in [31,32] to probe the
critical buckling load of an imperfect cylindrical shell from its response to indentation at different
axial loading levels to extrapolate the critical conditions without actually breaking the shell. This
technique has also been successfully applied to spherical shells [33,34]. Further experimental
and numerical studies revealed that, due to the localized deformation caused by the defect, the
reliability of the poking test is strongly affected by the distance between the poking location
and the imperfections, for both cylindrical [35,36] and spherical shells [33,34]. Particularly, Fan
et al. [35] performed numerical poking tests on shells with two dimple-like defects and with a
distribution of defects measured from an aluminium can. They showed that the poker had to be
positioned sufficiently close to the centre of the most deleterious defect in order to yield accurate
predictions.

Despite the significant advances mentioned above in theoretical, experimental and
computational studies of shells containing a single imperfection, there remain many open
questions in the more realistic and practically relevant case of shell buckling due to multiple,
or even a large distribution of imperfections, potentially influenced by defect–defect interactions.
Wullschleger [37] studied imperfect cylindrical shells containing two defects at varying levels
of separation, and showed that the interactions become important when the defects are close to
each other. Beyond the two-defect case, various probabilistic methods to predict the knockdown
factor of cylindrical shells have been proposed. Axisymmetric defects on cylindrical shells
were investigated in the earlier work of Amazigo [38] via a modified truncated hierarchy
method, concluding that the buckling capacity depends on the spectral imperfection density.
Cylindrical shells with random imperfections subjected to axial compression have also been
examined using the Monte Carlo method, imposing either axisymmetric [39] or asymmetric
[40] defects. These studies established probabilistic methods as the more suitable approach to
assess the design criteria for cylindrical shells when compared with deterministic approaches.
These various probabilistic methods relevant for shell buckling have been reviewed by Elishakoff
[41]. However, for spherical shells, to the best of our knowledge, the influence of defect–defect
interactions on their buckling behaviour has not been reported to date. Furthermore, statistics
of the knockdown factor for spherical shells containing distributions of defects remain mostly
unexplored.

Here, we investigate the buckling of imperfect hemispherical shells containing a large number
of defects, and compare the statistics of knockdown factors with the classical case of single-
defect shell buckling. Our study follows two stages, combining experiments and simulations.
First, we fabricate elastomeric hemispherical shells using three-dimensionally printed moulds
containing several imperfections and a polymer-coating technique. We characterize the full three-
dimensional geometry of the experimental specimens using X-ray micro-computed tomography
(μCT). Finally, we obtain knockdown factors via physical buckling tests, which are then used
to validate the finite-element method (FEM) simulations. Second, we turn our attention to the
validated FEM and study the two-defect case where the distance between the two defects is
systematically varied, uncovering a possible interaction regime. Then we construct statistical
ensembles of shells, each containing a large number of defects whose amplitude is treated as
a lognormal distributed random variable. By simulating the buckling of these ensembles of
imperfect shells using FEM, we compute the knockdown factor statistics. Our results show
that the probability density function (PDF) of the knockdown factor is described well by a
Weibull distribution. We also find that the mode (peak) of the knockdown factor PDF decreases
when both the mean defect amplitude and its standard deviation increase. In addition, when
the minimum distance between defects is large, we observe that the knockdown factors are
exclusively dominated by the largest defect, similar to what is observed in the single-defect case.
However, when the minimum separation decreases, defect–defect interactions play a significant
role in dictating the knockdown factor. Our findings suggest that shell buckling can be placed
in the broader class of extreme-value statistics phenomena, calling for the study of probabilistic
shell buckling in even more practically relevant imperfection conditions.
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Figure 1. Problem definition. (a) A two-dimensional schematic of an elastic hemispherical shell with three dimple defects.
(b) A three-dimensional representation of a shell with multiple dimple imperfections, wi (equation (2.1)), whose amplitudes,
δ i , follow a lognormal distribution (equation (2.5)). (Online version in colour.)

Our paper is structured as follows. In §2, we define the problem and state the main
research questions. Section 3 presents the experimental methodology, including (a) the protocol
to fabricate the imperfect shells, (b) the characterization of their geometry using X-ray μCT
and (c) the experimental pressure-buckling tests. Section 4 details the FEM simulations,
which are then validated against experiments in §5. Section 6 is dedicated to the case
of an imperfect shell containing two defects. Results of the buckling statistics for shells
containing a distribution of imperfections are presented in §7. Section 8 provides the
conclusions of our work, including a discussion of our findings and recommendations for future
work.

2. Definition of the problem
We consider a thin, elastic and hemispherical shell containing a distribution of geometric
imperfections, as illustrated in figure 1. The overall geometry of the shell is described by
its nominal radius, R, and thickness, t, with a radius-to-thickness ratio η = R/t. The shell
contains N > 1 (typically N � 1) defects, each of which is assigned an index i. The ith defect
introduces a radial deviation, wi, of the otherwise spherical mid-surface of the shell. Following
the work of Lee et al. [28], we assume that each of these imperfections is shaped as a Gaussian
dimple,

wi(α) = −δi e−(α/α0)2
, (2.1)

where the variable α is the local angular distance (spherical coordinate) from the centre of the
defect, and the constants δi and α0 are, respectively, the amplitude (maximum radial deviation
of the mid-surface) and half-angular width of the ith defect. The defect amplitude is non-
dimensionalized by the shell thickness, δi = δi/t. Hereon, when referring to the defect amplitudes
(and associated quantities such as the mean and standard deviation of its distribution), we shall
mean their dimensionless versions. Also, following a standard in the literature [42,43], we use the
following geometric parameter to characterize the defect width:

λ = [12(1 − ν2)]1/4 η1/2 α0. (2.2)

As shown schematically in figure 1a, the location on the shell’s mid-surface of the centre of
each defect (where the local angle is α = 0) is defined by the unit radial vector:

eri = sin βi cos θiex + cos βiey + sin βi sin θiez, (2.3)

where βi and θi are specific values of the global zenith (polar) and azimuthal spherical coordinates,
β and θ , respectively, associated with the ith defect. Note that the local angle, α in equation (2.1),
associated with each defect, can be related to (β, θ ) and their specific values for the defect centre
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(βi, θi) but this complicated function is unnecessary to define the geometry. The pole of the shell
is located at β = 0 and the origin of the Cartesian coordinate system (ex, ey, ez) is located at the
centre of the circular base of the hemisphere. The radial distance of the middle surface of the shell
is rm(β, θ ) = R +∑N

i=1 wi(β, θ ). The centre of each defect is at a distance bi = rm(βi, θi) = R − δi
from the origin and its radial position vector is ri = bieri . The angular separation between two
neighbouring defects, i and j, whose centres are located at eri and erj , is defined as

ϕ(i,j) = ∣∣ arccos(eri · erj )
∣∣. (2.4)

If the ith defect is located at the pole (β = 0), then ϕ(i,j) = βj, but this is not so in the general case
of βi �= βj �= 0 and θi �= θj.

First, we will address the buckling problem of a shell containing only two imperfections
(N = 2), seeking to characterize the effect of defect–defect interactions. To this end, with i = {1, 2},
we systematically vary the defect amplitudes, δi, geometric parameter, λi, and their angular
(centre-to-centre) separation, ϕ(1,2). The i = 1 defect is positioned at the shell pole (β = 0) and the
i = 2 defect at a polar location β2, such that ϕ(1,2) = β2. We aim to quantify how the knockdown
factor of this imperfect shell depends on δi, λi and ϕ(1,2). For the explored N = 2 configurations,
we will consider two cases for the defects’ geometric parameters and amplitudes: one with
λ = λ1 = λ2 and δ = δ1 = δ2, and another with λ1 �= λ2 and δ1 �= δ2. In both cases, we will find that
the knockdown factor, κ , exhibits a non-trivial behaviour as a function of ϕ(1,2); these results are
reported in §6. The defect–defect interactions will be important when setting up and interpreting
the more complex problem of buckling of imperfect shells with a large distribution (N � 1) of
defects, introduced next.

In our second and central problem, we build upon past studies on the sensitivity of the
buckling of spherical defects containing a single defect [24,28,29,33] to now consider imperfect
shells with a large number (N � 1) of randomly distributed defects. Specifically, we design shells
whose defects have a statistical distribution of amplitudes δi (lognormally distributed) and
positions ri (distributed according to a random sequential adsorption algorithm). These designs
explore a few fixed values of the defect angular width, α0, and hence λ through equation (2.2).
The PDF of the defect amplitude is:

f (δi) = 1

δiσ
√

2π
exp

(
− (ln δi − μ)2

2σ 2

)
, (2.5)

where μ and σ are parameters related to the mean defect amplitude

〈δ〉 = exp

(
μ + σ 2

2

)
, (2.6)

and its standard deviation


δ =
{

[exp(σ 2) − 1] exp(2μ + σ 2)
}1/2

. (2.7)

Note that the logarithms of the defect amplitudes, ln(δ), are normally distributed with mean μ

and standard deviation σ . One advantage of using a lognormal PDF in seeding the imperfections
is that it establishes positive values of δi, ensuring that we only deal with dimples (and not a
combination of dimples and bumps). Also, lognormal distributions of imperfections are used
widely in structural reliability analysis [44–47].

The position of each defect, defined in equation (2.3), is seeded randomly onto the shell, one
by one, using a random sequential adsorption algorithm [48–50], which is commonly used to
generate nearly isotropic porous structures. Here, we modify the volumetric case to randomly
distribute circles on the hemispherical surface of a shell. Overlaps are avoided by setting a
minimum angular separation between defects, ϕmin. The seeding procedure stops when the
spherical cap delimited by a maximum zenith angle, βmax, no longer admits a new defect.
We chose βmax = 60◦ to minimize interaction effects with the boundaries. For example, this
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seeding procedure with λ = 1 and βmax = 60◦ yields N ≈ 80 defects. The seeding algorithm will
be described in more detail in §3a.

The hemispherical, imperfect shell with N random defects, is clamped at its equator and
loaded under negative pressure, p0. When the imposed pressure difference reaches the critical
value, pmax, the shell buckles through a subcritical bifurcation. The case of a single imperfection,
N = 1, has been addressed in previous studies [24,28,29,33,34], as described in the Introduction.
In the present work, we seek to characterize the knockdown factor of shells with N ≥ 2. First, we
focus on the defect–defect interactions in the N = 2 case, and then we turn to the probabilistic
case with N � 1 defects. We systematically vary the mean, 〈δ〉, and standard deviation, 
δ, of
the seeding lognormal distribution, while fixing λ and ϕmin. Statistical ensembles of imperfect
shells with statistically equivalent configurations are produced for each set of parameters,
(〈δ〉, 
δ, λ, ϕmin).

Producing a large number of realizations is impractical in experiments. As such, in the second
stage of our investigation, we will perform a systematic statistical investigation using the FEM
simulations exclusively. Trust on the FEM will be built up by a prior direct quantitative validation
against a few specific experimental cases. For practical reasons, the experiments (and, hence, the
FEM validation) will be performed for shells with outward (bump) defects, instead of the inward
(dimple) defects in equation (2.1). This choice is motivated by limitations during the fabrication
of the experimental specimens, as detailed in §3a.

The experimentally validated FEM will then be leveraged to simulate the buckling of statistical
ensembles of imperfect shells, designed with either N = 2 or N � 1 defects, as described above.
The probabilistic results will be interpreted in light of previous findings [28] for N = 1, together
with the case of N = 2 (§6). The latter includes the possibility of defect–defect interactions, which
are important for the N � 1 probabilistic case. Ultimately, the primary question we tackle is: Given
an input set of statistics for the design geometry of the imperfect shells, what are the output statistics of the
resulting knockdown factors, κ , as characterized by the probability density function, f (κ)?

3. Methods: experiments
We proceed by describing the experimental fabrication and characterization of shell specimens
containing multiple defects, as well as the experimental protocol followed to measure their critical
buckling conditions under pressure loading.

Previous experimental studies on shell buckling [28,30,33,34,51] have employed a coating
technique [27] to fabricate elastomeric shells of nearly constant thickness, containing a single well-
defined geometric imperfections. Toward tackling the problem defined in §2, while building on
past work, we have developed a novel experimental technique using three-dimensionally printed
moulds, enabling the robust fabrication of shells containing multiple defects, whose geometry,
number and layout can be designed precisely.

The exact geometry of the experimental shells is different from the idealized geometry
described in §2 (cf. figure 1); however, the high precision buckling tests described in §3c will
serve as a thorough quantitative validation of FEM (§5). For validation of the simulations, the full
geometry of the fabricated shells is quantified using X-ray μCT and is imported into the FEM
(§4). After validating the FEM, the buckling of imperfect shells with N ≥ 2 is more systematically
explored using the simplified geometry of §2; these results will be presented in §§6 and 7.

(a) Design and fabrication of imperfect shell specimens
We produced textured hemispherical moulds using a desktop stereolithography three-
dimensional printer (Form 2 Formlabs) using Clear V4 resin (figure 2a), with a resolution of 25 µm
per layer. Throughout, the nominal radius of the moulds is fixed at R = 25.4 mm.

The imperfections are introduced by design into the surface of the spherical mould, with
several small spherical protrusions of radius s 
 R to produce defects as bumps (figure 2c). The
centre of each of these spherical bumps is located at a distance di from the centre of the nominal
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three-dimensionally
printed mould

acrylic base

polymeric
       shell

(a) (b)

(c) (d)

pressure p0

clamped BCs

s
2l
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rin

rm

R

di

rout

δi

Figure 2. Fabrication and design of the imperfect shell specimens. (a) Representative photograph of the three-
dimensionally printed mould containing several defects (bumps). Owing to the small size of the bumps, they are not visible
at naked eye in the photograph. (b) Themould is coated with a liquid film of VPS-32, which upon curing and demoulding yields
the thin hemispherical shell. (c) Schematic diagram of the shell geometry. (d) The hemispherical shell is clamped at the equator
and depressurized to measure the critical buckling conditions. (Online version in colour.)

sphere of radius R, so that they produce a maximum radial distance δi = di + s − R. The defect
width is defined by the intersection between the bump and the nominal sphere of the mould, and
computed from geometry [52] as

l = 1
2di

√
4d2

i R2 − (d2
i − s2 + R2)2. (3.1)

A number of bumps protruding from a hemisphere is seeded onto the mould surface, with
well-defined statistics for δi and l, and using the same random sequential adsorption algorithm
mentioned in §2. The seeding is performed within a spherical cap of the mould, delimited by
a threshold value of the zenith angle βmax, to avoid potential interactions with the equatorial
boundary when the shell is fabricated (more on this below). Within this cap, we randomly sample
the angular position of the centre of each ith defect,(

βi, θi

)
=
(

arccos
(
1 − xβ (1 − cos βmax)

)
, 2πxθ

)
, (3.2)

where xβ ∈ [0, 1] and xθ ∈ [0, 1] are two random variables with an equal probability to locate the
defect anywhere on the hemisphere cap. The algorithm also imposes a constraint on the angle
between the centres of any pair of defects (with indices i and j),

ϕ(i,j) ≥ ϕmin, (3.3)

such that ϕmin ≥ 2α0 = 2 arcsin (l/R). For each shell design with fixed l, every new ith defect is
seeded at a random location of the shell and tested for equation (3.3), with respect to all other
already existing defects (j = 1, . . . , i − 1). If equation (3.3) is satisfied, a new i + 1 defect is seeded
with the same procedure. If equation (3.3) is not satisfied, this ith defect is removed, and a new
random location is generated until a valid condition is attained, up to a given maximum number
(106) of attempts. When this number of attempts is reached, the seeding process stops, setting the
final number of defects, N.
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Table 1. Design parameters of the shells with bumps fabricated in the experiments (see §3a) and simulated via FEM for
validation (see §5): average 〈δ〉 and standard deviation
δ of defect amplitude, geometric (width) parameter λ, minimum
angle between defect centresϕmin, maximum zenith angleβmax and number of defects N.

specimen λ 〈δ〉 
δ ϕmin βmax N

no. (−) (−) (−) (◦) (◦) (−)

Shell 1 0.539 0.643 0.000 6.189 20 7
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Shell 2 1.056 0.575 0.000 9.446 20 7
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Shell 3 0.553 0.794 0.180 4.790 20 24
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Shell 4 2.205 0.769 0.000 20.000 20 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Shell 5 1.571 0.698 0.000 14.787 60 30
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Shell 6 2.188 0.757 0.166 18.717 60 17
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Shell 7 1.889 0.865 0.000 18.488 60 20
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Shell 8 3.519 2.143 0.000 34.954 60 5
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The amplitude of each of the defects is treated as a random variable using a normal

distribution, δi ∼ Normal(〈δ〉, 
δ
2), with mean 〈δ〉 and standard deviation 
δ. Note that the

normal distribution used for the experimental specimens (with outward bumps) is only employed
in the experiments geared to validate the FEM simulations in §5. The FEM simulations in §§6 and
7 use designs generated with a lognormal distribution (with inward dimple) (cf. equations (2.1)
and (2.5)). The reason for this disparity is practical: we first performed the experiments before
realizing that lognormal-distributed defects were a better choice, but it was then impractical
to redo all experiments with the new design. Regardless of the design details, the experiments
are appropriate for the detailed validation of the FEM before turning to the more thorough and
systematic numerical exploration of the problem defined in §2.

We have designed and three-dimensionally printed eight different moulds, whose geometric
parameters are detailed in table 1. Four of the moulds had bumps in the spherical cap within
βmax = 20◦ and the other four within βmax = 60◦. The explored ranges of the design parameters
were: 0.5 < λ < 4.0, 0.5 < 〈δ〉 < 2.5 and 5◦ < ϕmin < 35◦. Consequently, these parameters set the
range of the number of defects: 1 ≤ N ≤ 30. Note that Shell 4 corresponds to a mould containing a
single defect, which is achieved by setting ϕmin = βmax.

Each hemispherical shell is fabricated by pouring vinylpolysiloxane (VPS-32, Elite Double
32, Zhermack) polymer onto the respective three-dimensionally printed mould, as shown in
figure 2b. To emulate clamped boundary conditions of the fabricated shells during testing, a
distance of 3 mm is set between the lower part of the printed mould and the centre of the
hemisphere, allowing for the formation of a thick polymeric equatorial lip during the shell
fabrication (figure 2b). The mould was mounted concentrically on the circular recess of a flat
plate (depth 3 mm), whose top surface was aligned with the equator of the mould. Upon pouring,
this recess was filled with the VPS-32 polymer solution, while avoiding overflow, to form an
equatorial lip. The thickness of this lip (3 mm) was significantly thicker than the typical values of
the shell thickness (t ≈ 0.3 mm for Shells 1–7 and t ≈ 0.4 mm for Shell 8). As such, this lip served
to emulate clamped boundary conditions during the buckling tests (more on these below).

The VPS-32 polymer solution was prepared by mixing a base and a curing agent (1–1 weight
ratio) in a centrifugal mixer (ARE-250, Thinky USA Inc., Laguna Hills, CA, USA) for 200 r.p.m./s
clockwise and 220 r.p.m./s counterclockwise, a process that also removes air bubbles. After
mixing, the VPS-32 solution was only poured onto the moulds after a quiescent waiting time
of 3 min to control the viscosity of the solution when pouring, setting an appropriate value of
the thickness of the gravity-driven lubrication flow down the surface of the mould [27]. After a
curing time of 20 min, the liquid VPS-32 film solidified, and the resulting elastic shell containing
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Figure 3. Geometric characterization and apparatus used to perform buckling tests of the shell specimens. (a) Reconstructed
three-dimensional imageof a shell obtainedusing X-raymicro-computed tomography (μCT). Shell 5 (see parameters in table 1)
is used as a representative example. Inset:magnification of a cross-sectional cut in the x–z plane. (b) Thickness profile, t(β , θ ),
of the shell shown in (a) obtained after post-processing of the μCT data. (c) Experimental apparatus used to measure the
buckling pressure of the hemispherical shell specimens. (Online version in colour.)

a distribution of defects was peeled from the mould and tested under internal pressure, p0
(figure 2d).

Note that the bumps protruding from the spherical mould act as topographic barriers to the
gravity-driven lubrication flow of VPS-32 prior to curing, causing local modifications in both
the geometry of the mid-surface and thickness of the otherwise nearly constant film thickness
on a spherical substrate. These specifics of the lubrication flow during fabrication are the reason
why, in the experiments, we decided to consider imperfections as outward bumps instead of the
inward dimples mentioned in §2. Had we used dimpled (instead of bumpy) moulds, each of
the topographic depressions would have acted as a fluid-accumulating basin causing significant
increases of the film thickness there. In that case, the shape of the resulting individual defects
would be undesirably shaped very differently than the target dimpled profile of equation (2.1).
These fabrication limitations underlie our choice for experimental designs with bumpy defects,
which are primarily geometric, albeit still with some degree of thickness variation.

(b) Characterization of the geometry of the experimental specimens
For the detailed validation of FEM against experiments, we will require knowledge of the full
geometry of the imperfect shell specimens listed in table 1, which we characterized using X-ray
μCT. Our equipment (μCT100, Scanco Medical) offers a scanning resolution of 25.4 µm (voxel
size). Each specimen is positioned on a 360◦ rotary stage of the μCT, which, after image processing
of a two-dimensional stack of images, yields a volumetric (three-dimensional) reconstruction of
the shell using ImageJ [53]. A representative reconstruction of such a three-dimensional image is
presented in figure 3a, for Shell 5 (cf. table 1). In the inset of figure 3a, we present an arbitrary
cross-sectional cut of the reconstruction in the x–z plane, exhibiting the thickness profile of the
imperfect shell.

An in-house Matlab [54] algorithm was then employed to post-process the three-dimensional
images and obtain several geometric quantities. Specifically, we perform edge detection on
the μCT images to extract the inner and outer surfaces of the shell in spherical coordinates
(r, β, θ ). These surfaces are represented, respectively, by their inner, rin(β, θ ), and outer, rout(β, θ ),
radial positions, from which we then compute the radial position of the shell’s mid-surface,
rm(β, θ ) = [rout(β, θ ) + rin(β, θ )]/2, and the shell-thickness profile t(β, θ ) = rout(β, θ ) − rin(β, θ ).
The edge-detection algorithm requires a segmentation threshold, which is sensitive for the correct
determination of t. We calibrate this threshold value using a digital microscope (VHX, Keyence)
to independently measure the shell thickness of a 2 × 10 mm2 portion of a sacrificial specimen
that is cut to expose the cross section. The segmentation threshold is systematically adjusted until
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the value of t measured by microscopy on this sacrificial sample matches that obtained by image
processing of the μCT images on the same sample.

In figure 3b, we show a representative measurement of the thickness profile, t(β, θ ), for Shell
5. This thickness profile can then be used to quantify the geometry of the imperfections. Owing to
the specifics of the fabrication procedure described in §3a, each defect comprises a combination
of a geometric imperfection (of the mid-surface, away from a perfect hemisphere) combined
with a small degree of a through-thickness imperfection. Defects produced by small bumps
(s < 1 mm) in the mould had a nearly axisymmetric thickness about their centre. By contrast,
larger defects had asymmetric thicknesses due to VPS-32 polymer accumulating upstream of
the bump in the gravity-driven lubrication flow during coating. The full geometric profiles of
each of the fabricated shells listed in table 1 were characterized thoroughly using the μCT.
Further characterizing individual defects by decoupling the geometric and through-thickness
imperfections is beyond the scope of the present work. Instead, the full three-dimensional
geometry characterized experimentally was imported into the FEM simulation, allowing for
a direct and accurate comparison of the buckling pressures between physical and numerical
experiments for validation purposes (see §5).

Eventually, we will report experimental results for the knockdown factor, defined in equation
(1.2) as κ = pmax/pc, for all of the fabricated specimens. The protocol to measure pmax will be
detailed below, in §3c. Still, to compute κ , we will also need pc, the classic theoretical prediction
for a perfect shell defined in equation (1.1) and, consequently, a nominal value of the thickness, t0,
for the case without defects. For this purpose, we fabricated five nearly perfect (no defects) shells
using a stainless steel sphere as the mould (R = 25.4 mm, the same as the nominal radius of the
three-dimensionally printed moulds). The conditions for the preparation of the VPS-32 solution,
pouring and curing were identical to the case of imperfect shells described above. A spherical
cap was cut from these nearly perfect shells at β = 45◦ and the thickness was measured using the
digital microscope to be t0 = 300 ± 10 µm (η = R/t0 = 85).

(c) Measurement of the critical buckling pressure
After fabrication and μCT scanning, we measured the critical buckling pressure of each of the
imperfect shell specimens listed in table 1, using an experimental protocol identical to that
developed in our previous work [28,33,34,51]. For completeness, we summarize this protocol next.

In figure 3c, we show a photograph of the experimental apparatus. A shell specimen was
mounted onto an acrylic plate, sealing its equator with a thin layer of VPS-32 polymer. The
thick equatorial lip of the shell, together with this layer of VPS-32, enforced clamped boundary
conditions at the equator. An additional thin water film was deposited at the joint between the
shell equator and the acrylic plate to achieve airtightness. The centre of the acrylic-plate mount
contains a through-hole and is connected to a syringe pump (NE-300, New Era Pump Systems,
Inc.), a pressure sensor (HSCDRRN005NDAA5, Honeywell Sensing and Productivity Solutions),
which is itself linked to a data logger (NI USB-6009, National Instruments). This system is used to
depressurize the shell specimen by withdrawing air using the syringe pump (at the constant rate
of 0.6 ml min−1), while recording the internal-pressure signal using the pressure sensor and the
data logger. The gradual increase of the pressure differential between the inside of the shell and
the outside (at atmospheric pressure) eventually causes the shell to buckle at the critical value,
pmax, past which the measured pressure drops sharply.

Each shell specimen is tested 10 times for quantification of the experimental uncertainties, and
the average value is reported. The experimental measurements of pmax for each of the specimens
listed in table 1 will be reported in §5 (figure 4b).

4. Methods: finite-element modelling
In parallel to the experiments, we performed FEM simulations using the commercial package
ABAQUS/Standard [55]. In previous works for shells with a single defect [28,30,34,51],
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Figure4. Validationof the FEMsimulations against experiments. (a) Top viewsof eachof the imperfect shells, showingboth the
design drawing (left columns) and the corresponding photograph of the fabricated shells (right columns). On the photographs,
a blackmarker indicates the locationwhere buckling occurs immediately past pmax. (b) Plot of the knockdown factor,κ , for each
of the shells tested in the experiments (blue bars) and computed in FEM (red bars). Additional information on the error bars is
provided in the text. In both (a) and (b), the labels—‘Shell 1’ . . . ‘Shell 8’–correspond to table 1. (Online version in colour.)

symmetries were exploited to reduce computational costs. By contrast, the spatial distribution of
imperfections in the present study requires the numerics to be tackled as fully three-dimensional.
We used S4R shell elements with reduced integration points, allowing for finite membrane strains.
The hemispherical shell is divided into four quarters, each composed of 150 elements in both the
meridional and azimuthal directions. This discretization choice was deemed appropriate after
a mesh-convergence study and will be supported further by the successful validation against
experiments (§5). We employed a static Riks solver, selecting an initial arc length of increment of
10−1, with minimum and maximum increment sizes of 10−5 and 0.5, respectively. Throughout,
geometric nonlinearities were considered. The VPS-32 elastomer was modelled as a neo-Hookean
solid with a Poisson’s ratio of ν = 0.5 (assuming incompressibility) and a Young’s modulus of
E = 1.25 ± 0.01 MPa (the measured experimental value).

We recall that the FEM simulations were tackled in two stages. First, we performed a direct
validation against experiments (using the experimentally measured geometries); these validation
results are provided in §5. Then, having built trust on the simulations upon their successful
validation, the FEM was employed for the thorough investigation of the problem defined in §2
using more idealized geometries; these results are provided in §§6 and 7.

For the validation-purposed simulations, the three-dimensional geometric models were
imported from the μCT scans of the eight experimental specimens listed in table 1. From these
scans, as described in §3b, we extracted the hemispherical profiles of the outer radius, rout,
inner radius, rin, and thickness, t; all functions of the voxelated spherical coordinates (β, θ ). In
ABAQUS, it is difficult to generate a mesh directly from these raw μCT data (point clouds).
Alternatively, we first meshed a perfect hemispherical shell, where each node was assigned
angular positions and a radius. Nodal displacements were imposed on the original hemispherical
mesh such that they matched the interpolated from the μCT values of rout for the same angular
coordinates. A nodal thickness equal to the interpolated value from the μCT t(β, θ ) profile was
then applied at each note. Finally, an offset was imposed using the keyword ∗OFFSET to inform
ABAQUS that the specified mesh corresponds to the outer surface of the shell elements.

The FEM simulations of the imperfect shells containing Gaussian dimples were done
analogously to the validation simulations described above, but with the idealized geometry.
First, we created a perfect hemispherical mesh, whose nodes were then displaced according to
the desired design set by the parameters (〈δ〉, 
δ, λ, ϕmin), with each defect shaped according to
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equation (2.1). In this case, since the topography of imperfections is specified at the middle surface
of the shell, no offset needs to be imposed on the reference surface mesh. In all of these simulations
of dimpled shells with N ≥ 2, a constant nodal thickness is applied to each node, which was fixed
such that η = 110.

5. Validation of the FEM simulations
To gain confidence in the high-fidelity of our three-dimensional FEM simulations, we followed
two stages. First, we performed a verification against published results for the one-defect case.
Then we validated the FEM simulations against the experiments described in §3.

The first verification stage against existing results is important because the previous studies
in [28,30,51], for shells containing only one defect at the pole, made use of circular symmetry
(about the vertical axis). Hence, these previous simulations simplified the computational domain
to be axisymmetric (two-dimensional) to reduce computational cost. By contrast, the present
simulations were designed for the many-defects problem, using three-dimensional shell elements,
and involving a fully three-dimensional non-axisymmetric geometry. For the case of one defect
located at the pole (β = 0), we compared the present three-dimensional FEM to the previous two-
dimensional FEM results [28], for different values of δ and λ, obtaining, not surprisingly, excellent
quantitative agreement between the two. Additional simulations were performed for different
polar locations of the defect (while also varying δ and λ), finding that κ remained unmodified
as long as the defect was located within 0 ≤ β ≤ 60◦; closer to the equator, interactions with the
clamped boundary become important. We recall that in [28], with the defect at the pole, boundary
effects were deemed negligible by comparing the FEM results for a hemispherical shell with shell-
theory predictions for a complete spherical shell. Shells with the even more restrictive value of
βmax = 20◦ will be considered below (cf. table 1), but that choice will also present some issues.
Therefore, the value of βmax = 60◦ was kept constant through the subsequent simulations of shells
with two defects (§6) and with random distributions of defects (§7).

Having built up trust in the three-dimensional FEM for the one-defect case, we now perform
a validation against experiments by comparing the simulated and measured values of the
knockdown factor, κ , for each of the eight shells listed in table 1. In figure 4a, we present
top views of the imperfect shells, showing both the design drawing (left columns, where we
highlight the location of the defects), and the corresponding photographs (right columns) of the
fabricated shells. In figure 4b, we plot the experimentally measured and FEM-computed values
of κ (blue and red bars, respectively) for each of the shells. The error bars in the experimental
results correspond to the standard deviation of 10 tests, and those for FEM correspond to the
propagation of errors originating from the experimental uncertainty in Young’s modulus of the
VPS-32 elastomer (E = 1.25 ± 0.01 MPa). The typical uncertainties of κ (≈ 3% for experiments and
≈ 2% for FEM) convey the high precision of our framework. At this stage, the specimens are
representative choices, exploring broadly the wide range of possible parameters and no structure
should be inferred from the data. Therefore, the identification labels of each shell were simply
ordered with decreasing κ . A systematic investigation of parameters will follow in §§6 and 7.
What is important to appreciate in figure 4b is the remarkable agreement between experiments
and FEM, within a few per cent; the discrepancies are at most 3.4% (for Shell 8) and as low as 0.7%
(for Shell 5), and more typically ≈ 1–2% for the other shells.

In each of the photographs in figure 4a, we have also manually marked (with a black dot)
the locus of the buckling event observed immediately past pmax. In general, shells containing
a distribution of defects with λ < 1 and delimited by βmax = 20◦ (e.g. Shells 1 and 3) tend
to buckle away from the location of the bumpy defects. By contrast, shells with λ > 1 and
delimited by βmax = 60◦ (e.g. Shells 6 and 8) buckle within, or in the proximity of, the designed
region of imperfections. The fact that the values of κ are in excellent agreement between
experiments and FEM conveys that this qualitative difference is not due to experimental
artefacts induced during fabrication. Still, to ensure that the buckling capacity is dictated by
the designed regions of imperfections (within βmax), and not by other subtler effects, we set

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

23
 F

eb
ru

ar
y 

20
23

 



13

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A381:20220298

...............................................................

βmax = 60◦. Further rationalizing the buckling location goes beyond the scope of the present
work.

6. Buckling of imperfect shells containing two defects
Having established our methodology and validated the FEM against experiments, we proceed
by focusing on the simulations to study the buckling of shells containing only two defects. We
investigate the effect of defect–defect interactions in dictating the knockdown factor, compared
with the one-defect case. These results will be important in §7 when interpreting the more
complex case of shells containing many imperfections.

First, we consider two identical defects (with the same amplitudes δ = δ1 = δ2 and normalized
widths λ = λ1 = λ2). The angular distance, ϕ, between the two defects is varied systematically
while setting one at the pole (β1 = 0) and the other at β2 = ϕ. In figure 5a,b, we plot the knockdown
factor, κ , as a function of ϕ for the cases of relatively narrow (λ = 1) and wide (λ = 3) defects,
respectively. Three values of defect amplitude are considered: δ = {0.5, 1.0, 1.5} (see legend). As
ϕ increases, κ first decreases to a minimum (the shell weakens) and then increases (the shell
strengthens), surpassing the initial value of κ(ϕ = 0) to reach a maximum. After this maximum,
κ asymptotes to a constant for larger values of ϕ. This non-monotonic dependence of the
buckling strength can be attributed to cross-interactions when the defects are nearby. Important
interactions occur for ϕ � 20◦ (shaded regions in figure 5a,b), whereas a plateau with constant κ is
observed for ϕ � 20◦. Within the interaction regime, there are both weakening effects (near ϕ ≈ 0)
and strengthening effects (for intermediate angular distances, 12◦ � ϕ � 20◦) with respect to the
equivalent one-defect case. Recalling the shape of the individual Gaussian dimple assumed in
equation (2.1), the combined profile when N = 2 is

w(β, θ ) = w1(0, 0) + w2(ϕ, θ2). (6.1)

Near ϕ ≈ 0, the weakening effect can be attributed to the near superposition of the profiles
of the two defects, with an amplitude that is nearly twice that of the individual defects. The
strengthening effect can be attributed to the potential restrain of the expected buckling mode
of one of the defects by the other. Importantly, for ϕ > 20◦, the plateau of constant κ coincides
with that of a shell containing a single defect of the same δ and λ (solid, dashed and dotted
horizontal lines in figure 5; see legend), as studied previously in [28]. Thus, when the two defects
are sufficiently far apart, their interaction is negligible, and one of them acts as the weakest link to
govern the buckling capacity of the shell.

We now turn to the case when the two defects are different; the geometry of the i = 1 defect
is kept constant with λ1 = 1 and δ1 = 1, while the i = 2 defect has δ2 = {1, 3} and λ2 = {1, 3, 5}. In
figure 5c,d, we present κ(ϕ) curves for shells with δ2 = 1, δ2 = 3 and λ2 = {1, 3, 5}, respectively.
Even if less prominently than for the data in figure 5a,b, we still find a non-monotonic region
of interaction with strengthening and weakening effects, past which a constant plateau is
reached for all curves. Coincidentally, the value of ϕ ≈ 20◦ for the angular width separating the
interaction region and the plateau, is similar to the identical-defects case. We do not believe
that this is a general result. It is important to note that, for the two-defects case with different
amplitudes (δ1 = 1, δ2 = 3) plotted in figure 5d, the κ(ϕ) curves become nearly flat with increasing
width of the i = 2 defect (λ2 = {3, 5}), wider than λ1 = 1 for the first defect, even for ϕ � 20◦.
This result indicates the defects tend to interact more prominently when they have similar
geometries.

In both of the N = 2 cases explored above (identical and different defects), the exact values
of the knockdown factor in the interaction region (strengthening and weakening) and in the
plateau depend on the specific geometric properties of the two defects. Developing predictive
knowledge for these non-trivial defect–defect interactions deserves a detailed investigation of
its own, which is, however, beyond the scope of the present study. Still, the most important
feature to retain from the above results is that the values of the plateau are dictated by the
strongest defect, highlighting the dominance of the weakest link in dictating the buckling of the
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Figure 5. Knockdown factors, κ , versus angular separation between defects, ϕ, for imperfect shells containing two
imperfections (N = 2). The shaded areas represent the region where the defects interact. (a,b) Two identical defects with
constant normalized width (a)λ = λ1 = λ2 = 1 or (b)λ = λ1 = λ2 = 3, and varying amplitude δ (see legend). (c,d) Two
distinct defects with constant (δ1, λ1)= (1, 1), but (c) δ2 = 1, or (d) δ2 = 3, while varyingλ2 at each shell (see legend). The
horizontal lines represent the knockdown factors for shells containing a single defect with (δ, λ)= (δ2, λ2). (Online version
in colour.)

shells when defects are sufficiently far apart but with more non-trivial interactions when they are
nearby.

7. Buckling of imperfect shells containing a distribution of defects
We are now ready to tackle our central problem, defined in §2, of the buckling of shells with a
large number of imperfections (N � 1). These shells contain defects, each of amplitude δi, which is
distributed lognormally according to the PDF, f (δi), in equation (2.5), with mean amplitude 〈δ〉 and
standard deviation 
δ. The explored sets of these parameters are: 〈δ〉 = {0.2, 0.5, 1, 1.5, 2, 2.5, 3}
and 
δ = {0, 0.1, 0.3, 0.6, 1}. For each shell design, we fix the defect width λ = {1, 2} and the
minimum angular separation between any two defects ϕmin = {10◦, 25◦}. Recalling that the
threshold for defect–defect interactions in the N = 2 case is ϕmin ≈ 20◦ (cf. figure 5), the two values
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of ϕmin were chosen to explore configurations where defect–defect interactions are expected to be
negligible (for ϕmin = 25◦) or important (for ϕmin = 10◦). Seeding is done within a spherical cap
with βmax = 60◦ to avoid boundary effects. For each set of design parameters (〈δ〉, 
δ, λ, ϕmin),
we typically construct 200 realizations of statistically equivalent shell geometries, yielding a total
of 28 000 FEM simulations. Only for the data in figure 6, we generated 1200 realizations per shell
design to enhance the statistics and check for independence of the ensemble size.

In figure 6a1, we show an example of the input statistics for a design with (〈δ〉, 
δ, λ, ϕmin) =
(1.0, 0.3, 1, 25◦). We perform FEM simulations for each of the 1200 statistically equivalent designs,
measure the corresponding knockdown factors, κ , and construct the output PDF, f (κ), shown in
figure 6a2. We find that the histogram obtained from the FEM data is described well by a 3-
parameter Weibull distribution [56] (solid line):

f (κ) = γ

κ̃

(
κ − κmin

κ̃

)γ−1
exp

(
−
(

κ − κmin

κ̃

)γ)
, (7.1)

where κ̃ , γ and κmin are the scale, shape and location (threshold) parameters, respectively. The
third fitting parameter, κmin, is required to account for the lower bound of κ , associated with the
plateau of the κ(δ) curves, which was investigated in [29] for single-defect shells and found to
depend on λ and η. In figure 6b1, a second example with (〈δ〉, 
δ, λ, ϕmin) = (1.0, 0.3, 1, 10◦) also
yields Weibull statistics for the knockdown factor (figure 6b2).

The three Weibull fitting parameters (κ̃ , γ , κmin) used to plot the Weibull distribution in
figure 6a2 and 6b2 were obtained based on the Maximum Likelihood Estimates (∗mle function
in Matlab) and determined to be (0.012, 3.242, 0.433) and (0.119, 5.663, 0.372), respectively. Using
these fitting parameters, we also computed the corresponding Weibull cumulative distribution
functions (CDFs),

F(κ) = 1 − exp
(

−
(

κ − κmin

κ̃

)γ)
, (7.2)

which are in excellent agreement with the histograms obtained from the FEM data, as shown in
figure 6a3,b3. As a double-check, if the FEM data for the F(κ) statistics are indeed represented
by a Weibull CDF, plotting ln (ln (1/(1 − F(κ)))) as a function of ln (κ − κmin) is expected to yield
a straight line of slope γ , which is confirmed in figure 6a4,b4 for the ϕmin = 25◦ and ϕmin = 10◦
cases, respectively.

The Weibull distribution functions in equations (7.1) and (7.2) are derived based on extreme
value theory [57], under the assumption that the failure probability of one representative element
of a structure follows a power-law tail [58]. Within this framework, the failure of one of the
elements, the weakest link, yields the global failure of the structure [58–62]. The above observations
from the data in figure 6 indicate the suitability of the 3-parameter Weibull distribution to describe
the statistics of the knockdown factors of shells with lognormally distributed defect amplitudes,
suggesting that probabilistic shell buckling can be placed within the class of extreme-value
phenomena.

In figure 7, we now plot a set of PDFs, f (κ), obtained by fitting the FEM data similarly to what
was done in figure 6, for a wider range of the parameters 〈δ〉 and 
δ. For clarity, we only show
the fitted PDFs and not the actual histograms of the FEM data. The data in figure 7a,b explore
various 
δ, 0.0 ≤ 
δ ≤ 1.0 (while fixing 〈δ〉 = 1.0). In figure 7c,d, we explore various 〈δ〉, 0.2 ≤
〈δ〉 ≤ 3.0 (while fixing 
δ = 0.3). Panels (a, c) are for ϕmin = 25◦ and panels (b, d) are for ϕmin = 10◦.
First, the data in figure 7a, with fixed 〈δ〉 = 1.0, show that the mode (location of the peak) of f (κ)
remains approximately constant, for all 
δ, even if the peak probability decreases slightly with

δ. In figure 7b, when the minimum defect-to-defect distance is decreased to ϕmin = 10◦, we find
that κ decreases with 
δ, presumably due to the higher probability of randomly seeding defect
amplitudes from the high tail of f (δi), coupled with defect–defect interactions. Furthermore, the
fitted Weibull threshold decreases consistently with increasing 
δ. Similarly, when fixing 
δ = 0.3
and increasing the defect amplitude 〈δ〉 (figure 7c,d), we find a modest decrease in κ for ϕmin =
25◦ (figure 7c), where the strongest defect governs most of the shell behaviour. For ϕmin = 10◦
(figure 7d), this behaviour is more pronounced due to defect–defect interactions.
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Figure 6. Probabilistic buckling of a shell containing a distribution of defects. (a1, b1) Input probability density functions (PDFs)
of the amplitude of defects, f (δ i), used for the shell design. (a2, b2) Output PDFs of knockdown factor, f (κ ). (a3, b3) Cumulative
distribution functions (CDFs) of κ , F(κ ). (a4, b4) Weibull plots of F(κ ). The minimum angular separation between any two
defects is set toϕmin = 25◦ in panels (a1–a4) and toϕmin = 10◦ in panels (b1-b4). All other design parameters are kept fixed
at λ = 1, δ = 1.0 and 
δ = 0.3. The PDFs in panels (a1, b1) were constructed using 500 bins. The PDFS in panels (a2–a4)
were constructed with 2000 bins, and those in (b2–b4) with 500 bins, due to their different span across the considered range
0.3≤ κ ≤ 0.6. (Online version in colour.)
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Figure 7. Probability density functions of the knockdown factor, f (κ ), obtained by fitting equation (7.1) to the FEM data, for
a variety of design parameters. (a,b) Constant amplitude 〈δ〉 = 1 and varying 0≤ 
δ ≤ 1.0 (see legend); for (a) ϕmin =
25◦ and (b) ϕmin = 10◦. (c,d) Constant value of 
δ = 0.3 and varying 0.2≤ 〈δ〉 ≤ 3.0; for (c) ϕmin = 25◦ and for (d)
ϕmin = 10◦. (Online version in colour.)

It is of interest to quantify the mode, κ∗; i.e. location of the peak of f (κ), for all of our data.
In figure 8, we plot κ∗ as a function of the mean defect amplitude, 〈δ〉, for four different design
configurations. Figure 8a,b corresponds to ϕmin = 25◦, and panels (c,d) to ϕmin = 10◦. Also, panels
(a,c) are for λ = 1.0, and panels (b,d) for wider defects with λ = 2.0. The various datasets (see
legend) have different values of 
δ. In all plots, the dotted lines represent results for a shell with
a single defect of amplitude 〈δ〉. These FEM data for one-defect shells were verified with the data
in [28].

Focusing first on figure 8a, we find that the mode of the knockdown factor, κ∗, decreases with
increasing 
δ, due to the higher probability of seeding deeper, and hence more dominant, defects
in the high tail of f (δi) for higher values of 
δ. This decrease of κ∗ is more pronounced when
〈δ〉 � 1 and less so in the plateau region, for 〈δ〉 > 1. The plateau has an approximate constant
value κ∗ ≈ 0.45, which is in agreement with predictions of the analogous plateau for single-defect
shells [29]. These findings suggest that the buckling capacity of shells containing a distribution of
imperfections is dominated by the deepest defect, their weakest link. This scenario is qualitatively
similar when λ = 2, as shown in figure 8b, where the plateau region also matches the single-defect
case. These various features are slightly different for the datasets in figure 8c,d, when ϕ = 10◦.
Here, for example, the dataset with 
δ = 0 (circles) does not coincide with the one-defect curve
(dotted line), especially for λ = 2 (figure 8d), which can be attributed to defect–defect interactions.
Moreover, when ϕ = 10◦, the resultant plateau of κ∗ is consistently below that of shells with
a single defect [29], especially in figure 8d, further indicating the importance of defect–defect
interactions in this regime.
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Figure 8. Mode of knockdown factors,κ∗, versus themean defect amplitude, 〈δ〉. (a,b)ϕmin = 25◦ (non-interacting defects)
andwidthsλ = 1 andλ = 2, respectively. (c,d)ϕ = 10◦ (interacting defects) andwidthsλ = 1 andλ = 2, respectively. The
various datasets correspond to different values of
δ (see legend), and are compared with the equivalent single-defect cases
(dotted lines). (Online version in colour.)

Returning to the PDFs presented in figure 7, we observe qualitatively that the f (κ) distributions
are typically narrow for ϕ = 25◦ (when there are negligible defect–defect interactions; e.g.,
figure 7a) and broad for ϕ = 10◦ (when there are significant defect–defect interactions; e.g.
figure 7b). In the final step of our investigation, we seek to quantify the width of the f (κ)
distributions, as measured by the standard deviation of the resultant knockdown factor, 
κ , for
a variety of design parameters. The corresponding data are shown in figure 9. With negligible
defect–defect interactions (ϕ = 25◦; see figure 9a,b), f (κ) remains consistently narrow (
κ is small)
when 〈δ〉 � 1, but broadening occurs for 〈δ〉 � 1, significantly more so for the larger values of

δ. This behaviour is robust for the two values of λ explored in figure 9a,b. By contrast, when
there are important defect–defect interactions (ϕ = 10◦; see figure 9c,d), f (κ) is always broad across
most of the range of 〈δ〉, and fairly independent of 
δ. From the perspective of structural
reliability, these results highlight the following possible interpretation scenario. Shells with non-
interacting defects with large amplitudes (〈δ〉 � 1) appear to exhibit quasi-deterministic buckling,
with narrow f (κ) distributions. By contrast, shells with either small-amplitude defects (〈δ〉 � 1) or
interacting defects exhibit a far more probabilistic behaviour, with broad f (κ) distributions, and
have, therefore, significantly lower reliability.
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Figure 9. Standard deviation of the resultant knockdown factors, 
κ , versus the mean defect amplitude, 〈δ〉. (a,b)
ϕmin = 25◦ (non-interacting defects) and widths λ = 1 and λ = 2, respectively. (c, d) ϕ = 10◦ (interacting defects) and
widthsλ = 1 andλ = 2, respectively. The various datasets correspond to different values of
δ (see legend). (Online version
in colour.)

8. Discussions and Conclusion
We have employed experimentally validated FEM simulations to investigate the buckling of
spherical shells containing a random distribution of defects, seeking to quantify the resultant
knockdown factor (κ) statistics, as measured by the probability density function, f (κ). First, we
used three-dimensionally printed moulds and a polymer coating technique to fabricate imperfect
hemispherical shells containing distributions of defects. The imperfections comprised outward
defects (bumps) and the full geometry of the shell was characterized through μCT. Using the μCT
geometric data, a high-fidelity three-dimensional shell FEM was validated against experimental
buckling measurements.

After validating the FEM, we first focused on imperfect shells containing only two defects
(N = 2) to characterize the influence of defect–defect interactions on the buckling conditions. The
results showed these interactions can be significant when the angular separation between the
two defects is below a threshold value (ϕ � 20◦). Within this regime of interactions, we observed
both weakening (near ϕ ≈ 0) and strengthening (for intermediate angular distances, 12◦ � ϕ �
20◦) effects. When the defects are further apart, outside of the interactions regime (ϕ � 20◦), the
knockdown factor tends to a constant value, coinciding with the equivalent one-defect case. In
the absence of defect–defect interactions, this result indicates that the shell buckling is dictated by
the strongest defect of the pair—its weakest link.
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We then focused on the central part of our study, where multiple defects (N � 1) were
distributed randomly on the surface of the spherical shell. The amplitude δi of each defect
was treated as a random variable sampled from a lognormal distribution of mean 〈δ〉, and
standard deviation 
δ, while fixing the defect width and the minimum defect–defect angular
separation for each shell design. In what we see as the most important contribution of this
work, we find that, given a set of design parameters of shells containing many defects (whose
amplitudes are lognormally distributed), the statistics of the resultant knockdown factor are
described by the 3-parameter Weibull distribution, f (κ) in equation (7.1). This result is consistent
with other extreme-value statistics problems where, in their general form, an input distribution
of links, whose individual failure probability follows a power-law tail, yields an output Weibull
distribution [58,63]. Further analysing the resultant Weibull distribution, for all input 〈δ〉 and 
δ,
we found that the output distributions are consistently narrow when there are less prominent
interactions between defects (ϕmin = 25◦), in comparison with the broader distributions when
defect–defect interactions are present (ϕmin = 10◦). These findings for the width of f (κ), together
with the results for its mode, are consistent with the weakest-link interpretation where the deepest
defect governs the global shell buckling.

In future work, using the approach reported here, we intend to revisit and rationalize the
results from the seminal experiments by Carlson et al. [18], where increasing knockdown factors
were observed when progressively eliminating severe defects. More broadly, we believe that our
findings will open an exciting avenue for future study on probabilistic shell buckling, including
theoretical methods based on extreme-value statistics and weakest-link models.
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