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We investigate the mechanics of bistable, hard-
magnetic, elastic beams, combining experiments,
finite-element modelling (FEM) and a reduced-order
theory. The beam is made of a hard magneto-
rheological elastomer, comprising two segments with
antiparallel magnetization along the centreline, and is
set into a bistable curved configuration by imposing
an end-to-end shortening. Reversible snapping is
possible between these two stable states. First,
we experimentally characterize the critical field
strength for the onset of snapping, at different
levels of end-to-end shortening. Second, we perform
three-dimensional FEM simulations using the Riks
method to analyse high-order deformation modes
during snapping. Third, we develop a reduced-
order centreline-based beam theory to rationalize
the observed magneto-elastic response. The theory
and simulations are validated against experiments,
with an excellent quantitative agreement. Finally, we
consider the case of combined magnetic loading and
poking force, examining how the applied field affects
the bistability and quantifying the maximum load-
bearing capacity. Our work provides a set of predictive
tools for the rational design of one-dimensional,
bistable, magneto-elastic structural elements.

This article is part of the theme issue ‘Probing and
dynamics of shock sensitive shells’.
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1. Introduction
The buckling of slender structures has long been a research subject in the structural mechanics
community [1]. For example, the buckling of thin shells, which become unstable due to a
subcritical bifurcation [2,3], can result in the catastrophic loss of their load-bearing capacity and
abrupt changes of the deformation mode. To characterize the stability conditions of shells non-
destructively, a diagnostic method using secondary poking forces has recently received much
attention [4–7]. In this method, a poking force probes the stability landscape of the structure
while its level of compression is varied systematically [2]. Bistable beams can also buckle
catastrophically as they snap from one stable state to another [8]; this is the topic of the present
work, where we seek to investigate how the snap-through buckling of a bistable hard-magnetic
beam, at different levels of an external magnetic loading, couples with an additional mechanical
poking force.

Bistable structures are central in the design of many functional devices [9–13], whose internal
energy comprises two minima, separated by a maximum, representing the barrier to a fast
transition between two stable states. This snap-through instability can be exploited to cause
relatively large displacements, or rotations, with low work for actuation, offering potential
applications in several engineering domains, including micro-electromechanical systems [14,15],
robotics [16,17], energy harvesting [18,19], actuators [20,21], origami structures [22,23] and
deployment mechanisms [24]. Bistable beams can be classified into two categories [25]: (i) pre-
shaped, which do not possess residual stresses and (ii) pre-compressed, which are stressed
post-production to exhibit the first buckling-mode configuration [26]. The latter have gained
much attention due to their manufacturability and versatility [21,27,28]. Next, we provide an
overview of recent research centred on pre-compressed beams, the type central to our study.

Many past studies on pre-compressed beams have focused on their snap-through charac-
teristics [14,15,26,29,30]: the critical load and displacement, and the travel distance from the
first stable state to the new configuration. These features can be set by design parameters; e.g.
the beam geometry, end-to-end shortening [14], actuation loading and position [31–38] and
boundary conditions [28,33,34,39]. A recently emerging trend in the field of bistable beams is
the usage of active materials with external stimuli to control the stability during snap-through
by inducing local strains from temperature gradients, swelling or electric/magnetic fields. For
example, electrostatic [40,41], piezoelectric [42] and magnetic [43,44] actuation have all been used
to control the bistability.

More specifically, there has been a burgeoning interest in magneto-rheological elastomers
(MREs), comprising magnetically permeable micron-sized particles embedded into a polymeric
matrix, with a mechanical response that can be tuned under an external magnetic field [45,46].
Structures made out of MREs offer opportunities for fast, reversible and remotely controlled
shape-shifting behaviour [47–56]. Based on the magnetic response of the embedded particles
to applied magnetic fields, MREs are classified into two groups, soft-MREs (s-MREs) or hard-
MREs (h-MREs), each of which is discussed next. In s-MREs, an external magnetic field [57]
modifies the particles’ magnetization, which vanishes when the external field is removed. By
contrast, in h-MREs, the focus of the present study, the particles possess a high coercivity to resist
demagnetization by external fields upon field saturation [53,57] and their remnant magnetization
can be retained during actuation. In particular, flexible slender structures made of h-MREs are
capable of significant shape changes, driven by the magnetic body torques induced by the
interaction between the intrinsic magnetization of the material and the applied field [51,58].
The magnetization profile of h-MRE structures can be designed by the local orientation of the
magnetized particles to generate complex three-dimensional-shape transformations and optimize
the shape-shifting modes for specific applications [51,55,58–62].

Owing to the elasticity-magnetism coupling, together with the underlying geometric
nonlinearities, modelling the mechanical behaviour of hard-magnetic soft structures is
challenging but there have recent advances in this direction. A continuum theory has been
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developed [63] for the finite deformation of three-dimensional (bulk) h-MREs through a nonlinear
magneto-mechanical constitutive law. In this framework, the Helmholtz free energy density
includes elastic (neo-Hookean) and magneto-elastic terms. A simulation framework by the same
authors using finite-element modelling (FEM) was also developed. Subsequently. a full-field
three-dimensional continuum model for h-MREs was proposed [64], also incorporating magnetic
dissipation, particle–particle interactions and the surrounding air effects. They validated their
model by performing microscopic homogenization simulations applied to macroscopic boundary
value problems. Based on the three-dimensional continuum model, and using dimensional
reduction, theories for inextensible, hard-magnetic elastica were derived and validated against
experiments, under either a uniform magnetic field [55,58] or a field with constant gradient [65]. A
similar dimensional reduction approach was applied to model the three-dimensional deformation
of hard-magnetic rods under uniform and gradient magnetic fields [66,67]. Considering the
extensibility of the centreline, a geometrically exact beam model under uniform fields was
developed to predict the deformation of cantilever beams [60,61,68], albeit finding negligible
differences with the inextensible model. A similar strategy based on dimensional reduction was
employed to capture the behaviour of magnetic thin plates [69], and predict the axisymmetric
deformation of pressurized hard-magnetic shells [70]. This one-dimensional shell model was later
generalized in a three-dimensional configuration [71].

Even if there have been several studies on modelling the deformation of magneto-active
structures, their instability and, more specifically, the snap-through phenomenon under magnetic
actuation remains an ongoing research topic. Important questions to address include predicting
how bistable systems switch between stable configurations under a magnetic field and evaluating
the contributions of the various buckling modes and energy levels to this transition, the elastic
counterparts of which have been studied extensively [14,29,72,73]. Additionally, theoretical and
computational tools are needed to predict the critical conditions and snap-through response of
magneto-active structures. Such developments would be valuable for the predictive and rational
design of bistable magneto-elastic systems.

Here, we study the snap-through of elastic bistable beams under magnetic actuation,
combining theory, FEM and experiments. First, we demonstrate that snap buckling can be
triggered in the presence of an external uniform magnetic field. We quantify how the critical
field strength required for buckling depends on the imposed end-to-end shortening (setting the
pre-buckled configuration), the beam geometry and the material and magnetization properties.
A centreline-based theory is developed to rationalize the trade-offs between the various loading
and geometric parameters, predicting the conditions for the onset of snapping. In parallel, we
adapt the FEM for three-dimensional h-MREs proposed in [63] to make it amenable to Riks (arc
length) analysis. With this enhancement, it is possible to track the stable and unstable branches of
the load–displacement curve during snapping. We also probe the beam’s load-bearing capacity
when the external loading combines a constant magnetic field and poking force.

Our paper is organized as follows. In §2, we define the problem at hand. In §3, we present
the experimental method to fabricate the h-MRE beam specimens and describe the experimental
protocol for snap buckling tests. The FEM simulations using the Riks method are detailed in §4.
In §5, we derive a one-dimensional reduced-order model for bistable magnetic beams. Then, in
§§6–8 we report the experimental results and their comparisons with the theoretical and FEM
predictions. Finally, our main contributions and an outlook for future work are summarized and
discussed in §9.

2. Definition of the problem
We seek to investigate the snap buckling of a bistable magneto-active beam under magnetic
loading, which may also be combined with a poking force. We consider a hard-magnetic, thin,
elastic beam of length L and rectangular cross-section of width b and thickness h (figure 1a). The
beam is made of an isotropic and homogeneous h-MRE material with Young’s modulus, E, and
Poisson’s ratio, ν. The configuration of the beam is described using the Cartesian basis vectors

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

23
 F

eb
ru

ar
y 

20
23

 



4

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A381:20220029

...............................................................

x

y

s = L/2 s = 0 s = L

P

X = L – �L

Ba

(a) (b)

Br Br m

b
h z

y

z

L

θ(s)

(II) second stable state(I) first stable state

N S

T T
TT

Ba

Ba

Br (s) Br (s)

Br (s) Br (s)

(c)

s = 0 s = L

Figure 1. Definition of the problem. (a) Schematic diagram of the undeformed configuration of a naturally straight beam of
initial length L, thickness h andwidth b. The beam is composed of two segments with antiparallel magnetization,Br, along the
centreline according to equation (2.1). (b) The beam is first pre-loaded by imposing a dimensional end-to-end shortening,�L,
thereby deforming to a curved, bistable configuration, and then made to snap between the two stable configurations under
an applied uniform magnetic field, Ba, and/or an poking force, P. (c) The beam exhibits two stable equilibrium states; upon
the application of an external magnetic field, the generated torques can switch the beam between configurations (I) and (II).
(Online version in colour.)

(êx, êy, êz), aligned, respectively, to the length, thickness and width directions of the originally
straight beam (figure 1a). The beam is parameterized using the arc length coordinate, 0 ≤ s ≤ L,
along its centreline.

The left and right halves of the beam are magnetized permanently in opposite directions,
parallel and antiparallel to êx, respectively, with the absolute residual magnetic flux density of
Br (figure 1a). Given the slenderness of the beam, the residual magnetic flux density is assumed
constant across the cross-section but varies along the arc length direction as

Br(s) = −Brsgn
(

s − L
2

)
êx. (2.1)

Having also compared this magnetization profile with the uniform case, Br = −Brêx, we found
that the profile in equation (2.1) is more effective in inducing snap buckling. Even if we recognize
that the present choice is ad hoc, it works and it is simple; we leave a more systematic exploration
of other magnetization profiles for future work. The magnetic loading is exerted on the beam by
the application of an external magnetic field, Ba. Owing to the profile of the residual magnetic
flux density vector, Br, with respect to the direction of the applied magnetic field, Ba, we will
demonstrate that the proposed configuration can induce snap-through buckling of the beam.

The magnetized beam is naturally straight in its initial configuration, with the two ends
clamped at s = 0 and s = L (figure 1a). To form a buckled (bistable) beam, we then impose a
dimensional end-to-end shortening, �L, by translating the end at s = L (figure 1b), such that the
projected length of the beam becomes X = L − �L. The (dimensionless) end-to-end shortening
is then defined as ε = �L/L. In the initial curved configuration set by ε with the first-buckling-
mode shape, considering w as the displacement of the beam in the êy direction, the vertical rise
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of the beam’s mid-span along êy, is denoted by ξm. Subsequently, the mid-span displacement
w(s = L/2) = ξ �= ξm will vary when external loads are applied. The deformed configuration of the
beam is described by the angle, θ (s), between the tangent of the centreline and êx (figure 1b), with
clamped boundaries; θ (0) = θ (L) = 0.

Once pre-loaded into a curved configuration, the beam can undergo a snap-through instability
by the application of either a poking force, P, or a uniform magnetic field, Ba, or the combination
of the two (figure 1b). Specifically, under an external magnetic field, a magnetic body torque, T,
results from the resistance to rotation of the vector of the residual magnetic flux density, Br, which
tends to align Br with the applied magnetic field, Ba (figure 1c). Hence, snap buckling is primarily
driven by the magnetic body torque [63]

T = 1
μ0

Br × Ba, (2.2)

where μ0 is the vacuum permeability. Snap buckling can occur under a uniform magnetic
field due to the rotation of two halves of the beam in opposite directions. Maximal torque is
generated when the magnetic field and the magnetization direction are perpendicular. Thus,
the magnetization profile proposed in equation (2.1) lowers the energy barrier required to reach
the second stable state. Experimentally, the simplest and closest layout to this configuration can
be produced by mid-folding the beam during magnetization, yielding opposite magnetization
vectors in each of its halves after unfolding. After switching from one stable state (figure 1cI)
to another (figure 1cII), and removing the exterior magnetic field, the beam stays in the second
stable position. The process can be reversed by applying a magnetic field with opposite polarity.
In the case of snap buckling under simultaneous mechanical and magnetic loading, the beam
is first loaded under a prescribed value of the uniform magnetic field and then indented by a
concentrated load applied, P = −Pêy at its mid-span (figure 1b).

Whereas many previous studies have addressed the critical conditions for the classic problem
of snap buckling of elastic bistable beams [14,15,33,34,44,74–76], in this study, we investigate the
conditions for snapping of a bistable, hard-magnetic beam under the combined influence of the
magnetic loading and a poking force.

3. Experimental methods
This section presents the experimental methodology, first, describing the fabrication of the beam
specimens (§3a) and, then, detailing the experimental apparatus (§3b). Finally, we describe the
experimental protocols, parameters and procedures (§3c).

(a) Fabrication of the beam specimens
The beam specimens were fabricated using a casting protocol adopted from our recent work [65].
The main modification from our previous work is the process we use to magnetize the specimens,
with two symmetric regions of antiparallel magnetization. This specific magnetization profile
was chosen to facilitate snapping under magnetic loading. Still, for completeness, we provide
an overview of the full fabrication protocol.

The beam specimens were cast with an h-MRE, prepared by mixing NdPrFeB particles
(average diameter of 5 µm, mass density of ρmag = 7.61 g cm−3, MQFP-15-7-20065-089,
Magnequench) with vinylpolysiloxane (VPS) polymer (VPS-22, mass density of ρvps =
1.16 g cm−3, Elite Double, Zhermack). The fraction of NdPrFeB particles in the h-MRE was 50.0%
in mass (cv = 13.2% volume fraction). The mixed solution was injected into a sandwich mould
using a syringe to cast a straight beam. Upon curing of the h-MRE, the average Young’s modulus
was E = 1.16 ± 0.04 MPa, the density was ρ = 2.01 ± 0.05 g cm−3 and the Poisson’s ratio was
assumed to be ν ≈ 0.5 (near incompressibility).

To achieve the desired magnetization profile, we folded the beam at mid-span (figure 2a) and
placed it inside an impulse magnetizer (IM-K-010020-A, flux density ≈4.4 T, Magnet-Physik
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Figure 2. Magnetization of the beam specimen. (a) The beam was magnetized while folded at the mid-span, s= L/2, inside
a pulse magnetizer, which generates a strong axial magnetic field, H. (b) After unfolding, the magnetized specimen exhibited
the antiparallel residual magnetic flux density ofBr described in equation (2.1). Two non-magnetic cubic blocks attached to the
extremities ensured clamped boundary conditions. (Online version in colour.)

Dr Steingroever GmbH). The magnetization of the embedded particles became permanently
aligned to the direction of the field generated by the magnetizer (figure 2a). Owing to this
folded configuration, after unfolding each half of the beam developed antiparallel magnetization
(figure 2b), with the residual magnetic flux density, Br, described in equation (2.1). Assuming
a uniform dispersion of the particles in the polymer matrix, and no re-arrangements during
magnetization, the composite can be considered as a homogeneous continuum solid with a
uniform magnetization on each half, whose magnitude was computed as the volume-average
of the total magnetic moment of the individual particles, M = 94.1 kA m−1.

After magnetization, two non-magnetic cubes of pure VPS (8 × 15 × 15 mm3) were mounted
onto each of the beam extremities to set clamped boundary conditions (figure 2b). Finally, the
end-to-end shortening, ε = �L/L, was imposed on the originally straight beam using an acrylic
sample holder, exciting in the first-buckling mode, with bistability, shown schematically in
figure 1.

(b) Experimental apparatus
With the originally straight beam set in a curved (bistable) configuration, the experiments
involved loading the specimen magnetically, or mechanically, or both, using the apparatus shown
in figure 3a. Gravitational effects were minimized by placing the beam with the deflection
direction, êy, perpendicular to gravity, −gêz. A digital camera was set underneath the coils for
imaging (figure 3a6).

For the magnetic loading tests, we used a pair of identical coaxial coils (different from the
impulse magnetizer mentioned above), in a Helmholtz configuration, which generated a steady
axial symmetric magnetic flux density, Ba(x, y, z) [70]. The coils were connected in series and
separated axially by a distance equal to the mean radius of each coil (R = 59.5 mm). In this
configuration, the current was made to flow through both coils in the same direction to generate
a uniform magnetic field in their central region (figure 3a),

Ba = Baêy. (3.1)
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Figure 3. Photographs of the experimental apparatus. (a) A magnetic beam is positioned in between a set of Helmholtz coils
(1) and loaded by an indenter (4). This indenter is attached to amotorized linear actuator (2), and the reaction force ismonitored
by a force sensor (3). The force–displacement data is acquired using a LabVIEWdata acquisition card (5) and a camera (6) is used
to image the beam profile. The coils are driven by the current output of a DC power supplier (7). (b) Zoomed view of the pair of
Helmholtz coils. (c) Representative beam specimen positioned inside the coils. (Online version in colour.)

Each coil was manufactured by winding an aluminium circular spool with an enamelled copper
wire (Repelec Moteurs S.A.). The dimensions of the coils were 86 mm for the inner diameter,
152 mm for the outer diameter and 43 mm in height. A DC power supply powered the coils,
providing a maximum power of 1.5 kW (EA-PSI 9200-25T, EA-Elektro-Automatik GmbH). The
magnitude of the magnetic field, Ba, was varied by adjusting the current output (0–25 A) from the
power supplier.

For the mechanical load tests, we indented the beam specimen using a custom-built apparatus
and measured the force–displacement curves. The poking device comprised two parts: a high-
resolution linear actuator (L-220.50DG, PI, Germany) driven by a one-axis DC motor controller
(C-863 Mercury Servo Controller, PI, Germany, figure 3a2) to impose the displacement, and a force
sensor (LRM200, 5lb, JR S-beam load cell, Futek, CA, USA, figure 3a3) to measure the reaction
force at an acquisition rate of 1 kHz. The indenter was a plastic (non-magnetic) needle cap (plastic
taper tip Luer Lock 20GA × 1/4′′ Vita needle, MA, USA), chosen to avoid any magnetic field
distortions. This indenter assumed rigid compared to the beam specimen was attached to the tip
of linear actuator, as shown in figure 3a4. The tip of the indenter was glued to the beam at mid-
span using VPS solution, thereby restraining rotation and translation at the point of contact. This
attachment enabled the acquisition of the complete load–displacement during poking, including
both stable and unstable paths.

(c) Experimental protocols
To investigate the snap buckling of bistable hard magnetic beams, we performed three sets
of experiments with different loading conditions (i) poking force, (ii) magnetic load and (iii)
combined mechanical and magnetic load using, respectively, the poking apparatus, the coils
or both. The corresponding results from these experiments will be presented in §§6, 7 and
8, respectively. Next, we detail the configurations of the fabricated specimens, the range of
parameters explored and the experimental protocols.

We tested three separate, but otherwise identical, beams (length L = 60.00 ± 0.10 mm,
width b = 8.00 ± 0.04 mm and thickness h = 2.00 ± 0.06 mm) to examine the experimental
reproducibility and uncertainty. Throughout the experiments, the slenderness ratio was
kept constant, k = L/h = 30. The end-to-end shortening was varied in the range 0 ≤ ε =
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�L/L ≤ 0.6. Next, we describe each of the experimental tests, under the different loading
conditions.

(i) Snap-through under poking force: In order to capture the stable and unstable portions of
the loading path, poking force, in the absence of a magnetic field was applied along êy,
with the indenter glued to the beam at mid-span (s = L/2), and at the constant velocity
of 0.02 mm s−1 to ensured quasi-static conditions. For each level of ε, the mid-span
displacement varied in the range 0 ≤ ξ ≤ 2ξm.

(ii) Snap-through under magnetic loading: In a second set of experiments, the beam specimen
was placed within the region of a uniform magnetic field generated by the Helmholtz
coils [65]. Two different protocols were followed to measure (ii.a) the critical magnetic
field for snapping, Ba

cr, and (ii.b) the full load–displacement response, Ba(ξ ), as detailed
next. To measure Ba

cr, we gradually increased the magnitude of the applied magnetic flux
density (by increasing the current, I, in the coils; steps of 0.05 A and 10 s) until snap-
through occurred. Assuming the snap-through phenomenon is nearly instantaneous, and
the waiting time between each two step is larger than the viscous relaxation time [77,78],
we neglected dynamic effects and measured the critical snapping magnetic field at the
snapping step. (ii.b) By adapting the above experimental procedure, we characterized
the full bistable response, capturing the stable and unstable paths. First, prior to magnetic
loading, the poking was performed under displacement-control conditions at the speed
of 0.02 mm s−1 (along êy). The indenter was then stopped at each step of 0.2 mm, and
the magnetic field was increased from zero, in the −êy direction, to balance the poking
force, until a zero-force was measured by the load cell. Assuming equilibrium of the
specimen and the quasi-static experimental conditions, the measured applied magnetic
field required for zero-force was ensured to lie on the equilibrium curve, Ba(ξ ).

(iii) Snap-through under combined mechanical and magnetic load: In a third set of experiments,
we investigated the effect of magnetic loading on the snap-through response of the beam
under simultaneous poking force. In each experimental run, the beam was first loaded
under a steady magnetic field and then indented following the same protocol as in (i). We
repeated the experiment at 11 different levels of magnetic field strength, in the range
−4.5 mT ≤ Ba ≤ 53.4 mT, in steps of 6 mT, ensuring that Ba

cr ≤ Ba. From the measured
curves of poking force versus displacement, P(ξ ), we characterized the stability of the
beam for these combined loading conditions.

4. Numerical simulations using FEM
In parallel with the experiments, we performed three-dimensional FEM simulations using an
existing user-defined element [63] in the commercial software package ABAQUS/Standard 6.14.
As detailed in §4a, we have modified this user element to enable Riks analysis on hard-magnetic
structures. The Riks algorithm allows for the solution of the equilibrium equation of a structure by
prescribing the arc length of its loading path, so as to track both stable and unstable equilibrium
states. We use this technique to study the snapping behaviour of our magnetic beam subjected to
a uniform magnetic field. The simulation procedure is, then, detailed in §4b.

(a) User element for Riks analysis
Our FEM approach is based on an existing continuum theory of ideal hard-magnetic soft materials
[63] with a permanent magnetization independent of external magnetic fields. In this theory, the
effect of an applied magnetic field on a magnetized, deformable body is considered through a
potential (density) as a function of the deformation gradient (F), the external field flux density
(Ba) and the magnetization of the material (μ0

−1Br):

Ûm = μ0
−1FBr · Ba. (4.1)
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This magnetic potential is added to the total energy of the system. Under this description,
distributed magnetic torques imposed by the applied field result in an asymmetric part of
the Cauchy stress. The field produced by the magnetic body and the induced self-interactions
are neglected. This theory has been previously implemented in the commercial FEM software
package ABAQUS through a user-defined 8-node solid element [63], while assuming that the
elastic behaviour of the material is assumed to be neo-Hookean.

To capture the unstable equilibrium path of the snapping beam under magnetic actuation,
we had to adapt this previously developed user element to make it compatible with the Riks
analysis in ABAQUS. In the Riks analysis, the magnitude of external loads, which is usually
prescribed during a simulation, is considered as an unknown and solved simultaneously with
displacements from equilibrium. Alternatively, the ‘arc length’ of the static equilibrium path of
a system in the load–displacement space is imposed to control the progress of the simulation.
In order to implement the Riks analysis in the presence of a uniform magnetic field, we define
its magnitude as a loading parameter using the keyword ∗DLOAD in ABAQUS, rather than a
field variable in the previous work [63]. As such, the field strength can be taken into account as
an unknown in the solution domain. This modification on the original user element allows us to
simulate both the stable and unstable response of the magnetic beam during snapping, the results
of which will be presented in §7.

(b) Simulation procedure
We modelled an initially straight clamped–clamped beam as a three-dimensional solid body.
Similarly to the experiments (see figure 2), the beam was composed of two halves with antiparallel
magnetization vectors. The length and width of the beam were the same as the experimental
specimens. The beam was discretized by the user-defined elements introduced in §4a, using a
structured mesh with 16, 4 and 120 elements seeded, respectively, in the width, thickness and
length directions. The mesh was deemed to be sufficiently fine through a convergence study.
The material of the beam was assumed to be incompressible with a shear modulus G = 0.39 MPa
(paralleling the experiments; see §3) and a bulk modulus 100 times larger than G. Given the
large deflection of the beam during snapping, geometric nonlinearities were taken into account
throughout the simulations. We highlight that the simulations employed the material properties
characterized in the experiments (see §3), with no fitting parameters.

For the simulation protocol, we first imposed an end-to-end shortening, ε, to buckle the beam
and reach the preset bistable state. We then studied the snapping of the beam in three loading
cases: (i) poking force, (ii) pure magnetic load and (iii) combined mechanical and magnetic loads.
Each simulation run involved the following two sequential steps:

Step (a)—Buckling: First, ε was imposed to the straight beam, causing it to buckle into a curved
configuration characterized by the classic sinusoidal Euler mode for a clamped–clamped
beam. In this step, we obtained several post-buckled beam configurations by varying
the end-to-end shortening 0 ≤ ε ≤ 0.6; the same range as in the experiments. To trigger
buckling, geometric imperfections with the shape of the first eigenmode and a maximum
amplitude of 0.1h were injected into the initial straight configuration.

Step (b)—Snapping: For loading case (i)—(snap-through under poking force), we indented the beam
at mid-span by prescribing the displacement, ξ , which was increased step-by-step until
the beam reached the other stable configuration. The poking force, P, was computed as
a reaction force from equilibrium. From the load–displacement curve, P(ξ ), we identified
the critical load for snapping at different end-to-end shortenings (§6). For loading case (ii)—
(snap-through under pure magnetic load), we applied a magnetic field on the entire beam
with a Riks step, in order to capture the full loading path during snapping. In the search
for the equilibrium state, the strength of the applied field is set as an unknown, which,
along with the displacements of the beam, was solved under a prescribed arc length
increment of the loading path. We computed the critical field strength, the equilibrium
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path with stable and unstable branches, and the change of the strain energy during
snapping. For loading case (iii)—(snap-through under combined mechanical and magnetic
loads), a magnetic field with a given flux density lower than the critical value to trigger
the snapping was first applied on the beam. Under this constant field, in the next step, we
indented the beam by applying a displacement load at the mid-span to make it snap to the
other stable configuration. We computed the poking force–displacement curve, P(ξ ), for
different values of the magnetic field. Then, we extracted the critical poking force under
the effect of magnetic load at different end-to-end shortenings.

5. A reduced-order model for the snapping of magnetic beams
We proceed by presenting a centreline-based theory for the problem defined in §2 (see figure 1b).
We consider a thin, inextensible, hard-magnetic and doubly clamped beam, under Kirchhoff
assumptions [79]; i.e. normals to the beam centreline remain normal and unstretched during
deformation. Building upon recent developments for hard-magnetic beams [58,59,65,66,80], we
develop a one-dimensional beam model through dimensional reduction [81], taking the three-
dimensional Helmholtz free energy for ideal hard-magnetic soft materials from Zhao et al. [63]
as a starting point, on top of other classic ingredients. The elastic (bending) energy of the beam
is described by Euler’s elastica [81], and the work of poking force was addressed in [75]. Using
the principle of virtual work (PVW), we will show that the derived ordinary differential equation
(ODE) for the bending angle, θ (s), is equivalent to a clamped–clamped elastica under a redefined
poking force applied at mid-span (s = L/2). Hence, the effect of the applied magnetic load on the
snap-through buckling is qualitatively identical to that of a poking force at mid-span.

Following classic beam kinematics, we define 0 ≤ s ≤ L to be the arc length of the (inextensible)
centreline of a beam, located at r(s) = (x(s), y(s)). We consider a beam clamped both at s = 0
and s = L, with r(0) = (0, 0) and r(L) = (X, 0). The bending angle, θ (s), is measured from êx, such
that the centreline tangent is t̂ ≡ r′ = (cos θ (s), sin θ (s)), where (·)′ = d(·)/ds and the corresponding
boundary conditions are θ (0) = θ (L) = 0. The relation between θ (s) and r(s) is obtained by
integrating t̂:

r(L) = (x(L), y(L)) =
(∫L

0
cos θ (s) ds,

∫L

0
sin θ (s) ds

)
= (X, 0), (5.1)

which acts as a constraint.
Next, we consider first the external virtual work (EVW) and then the internal virtual work

(IVW), before invoking the PVW to derive the governing equation for θ (s).
A reaction force (Fx, Fy) is applied at s = 0 and the poking force, P = (0, −P), at s = L/2.

Defining N(s) = (Nx, Ny) as the internal force on the cross-section at s, force balance yields

N(s) = (Nx, Ny) =
(

−Fx, −Fy + PΘ

(
s − L

2

))
, (5.2)

with the Heaviside step function Θ(x) = {sgn(x) + 1}/2 representing the discontinuity (of
magnitude P) in the Ny component at s = L/2, due to the applied poking force. The EVW is then
computed as

EVW =
∫L

0

{
−Fx cos θ +

(
−Fy + PΘ

(
s − L

2

))
sin θ

}
ds. (5.3)

The Helmholtz free energy proposed in [63] for hard-magnetic materials can be decomposed into
an elastic part, associated with mechanical deformation, and a magnetic part, arising from the
interactions between remanent magnetization and the external field. Based on this decomposition,
the total energy of a hard-magnetic beam is the sum of the elastic energy, Uel, and the magnetic
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potential, Um. Assuming a Hookean constitutive law,

Uel =
∫L

0

EI
2

θ ′2 ds, (5.4)

where EI is the flexural rigidity of the beam of Young’s modulus, E, and a second moment of
inertia, I = h3b/12.

According to Zhao et al. [63], we now make use of the magnetic potential density Ûm in
equation (4.1). Focusing on the geometry of our problem (see figure 1b), we set the applied
field to Ba = Baêy, and the magnetization vector M = Br/μ0 exhibiting the specific profile of
equation (2.1); in the deformed configuration, M is parallel to the tangent vector t̂ for 0 ≤ s ≤ L/2

(or antiparallel for L/2 ≤ s ≤ L). The deformation gradient
◦
F for thin beams has been derived in

[58,65,80] as

◦
F =

(
cos θ − sin θ

sin θ cos θ

)
. (5.5)

Hence, the magnetic potential for our beam is

Um = −
∫L

0
hb

◦
F M · Ba ds = hbBrBa

μ0

∫L

0
sgn

(
s − L

2

)
sin θ (s) ds. (5.6)

Invoking the PVW, mechanical equilibrium is assured when the EVW is balanced by the
IVW = δUel + δUm yielding

EIθ ′′ + Fx sin θ − F̃y cos θ = −1
2

(
P − 2hbBaBr

μ0

)
sgn

(
s − L

2

)
cos θ , (5.7)

with F̃y ≡ Fy − (P/2) and boundary conditions θ (0) = θ (L) = 0. The two unknowns, Fx and Fy, are
the Lagrange multipliers associated with the clamped boundary [81] and can be determined
through equation (5.1). Note that the term in equation (5.7) involving 2hbBaBr/μ0 can be
interpreted as a second poking force, in addition to P. Therefore, we can define an effective poking
force under the combined mechanical and magnetic loading:

P∗ ≡ P − 2hbBaBr

μ0
. (5.8)

Hence, the analysis of snap buckling of the hard-magnetic beam under a uniform magnetic field
is simplified by treating the developed magnetic torques as an effective poking force acting at
mid-span, noting that these two scenarios share similar boundary conditions. A similar approach
was followed in [80] for the deformation of the tip of an elastica under magnetic loading. Now,
we use equation (5.8) to rewrite equation (5.7) as

EIθ ′′ + Fx sin θ − F̃y cos θ = −P∗

2
sgn

(
s − L

2

)
cos θ . (5.9)

This new ODE is equivalent to a clamped–clamped elastica under poking force P∗ applied
at s = L/2 [14,75]. Under appropriate boundary conditions, θ (0) = θ (L) = 0, and the constraint
in equation (5.1), equation (5.9) defines a boundary value problem that can be solved
numerically to predict the classic N-shape snap-through response of a doubly clamped beam
[14], but now under combined magnetic loading and poking force. We do so using the solver
bvp5c in MATLAB. Note that all the relevant parameters in this model are characterized
experimentally, and there are no fitting parameters. In §§6–8, we will compare the predictions
from this magnetic beam model against FEM (developed in §4) and experiments (developed
in §3).

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

23
 F

eb
ru

ar
y 

20
23

 



12

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A381:20220029

...............................................................

(a) Linearized theory with ε 	 1 and |θ | 	 1
For configurations of the bistable beam with small values of end-to-end shortening (ε 	 1), the
deformations are small (|θ | 	 1) at the onset of snapping. In this limit, with sin θ 
 θ and cos θ 

1 − (θ2/2), equation (5.9) simplifies to

θ ′′ + Fxθ − F̃y = −P
∗

2
sgn

(
s − 1

2

)
, (5.10)

where we have used the following dimensionless variables: s = s/L, Fx ≡ FxL2/EI, F̃y ≡ F̃yL2/EI
and P

∗ ≡ PL2/EI − (2hbBa/BrL2EIμ0). Expanding equation (5.1) with respect to |θ | 	 1, the
corresponding boundary conditions are

∫ 1

0

θ2(s)
2

ds = ε, and
∫ 1

0
θ (s) ds = 0. (5.11)

Employing the method of variation of parameters, the solution of equation (5.10) is

θ (s̄) = F̃y

κ2 ϕ1(s) + P
∗

κ2 ϕ2(s), (5.12)

where we have introduced the wavenumber κ ≡
√

Fx and the functions ϕ1 and ϕ2, which are,
respectively, symmetric and asymmetric functions with respect to s = 1/2, defined in Appendix

A. The two unknown parameters, κ =
√

Fx and F̃y, are determined using the boundary conditions
in equation (5.11) to arrive at

κ = 9 and 2ε =
⎛
⎝ F̃y

κ2

⎞
⎠

2

c1 +
(

P
∗

κ2

)2

c2, (5.13)

where c1 ≡ ∫1
0(ϕ1(s))2 ds and c2 ≡ ∫1

0(ϕ2(s))2 ds are two positive numerical constants detailed in A.
Using equations (5.13), we can now discuss the critical condition for snap buckling. Given that

c1, c2 and ε are all positive, F̃y ceases to exist, and the beam snaps, when (P
∗
/κ2)2c2 ≥ 2ε. Hence,

the critical condition for the snap transition is

|P∗
cr| = κ2

√
2
c2

ε = C0
√

ε, (5.14)

with the positive constant C0 
 130 [14,75]. The dimensional version of equation (5.14), through
equation (5.8), is ∣∣∣∣∣bhBaBrL2

μ0EI
− PcrL2

2EI

∣∣∣∣∣= C0
√

ε. (5.15)

For reasons that will become clearer in §8, we recognize the critical load at which snapping occurs
as the maximum load that the beam can support before snap-through, Pcr = Pmax, and we rewrite
equation (5.15) back in dimensionless form

Pmax = 2(B
a + C0

√
ε), (5.16)

where Pmax = PmaxL2/(EI) and the applied magnetic field was non-dimensionalized as

B
a = bhL2Ba

crBr

EIμ0
, (5.17)

characterizing the relative importance between the magnetic load and beam-bending effects.
According to equation (5.16), under the assumption of ε 	 1 and when B

a
> 0 (i.e. Ba and P are

in the same direction), the maximum poking force that the clamped–clamped magnetic beam can
support before snapping is expected to depend linearly on the applied magnetic field B

a
, with

a slope 2 and an offset 2C0
√

ε set by the end-to-end shortening. This prediction will be tested
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Figure 4. Snap buckling under poking force (Ba = 0). (a) Normalized poking force, P, versus the mid-span displacement, ξ ,
for the end-to-end shortening of ε = 0.014. The maximum of the curve is defined as Pmax. (b) Normalized maximum poking
force, Pmax, versusε. The error bars correspond to the standard deviations of the experimentalmeasurements for three identical
specimens. (Inset) Schematic diagram of the loading configuration. (Online version in colour.)

against experiments and FEM in figure 8 (§8). In the absence of a magnetic field (B
a = 0), we

recover the standard result, the critical poking force for purely elastic snapping [75], with the
scaling Pmax ∼ √

ε, which will be tested against experiments and FEM in figure 4 (in §6).

6. Snapping under poking force
We start by focusing on the classic bistable response when the beam is subjected only to a poking
force (Ba = 0) at mid-span. Even if well-established [75], this case serves as a pre-validation of
the framework against experiment, before introducing magnetic effects in §7. In figure 4a, we
present the results for the dimensionless poking force, P = PL2/EI, versus the dimensionless mid-
span displacement, ξ = ξ/L. The initial buckled configuration was generated with an end-to-end
shortening of ε = 0.014. Then, ξ was gradually increased while measuring the poking force. The
resulting P(ξ ) force–displacement curve exhibits the classic N-shape representative of bistable
mechanisms [14]. Points A and E are the two stable stages. The maximum normalized poking
force, Pmax, occurs at point B. The unstable branch, with negative stiffness, occurs between points
B and D, and point C is the unstable equilibrium state. Excellent agreement is found between
experiments, FEM and the solution of equation (5.9).

In figure 4b, we plot Pmax, as a function of ε, finding a sub-linear dependence. For small
values of the end-to-end shortening (ε � 0.1), the observed scaling Pmax ∼ √

ε (dot-dashed line
in figure 4b) is consistent with equation (5.16) when Ba = 0, obtained from the linearized theory
for small deformations. For ε � 0.1, the linearized theory no longer works, but the nonlinear
theory of equation (5.9) with Ba = 0 (solid line in figure 4b) is in excellent agreement with the FEM
and experiments, through the full range of explored ε. This agreement between the experiments,
FEM and the reduced-order beam model, even if within a classic setting, serves as a first step in
validation.

7. Snapping under magnetic loading
We proceed by investigating the buckling of the bistable beam under an external magnetic
field, this time with no poking force (P = 0), seeking to quantify how the critical magnetic field
strength, Ba

cr, required for switching between the two stable states, depends on the end-to-end
shortening, ε.
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Figure 5. Snap buckling under magnetic actuation. Normalized critical strength of the uniform magnetic field required for
beam snapping, B

a
cr, as a function of end-to-end shortening, ε. The results were obtained from the nonlinear elastic theory in

equation (5.9) (solid line), small deformations theory (dashed line), FEM (dotted line) and experiments (data points with error
bars). The error bars of the experimental data correspond to the standard deviation of the measurements on three identical
specimens. (Inset) Schematic of the bistable beam under magnetic loading. (Online version in colour.)

In figure 5, making use of the dimensionless magneto-elastic parameter defined in equation
(5.17), we plot B

a
cr(ε) curves obtained as predicted from FEM simulations, the one-dimensional

theory and the experiments. Naturally, increasingly deformed pre-configuration (increasing ε)
requires a higher value of Ba

cr for snapping. We find a good agreement between the FEM, the
experimental data and the solution of equation (5.9). For small deformations (ε � 0.1), the data
follows the scaling Ba

cr ∼ √
ε, consistently with equation (5.16). For higher values of ε, the overall

Ba
cr(ε) curves computed from FEM are captured by the solutions of equation (5.9) with P = 0

reasonably well.
The Riks procedure in FEM (cf. §4b) enables us to capture the unstable equilibrium path during

snapping under actuation by a magnetic field, from the first to the second stable configuration.
In figure 6a, we plot the normalized magnetic load, B

a
, as a function of the normalized mid-

span displacement of the beam, ξ , for two representative values of the end-to-end shortening,
ε = {0.008, 0.014}. The FEM-computed results (dotted lines) are in quantitative agreement with the
experimental data. For ε = 0.008, the B

a
(ξ ) curve is non-monotonic, first increasing to a maximum,

then decreasing to become negative, until a minimum is reached, to then increase again. The case
with ε = 0.014 is more complex; the Riks method captures a force–displacement equilibrium path
with a complex transition between the two stable states, with winding branches and multiple
equilibrium solutions for the same ξ . However, note that some of the winding-branch segments
computed from FEM are not practically relevant; only the solutions with the lowest energy barrier
are experimentally observable.

To gain further insight into the energetics of the load–displacement path discussed above,
focusing on ε = 0.014, we now use FEM to compute the total strain energy, U, as a function of ξ

during the snapping process; the results are plotted in figure 6b. The points A, B, . . ., G labelled in
the plot correspond to the computed configurations shown in figure 6c. During the transition path
between the stable states A and G, U increases with ξ from a minimum (A) to a local maximum
(C1) and decreases to another minimum (D). Hence, the corresponding energy barrier, �Us,
between this minimum and the local maximum must be overcome for snap-through. According to
the principle of minimum potential energy, the lowest energy path is the one observed in practice.
Consequently, the higher energy configurations shown in figure 6c for points D, C2, E and C3 are
not observed experimentally. Indeed, the experimentally observed path in figure 6a is an excellent
match with the lowest-energy path of figure 6b, passing through the points A-B-C1-F-G.
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Figure 6. Bifurcation diagram for the snap-through of the bistable beam under magnetic actuation. (a) Normalized magnetic
field, B

a
, versus the normalized mid-span displacement, ξ : FEM simulations and experiments for two beams with ε =

{0.008, 0.014}. (b) FEM-computed strain energy, U, versus ξ , for ε = 0.014. The beam must overcome the energy barrier,
�Us (vertical double-arrow), to switch between the two stable states. (c) Representative FEM-computed configurations of the
beamalong the equilibrium solution path, corresponding to the samepoints in the plots of (a) and (b). The colour bar represents
the normalized displacement of the beam along the y-axis,w. (Online version in colour.)

8. Snapping under combined poking force and magnetic loading
Finally, we turn to the combined case of simultaneously loading the bistable beams with
mechanical poking and a magnetic field, each of which was tackled individually in the previous
§§6 and 7. We seek to quantify how the magnetic loading modifies the load-bearing capacity of
the bistable beam under poking force and characterize the critical conditions for snap buckling.

In figure 7a, we present the normalized poking force, P, versus the beam’s mid-span
displacement, ξ , at different levels of the uniform magnetic field, B

a
êy, varied systematically

in the range −3.9 ≤ B
a ≤ 46.9 (see legend of the plot). We focus on the representative case with

ε = 0.014. To track the full equilibrium path, including its unstable portions, the indenter was
glued to the beam at mid-span, as described in §3c. At each value of B

a
, the signal-to-noise

ratio of the measurements was enhanced by repeating three independent, but otherwise identical,
experimental runs; their average is reported as the P(ξ ) curves of figure 7a. Throughout, excellent
agreement is found between experiments (solid lines) and the FEM (dotted lines).

Under an external magnetic field, the poking force–displacement response of the hard-
magnetic beam can be modified significantly with respect to the purely mechanical case (B

a = 0
and results in §6). When the applied magnetic field is in the opposite direction of the poking
force (B

a
> 0), the generated magnetic torques oppose the direction of the poking-induced beam

rotation. Consequently, as the field strength is increased, the beam stiffens and becomes more
resistant to snap buckling (the local maximum of P increases). By contrast, when the magnetic
load is applied in the same direction to the poking (B

a
< 0), snap-through occurs at lower poking

forces as the magnetic torques are in the same direction as the poking-induced rotation.
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Figure 7. Load–displacement curves for the indentedmagnetic beam (with ε = 0.014) in the presence of a uniformmagnetic
field. (a) The normalized poking force, P, is plotted versus the normalized mid-span displacement, ξ , at various levels of
prescribed field strength, B

a
. (Inset) Schematic diagram of the bistable beam under combined magnetic and mechanical

loading. (b) The normalized effective poking force, P
∗
, as a function of the normalized mid-span displacement, ξ , for the

curves in (a), collapsing on a single curve. The experiments and FEM simulations are represented by solid lines, and dotted
lines, respectively. The shaded region of each curve represents the standard deviation of three identical measurements. (Online
version in colour.)
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Figure 8. Critical poking force for snap transition under magnetic actuation. (a) Normalized maximum poking force, Pmax,
versus the prescribed applied magnetic field, B

a
, at different end-to-end shortenings (ε = {0.158, 0.108, 0.053, 0.014}):

experiments (data points), theoretical predictions from equation (5.9) (solid lines), and FEM (dotted lines). The line slope of 2 is
consistent with equation (5.16). (b) Master curve for the experimental results, FEM simulations and the theoretical predictions,
for the data in (a). The quantity, Pmax − 2C0

√
ε in equation (5.16), is plotted as a function of 2B

a
, yielding a collapse of all the

data. The term−2C0
√

ε removes the offset due to the end-to-end shortening. (Online version in colour.)

In figure 7b, to compare the elastic and magnetic loads, we plot the normalized effective
poking force, P

∗
, as a function of the normalized mid-span displacement, ξ , for the corresponding

curves in figure 7a. We find that the experimental and simulations data collapse into a single
curve, indicating that the effect of magnetic load on the snap buckling of magnetic beams can
be interpreted as a second poking force in addition to the mechanical load (see §5). Treatment
of the effect of magnetic torques developed under a uniform magnetic field as an equivalent
poking force acting at mid-span simplifies the calculation of the critical snap buckling load for a
hard-magnetic beam under combined elastic and magnetic loading.
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In figure 8a, we quantify the dimensionless relation between the maximum (critical) poking
force, Pmax, and the magnitude of the prescribed magnetic field B

a
, for four values of the end-

to-end shortenings, ε = {0.014, 0.053, 0.108, 0.158}. The experimental force–displacement signals
were smoothed with a 50-point moving average filter, to facilitate the extraction of Pmax, the
largest load that the beam can sustain prior to snapping. Again, an excellent agreement is
observed between the experiments (data points), FEM (dotted lines) and the solution of equation
(5.9) (solid lines). We find the robust linear scaling Pmax ∼ B

a
, with a slope of 2. Increasing ε results

in an increase of the offset at B
a = 0 of the linear curves, as dictated by the purely mechanical

poking case in figure 4. Hence, increasing the end-to-end shortening results in a larger poking
force required for snapping under a particular level of field strength, set by the offset of the
linear behaviour. The experimental and FEM data are in remarkable agreement with equation
(5.16), indicating that the largest value of end-to-end shortening explored in these experiments
(and FEM simulations) still lies in the regime of validity, with small deformations (|θ | 	 1), of the
linearized theory developed in §5a.

In figure 8b, making use of equation (5.16), we now replot all the data in figure 8a but with
Pmax − 2C0

√
ε as a function of 2B

a
. The purpose is to remove the effect of end-to-end shortening,

and characterize the magneto-elastic effect of the snapping beam. Again as predicted by the
linearized theory, we find a striking collapse of all the data into a master curve of unit slope,
passing through the origin. This collapse indicates that equation (5.16), based on a linearized
theory and combining the dimensionless groups of magnetic (bhBaBrL2/μ0EI) and mechanical
(PL2/EI) loads, serves as a high-fidelity description of the magneto-elastic behaviour of our hard-
magnetic bistable beams, with different end-to-end shortenings (ε � 0.1), in the limit of small
deformations (θ 	 1).

9. Conclusion
We investigated the snapping behaviour of bistable magneto-active beams under combined
mechanical and magnetic actuation, incorporating experiments, FEM and a reduced-order model.
Considering a pre-compressed bistable beam with different levels of end-to-end shortening, we
characterized the load–displacement response, the critical poking force, the field strength at the
onset of snapping and the effect of magnetic loading on snap buckling under poking force.
The Riks method was employed in the three-dimensional FEM simulations to analyse the snap
transition. We also developed a beam theory to rationalize the observed magneto-elastic response.
Precision experiments validated the theory and the FEM simulations.

More specifically, we studied the snap buckling of the beam under three different loading
cases: (i) poking force only, (ii) magnetic field only and (iii) combined magnetic and mechanical
loading. Case (i), even if classic, served for pre-validation. In case (ii), we triggered snap buckling
under a magnetic field for various end-to-end shortenings, by designing the magnetization profile
of the beam. For small-deformations, the critical magnetic field increased with the square root of
the end-to-end shortening. The Riks method was used to explore the equilibrium transition path,
finding that increasing the end-to-end shortening complicates the instability response, but the
experimentally observable solution corresponds to the lowest energy level. Finally, in case (iii),
we examined how magnetic loading affects the poking-induced snapping of the bistable beam.
The critical poking force for snapping can be adjusted by the magnitude and direction of the
magnetic field. Our magnetic beam model captures these results. In the small deformation limit,
the critical poking force at the onset of snapping is linearly proportional to the applied magnetic
field with a slope and offset that can be predicted. In this limit, a master curve is uncovered that
collapses the experimental and FEM-computed data.

Our study provides insight into the nonlinear magneto-elastic coupling of bistable beams,
which could be extended in several directions for future work. Fundamentally, the dynamics of
multi-stable structures integrated with soft active materials remains relatively unexplored and
deserves further attention. From a practical viewpoint, optimization and inverse design is an
exciting direction: compact actuators could be designed using bistable beams while minimizing
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the total energy consumption during actuation. The magnetization profile chosen in equation (2.1)
may come across as ad hoc, even if we found that it is more effective in inducing snap buckling
compared to uniform magnetization. Future work should explore other magnetization designs
more systematically. Owing to the complex relationship between the design parameters and
snap-through characteristics, modelling the deformation of bistable beams under other boundary
conditions should be considered.

It is important to highlight that a recent study on hard-magnetic plates [69] proposed a
rotation-based (R-based) magnetic potential by replacing the deformation gradient, F, in equation
(4.1) with the rotation tensor. This work was, in turn, motivated by an also equally recent, but
prior, demonstration of the stretch-independence of the magnetization of bulk h-MREs [64].
Indeed, the subsequent experiments in [69] showed that the R-based model is necessary for plates
subjected to non-negligible stretching deformation under an applied field parallel to the initial
magnetization. These latest findings bring into question why, in the present paper, we decided
not to use the R-based magnetic potential, choosing the F-based model description instead. Given
the assumption of inextensible centreline made when developing the beam model, together with
the orthogonality between the field and the initial magnetization of the configuration considered
in this work, the potential in equation (4.1) is expected to be appropriate for the current problem,
as also justified by the excellent agreement between our theory, FEM and experiments. Also, the
Kirchhoff assumptions adopted in the one-dimensional model correct the error from using the
potential in equation (4.1), as pointed out in [69], given that inextensibility together with the fact
that normals do not change length, thereby removing any stretching-induced effects from the
F-based model. As a final practical justification, the F-based model being significantly simpler
mathematically than the R-based one and, therefore, it is preferable in cases where both yield the
same results. Still, future efforts should be dedicated to develop R-based beam and rod models
for more general cases where stretching of the centreline may be important.

In closing, we believe that our comprehensive framework is a step forward toward the
predictive design of bistable magneto-elastic beams. We hope that the snapping behaviour and
the stiffness-tuning capability of these components will be exploited for a variety of future
applications, including actuators, robotics, MEMS, programmable devices, metamaterials and
energy harvesting devices.
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Appendix A. Solution of equation (5.10)
Here, we discuss a few details of the solution of equation (5.10) to arrive at equation (5.12). The
functions, ϕ1 and ϕ2, were introduced to solve the linear inhomogeneous ODE with the method
of variation of parameters (§8) and are written as

ϕ1(s) ≡ 1 −
cos

(
κ
(

s − 1
2

))
cos(κ/2)

(A 1)
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and

ϕ2(s) ≡ 1
2

[
sgn

(
s − 1

2

){
cos

(
κ

(
s − 1

2

))
− 1

}
+ tan

(κ

4

)
sin

(
κ

(
s − 1

2

))]
, (A 2)

where we have used tan(κ/4) = (1 − cos(κ/2))/ sin(κ/2). Note that ϕ1(s) and ϕ2(s) are, respectively,
symmetric and asymmetric function with respect to s = 1/2. The two numerical constants in
equation (5.13), c1 and c2, are computed as

c1 ≡
∫ 1

0
ϕ2

1(s)ds = 2κ − 3 sin κ + κ cos κ

κ + κ cos κ

and c2 ≡
∫ 1

0
ϕ2

2(s) ds = 1
8

(
2 + 1

cos2(κ/4)
− 12

κ
tan

(κ

4

))
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(A 3)
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