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a b s t r a c t

Discrete domes are doubly curved structures comprising a network of beam-like elements. We study
the mechanics of discrete domes made of ribbons woven in a pentagonal triaxial pattern. Experiments
and finite element simulations are performed to characterize the mechanical response of each woven
dome under indentation. The observed nonlinear response features force maxima, snap-through
inversion, and non-monotonic evolution, leading to additional stable configurations. The dome’s rest
shape can be tuned continuously by designing the in-plane curvature of the ribbons and is then
perturbed by adjustable clamped boundary conditions at their extremities. These control parameters
are leveraged to smoothly and selectively modify the nonlinear features of the mechanical response,
including multi-stability. Finally, we suggest a simplified model based on an elastica approximation
to predict the stability of the inverted state successfully. The strong geometrical constraints imposed
by the weaving pattern and the ribbons enable us to rationalize and tune the indentation response of
these intriguing discrete structures.

© 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Triaxial weaving is a traditional craft used to assemble sets of
ong flexible ribbons into three-dimensional (3D) curved surfaces.
nitially used for basket making, this technique is of growing
nterest for design [1–3] and engineering [4,5] applications. A
riaxial weave is typically composed of ribbons, arranged as a
agome lattice, with alternating over- and under-crossings in
basic pattern consisting of polygons surrounded by triangles.
y modifying the number of sides of the polygons, the woven
tructure can adopt flat, dome, or saddle-like shapes [2]. Recently,
e have uncovered a novel geometry-induced mechanism to
moothly change the shape of weaves while maintaining the
opology of the underlying pattern by varying the in-plane cur-
ature of the constituent ribbons [6]. This mechanism was then
everaged by optimizing the shape of the ribbon to inverse-design
ree-form and stable 3D weaves [7]. Beyond attaining desired
hapes, the mechanics of 3D weaves is also of growing interest [8]
nd, networks of coupled ribbons are known to exhibit rich and
ontrivial stability landscapes [9].
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Three-dimensional weaves are reminiscent of other dome-
like structures with a network of discrete beam elements, which
may be linked rigidly for space frames [10,11], or buckled with
rotation-free crossings for gridshells [12,13]. Such structures are
used widely at the macroscopic and microscopic scales. Architec-
ture [10,14] is a natural setting for the large-scale application of
discrete domes, while more compliant analogs have promising
applications at smaller scales. For instance, discrete structures are
used in soft electronics [15], stents [16], and deployable micro-
devices [17–19]. It is challenging to predict the mechanical re-
sponse of discrete domes to external loading [20,21], in particular,
because they are prone to catastrophic snap-through instabil-
ities [22,23], not unlike continuous doubly curved shells [24].
Computationally, continuous [25] and element-based [26,27] nu-
merical schemes, combined with group theory [28], have been
used to analyze the buckling threshold and post-buckling behav-
ior of discrete domes. Experimentally, most studies have focused
on the critical load to failure [29,30], and post-buckling analyses
remain scarce [31]. By contrast to the abundant literature on
discrete domes, even fewer studies [32] have considered the
mechanics of woven domes; predicting both their post-buckling
behavior and the stability landscape remain open challenges.

Here, we investigate the post-buckling response of shallow
woven domes to indentation, with the possibility of bistability.
Our study combines model experiments, simulations using the
finite element method (FEM), geometry, and an elastica-based re-
duced model. The domes are weaved from flat ribbons in a triaxial
pattern with a central pentagon. The rest shape of the domes,

characterized by a natural angle and radius, is tuned smoothly
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Fig. 1. Rest shape of the woven domes, with varying in-plane curvature of the ribbons. (a) Example of the planar geometry of a curved ribbon with κ = 0.4. (b)
xperimental and FEM-computed rest shapes of woven domes with κ = {0, 0.2, 0.4}. (c) Approximation of the rest shape by a conical surface, with the definition
f the rest angle, α0 , and radial extent, R0 , from, respectively, the side and top views, shown here for κ = 0.1 (d) Rest angle α0 and (e) radius R0 of the domes as
unctions of κ; experiments (circles) and FEM (squares). the experimental error bars represent the minimum and maximum values measured from three realizations.
he solid lines in (d) and (e) correspond to the geometric predictions, respectively, from Eqs. (1) and (2).
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y varying the in-plane curvature of the constituent ribbons and
ationalized by geometrical arguments. Before indentation, the
omes are clamped with adjustable boundary conditions, thereby
onstraining the domes away from their rest shape. Three key
esign parameters emerge: the in-plane curvature of the ribbons,
, and the differences, ∆α and ∆R, of the domes’ radii and an-
les between its rest and constrained shapes, respectively (these
uantities will be defined in due course). The clamped domes
re loaded with an axially symmetric indentation up to dome
nversion, and the resulting mechanical response is characterized
or various design parameters. Depending on the values of κ , ∆R,
nd ∆α, the response can be tuned to switch from monostable
o bistable. Finally, we propose a reduced model based on Euler’s
lastica to rationalize the emergence of bistability, capturing the
ain features of the mechanical behavior of seemingly complex
eaves.

. Realization of the domes: Experiments and FEM

Starting with flat ribbons, the 3D domes are hand-woven into
triaxial weaving pattern [1,2], adopting a technique similar to

hat developed in Ref. [6]. We use n = 5 identical ribbons of
idth W = 8mm, thickness h = 0.5mm and a total arclength
f 150mm, divided into five segments of equal arclength ℓ =

0mm (see Fig. 1a). The ribbons are made of laser-cut polyethy-
ene terephthalate (Plastic Shim Pack DM1210, Partwell Group;
oung’s modulus E = 2GPa and Poisson’s ratio ν = 0.35). Each
ibbon contains a middle segment with dimensionless in-plane
urvature, κ , such that the centerline there has an arc of radius of
urvature ℓ/κ (Fig. 1a). Apart from the middle segment, all others
re naturally straight. The value κ is then a direct measure of the
ngle, in radians, between the two straight portions of the ribbon.
he ribbon extremities are extended slightly by ℓ/3 to enable
lamping, but these extensions are not considered in the shape
easurements, nor do they play a mechanical role. Weaving

s done by sequentially joining the segment ends of matching
ibbons and alternating over- and under-crossings. Punctured
learance holes (1.1mm diameter) at the start and end of each
2

egment serve to install pins (snap rivet, 5.5mm, polyamide,
istrelec AG, Switzerland) during weaving. The pinned crossings
llow for rotation on the tangent plane but constrain position.
he ribbons are assembled such that the in-plane curvature of
heir middle segments points outward of the pentagon. Upon
eaving, the layout contains a central pentagon surrounded by
uter triangles (see Fig. 1b). A spontaneous 3D shape develops
pon assembly, determined by the initial geometry of the ribbons,
s we will demonstrate below.
Numerically, the ribbons in the FE model mirror that of the

xperiments, both in geometry (including the rivet holes) and in
aterial properties. To simulate the weaving process, the ribbons
re initially laid flat. Then, for each crossing of the final weave,
he corresponding pin holes are linked by fictitious wires whose
engths are incrementally shrunk to zero. Finally, the elements
round the pin holes are tied in translation and rotation to the
orresponding elements on the matching ribbon. Hence, the sim-
lation neglects the alternating under and over the crossing, as
ell as potential ribbon–ribbon contacts. Additional details on the
EM simulations are provided in Appendix A.

. Rest shape of the domes

In the absence of external constraints, the woven ribbons
dopt a natural (rest) dome-like shape in the explored range of
≤ κ ≤ 0.4 [6]. Increasing κ yields shallower domes (Fig. 1b).
o quantify the geometry with a reduced number of parameters,
e approximate the shape of the structure by a conical surface
Fig. 1c); woven ribbons bend primarily in the direction normal
o their plane to span a developable surface [6]. With this conical
pproximation, only two parameters are needed to quantify the
est shape of the weaves: the radial extent of the cone, R0, mea-
ured from the circle passing by the extremities of the ribbons,
nd the angle between the horizontal and the slope of the cone,
0 (Fig. 1c). In Fig. 1(d,e), we plot R0 and α0 as functions of
. In the experiments, α0 and R0 are measured through digital
hotography. In the FEM, α is measured from the slope between
0
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he extremities of the ribbons and the pentagonal pins, and R0 is
easured from the coordinates of the extremities of the ribbons.
Towards rationalizing the rest shape of the dome, we assume

hat pure bending of the ribbons is the only excited deforma-
ion mode. Relying on the Gauss–Bonnet theorem [33], previous
ork [6] has shown that the integral of the Gaussian curvature of
he surface enclosed by the tangents of its delimiting polygonal
lements is a function of the in-plane curvature of the ribbons:
n =

π
3

(
6 − n

(
1 +

3
2π κ

))
, with n = 5 for a pentagon. The

eometry of a cone provides an alternative expression for the
ntegrated Gaussian curvature as a function of the cone opening
ngle: Kn = 2π (1 − cosα0). Equating these two expressions, the
pening angle of the cone can be determined as:

osα0 =
n
6

(
1 +

3
2π

κ

)
. (1)

The radial extent of the cone, R0, is the sum of the radius, p,
of the circle inscribed by the corners of the pentagon and the
length,

√
3ℓ cosα0, of the projection onto the cone base and in

the radial direction, of the segment connecting the pentagon to
the cone edge (see Fig. 1c). We approximate the perimeter of the
circle inscribed by the pentagon to the perimeter of the pentagon,
2πp ≈ nℓ to obtain:

R0

ℓ
=

√
3n
6

(
1 +

3
2π

κ

)
+

n
2π

. (2)

In Fig. 1(d–e), we compare the experimental and FEM-computed
data for cosα0 and R0/ℓ versus κ , together with, the linear ge-
ometrical predictions of Eq. (1) and Eq. (2), respectively. The
agreement is particularly good between the experiments and
the geometric predictions. However, there is a systematic offset
(≈ −5%) for the FEM data. We attribute this discrepancy to the
over-simplification of the modeling of the pinning conditions at
the crossings. While in FEM, these crossings are constrained to
be strictly co-planar, in the physical samples, the pins may not
completely hinder rotation. The importance of this discrepancy in
the mechanical response is alleviated by the clamping conditions
imposed on the rest shape.

4. Clamping of the domes and design parameter space

Having used geometric arguments to characterize the rest
shape of the domes, we proceed by describing how the bound-
ary conditions (BCs) are set before indentation. The domes are
clamped by their ribbons’ ends in a way that imposes their initial
angle α (Fig. 2a) and radial extent R (Fig. 2b). Experimentally,
this clamping is done using acrylic plates, whose angles and
radial position can be varied continuously (Fig. 2c, inset), with
a precision of ±0.05 rad. for α and ±0.5mm for R. In FEM, the
corresponding displacements and rotations are imposed at the
ribbons’ ends. The resulting clamped shape is then a compromise
between the rest shape imposed by the weaving pattern and the
external BCs. Through the conical approximation, the imposed
angle α and radial extent R of the clamped shapes can be directly
compared to the corresponding values at rest (before clamping),
α0 and R0, by their differences ∆R = (R − R0)/ℓ and ∆α =

− α0. Positive (negative) values of ∆R and ∆α correspond to a
adially stretched (compressed) dome. Together with the in-plane
urvature of the ribbons, κ , there are three design parameters
(κ, ∆R, ∆α), which can be varied independently and continuously
to shape the domes before indentation.
3

Fig. 2. Domes clamping and indentation method. Side view (a) and top view
(b) of a representative clamped dome (κ = 0.1, experiments on the left, FEM
on the right), with an external angle α = 0.873 rad. (a) and radius R = 63mm
(b) imposed to the outer part of the dome. (c) Indentation is imposed by an
acrylic ring (in orange) when Fz > 0 and inextensible threads (in purple) when
z < 0. Zoom inset is a close-up of the clamping mechanism. (For interpretation
f the references to color in this figure legend, the reader is referred to the web
ersion of this article.)

. Response of the domes to mechanical indentation

The domes are loaded by imposing the vertical position, z, of
he pins associated with the pentagon. In the experiments, a rigid
crylic ring of inner radius 23.5mm (≈ p) and thickness 4mm,

pushes the pins downward (see orange highlight in Fig. 2c) and
the vertical force, Fz , is recorded (Instron 5943, 1 kN load cell). To
access negative values of Fz , inextensible cables (see purple high-
lights in Fig. 2c) connect the pin holes to a second rigid plate set
above the pushing ring. The length of the cables is set so that they
are only in tension when Fz < 0. The smooth transitions at Fz = 0
in the experimental data (Fig. 3) validate this indentation method
(the results are discussed in detail below). Despite discrete domes
being known to display complex indentation responses because
of asymmetric configurations [31], by pushing/pulling on all the
pins of the central pentagon simultaneously, our method favors
n-fold symmetric modes of deformation. The indentation rate is
1mm/s, slower than the snapping timescale (≈ 50ms); hence,
the experiments can be considered quasi-static.

In FEM, the vertical displacement z is imposed on the nodes
around the corresponding pin holes; all other degrees of freedom
(translational or rotational) are set free. The total reaction force
Fz is extracted as the resultant of the vertical reaction forces of
all the affected nodes.

In Fig. 3, we plot a representative example of Fz(z) for a
dome with (κ, ∆R, ∆α) = (0.1, −0.21, 0.37 rad.), see also cor-
responding video in Appendix C. The origin z = 0 is set on
the x–y plane of the clamps, and the initial value zA measures
the height of the clamped dome before indentation. Indentation
corresponds to decreasing z from zA, and inverted configurations
with pentagonal pins below the clamping plane have z < 0.
The experiments and FEM results exhibit qualitatively similar
features, marked A, B, . . . , E in Fig. 3. Each feature is associated
with a corresponding FEM snapshot. Starting from an initial stable
shape (A), the force quickly increases to a maximum (B). Then,
the decreasing force is interrupted by a sudden drop C −D at a



S. Poincloux, C. Vallat, T. Chen et al. Extreme Mechanics Letters 59 (2023) 101968

∆

i
v
s
c
t
t

p
m
l
t
a
s
t
s
s
i
t
i
m
a
i
k
p
i
i
p
c

s
e
c
e
t
b
h
r

u
s
a
v
F
A
t

t
(
i
t

o
T
u
a
t
e
q
t

Fig. 3. Representative indentation response of a weaved dome with k = 0.1,
R = −0.21 and ∆α = 0.37. (Top) The experimental response over 5 runs

s represented by the average (solid red curve) and minimum, and maximum
alues reached (shaded region). The dashed red curve is the corresponding FEM
imulation for the same parameters. (Bottom) The FEM snapshots (A to E),
olored by the von-Mises stress of the elements, illustrate the main features of
he response. (For interpretation of the references to color in this figure legend,
he reader is referred to the web version of this article.)

osition zCD, triggered by the snap-through inversion of the seg-
ents belonging to the central pentagon. Past a second smaller

ocal maximum, Fz decreases gradually to negative values before
urning around and diverging upward. Point E, where Fz(zE) = 0
nd dFz/dz|zE < 0, corresponds to a second (inverted) stable
tate. The FEM snapshots, colored by the von Mises stress of
he elements, show that most of the deformation occurs at the
egments outside the pentagon; the central segments accumulate
tress without barely deforming, except during the snap-through
nversion at C−D. Despite the overall qualitative agreement be-
ween experiments and FEM, there are quantitative mismatches
n the force magnitudes and the exact indentation positions of the
ain features (e.g., zCD and zE). We speculate that these discrep-
ncies may arise because, in the FEM model, the ribbon–ribbon
ntersections at the crossing points are implemented by idealized
inematic conditions and not by a direct representation of the
hysical pins in the experiments. This difference could potentially
mpose more rigid conditions (whereas, in the experiments, there
s some compliance, even if small, due to the clearance in the
in holes) and the different loading methods (no indentor-pins
ontact in FEM).
We proceed by systematically exploring the design parameter

pace: in-plane curvature, radius difference, and angle differ-
nce, (κ, ∆R, ∆α), in the neighborhood of the representative
ase with (0.1, −0.21, 0.37). In Fig. 4, we plot Fz(z) for both
xperiments (Fig. 4a1, b1, c1) and FEM (Fig. 4a2, b2, c2). With
he caveat mentioned above for the quantitative discrepancies
etween experiments and simulations, we focus on the trends of
ow the three design parameters tune the characteristics of the
esponse to indentation. The height of the initial state, zA, and
the maximum force at B (see Fig. 3) are reduced with κ (Fig. 4a1,
a2) or ∆R (Fig. 4b1, 2), while ∆α, (Fig. 4c1, 2) has little influence
over them. The position, zCD, of the snap-through inversion is

only marginally sensitive to ∆α and κ . However, increasing κ r

4

reduces the relative position between the start of indentation
and the inversion point, zA − zCD. For κ = 0.4, the rest dome
is nearly flat before clamping, and there is no snap-through. By
contrast, zA − zCD remains constant with increasing ∆R, but zCD
decreases progressively towards 0. For ∆R ≳ 0, and ∆α = −0.51,
zCD suddenly jumps to negative values beyond the force minima.
Finally, pre-stressing the dome by increasing ∆R or ∆α lifts all
minima progressively, up to a point where Fz > 0 for the entire
indentation range and the domes lose their second (inverted)
stable state. Varying κ only alters this bistability marginally.

This exploration of the design space highlights the tunable
indentation response of woven domes. Particular rays in this
parameter space modify some of the response features while
keeping others untouched. For example, increasing ∆α changes
the bistability but barely influences the first force maximum and
snap-through inversion. By contrast, κ has little influence on
bistability but affects the maximal force significantly.

6. Elastica-based reduced model for the stability landscape

Next, we propose an elastica-based approximation to ratio-
nalize the conditions for bistable or monostable behavior of the
woven domes, seeking to compare the stability criteria of the
physical system to predictions from this simplified model.

From the snapshots in Fig. 3, we observe that, away from
snap-through, the central pentagonal region undergoes minimal
deformation during indentation; most of the deformation is taken
by the external triangles. The deformation is predominantly in
bending, orthogonally to the plane of the ribbons, while their cen-
terlines remain mostly confined to the plane (e, z) (see Fig. 5a1).
These observations suggest that some of the mechanical features
of the segments between the inner polygon and the clamps
should be captured by identical and independent elastica curves
(pink curves in Fig. 5a1), while the central (nearly rigid) pen-
tagon can be replaced by an effective BC. The proposed construct
(Fig. 5a2,3) assumes an inextensible elastic curve parametrized
by an effective arclength S ∈ [0..L], evolving in the (e, z) plane,
and with bending stiffness D = EWh3/12(1 − ν2). The two ends
are assumed clamped, imposing: the start and end angles (α̃0
and α̃, respectively), the height difference (z), and the projected
distance between the ends (U); these constraints, expressed using
the domes’ parameters, are sin α̃0 ≡ sinα0 cos(π/6), sin α̃ ≡

sinα cos(π/6), and U =

√
(R − p)2 + ℓ2 is assumed constant

pon indentation and follows the geometrical approximation
hown in Fig. 5(a2). For a set of in-plane curvature κ , BCs (R, α)
nd indentation z, the elastica is solved for its shape and the
ertical force exerted on S = 0. The total indentation force,
z , is then computed as the resultant of the 2n elasticas. (See
ppendix B for a more detailed description of the geometry and
he solution method.)

Fig. 5(b) presents elastica predictions (dotted line) compared
o experiments (solid line), for the representative case with
κ, ∆R, ∆α) = (0.1, −0.21, 0.37). The sensitivity of the model
s conveyed by the shaded regions representing variations of the
otal effective arclength L by ±1% (dark pink) and ±3% (light
pink). The snap-through inversion is interpreted as a change
of the BCs at S = 0, from +α̃0 to −α̃0, but the prediction
f this instability is out of reach of the elastica approximation.
his inversion involves snapping of the ribbons of the pentagon
nder coupled forces and moments from the external triangles
nd would require a more sophisticated model than the elastica
o be predicted. The pre- and post-inversion responses are then
stimated independently by changing this BC. The elastica model
ualitatively recovers many of the observed features, including
he first maximum and the inverted stable state. Comparing the
esulting centerline shapes against the ones measured by FEM
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Fig. 4. Systematic exploration of the effects of κ , ∆R, and ∆α on the indentation response. Top panels (a1, b1, c1, solid lines) for experiments and bottom panels
(a2, b2, c2, dashed lines) for FEM. (a) Fixed ∆R = −0.21 and ∆α = 0.37, varying 0 < κ < 0.4. (b) Fixed κ = 0.1 and ∆α = 0.37, and varying −0.27 < ∆R < 0.06.
c) Fixed κ = 0.1 and ∆R = −0.21, and varying −0.51 < ∆α < 0.54. For the experimental data (solid curves), the shaded regions correspond to minimum/maximum
eached over 5 runs.
Fig. 5. Elastica approximation and stability diagram. (a1) 3D schematic from FEM highlighting the segments in the sample that are modeled as elasticas (pink) or as
rigid segments (yellow), the latter corresponding to the central pentagon. (a2) Top view and (a3) equivalent side-view schematic (on the e, z plane) of the elastica.
b) Indentation response of the (κ, ∆R, ∆α) = (0.1, −0.21, 0.37) dome: experiments (solid red line) and elastica model (dotted pink line). The dark and light, shaded
egions represent the uncertainties in the elastica prediction associated with varying L by ±1% and ±3% respectively. Inset, trajectories in the (β1, β2) plane for
he indentation of two domes ((κ, ∆α) = (0.1, 0.37)): one bistable (∆R = −0.27, purple), one monostable (∆R = −0.01, green); the crosses mark the associated
= 0 point. The predicted curve [34] for the bistability-monostability boundary is drawn in pink. (c) Stability diagram in the (|β0

1 − β0
2 |, |β0

1 + β0
2 |) parameter space

ith the predicted phase boundary (pink). The symbols for the monostable (green) and bistable (purple symbols) configurations correspond to experiments (closed
ymbols) and FEM (open symbols). Error bars are ±1% variations of L. (For interpretation of the references to color in this figure legend, the reader is referred to
he web version of this article.)
t
(
i

a
u

lso shows good agreement (Fig. B.7), confirming that the central
entagon acts as a rigid BC for the external triangles. However,
imilarly to FEM and for similar expected reasons, it overesti-
ates Fz , especially for the maximum value. Also, the elastica

s sensitive to the input parameters (e.g., L) that approximate
he dome geometry (see shaded regions in Fig. 5b). In any case,
5

his reduced model does recover the second inverted stable state
minimum), suggesting that the framework is valuable to gain
nsight into the dome stability.

We will now assess to what extent the number of stable states
llowed by the elastica reduction informs on the stable config-
rations reached by the dome upon indentation. The stability
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f clamped–clamped elastica has been analyzed thoroughly in
he past [34–36]. Here, we follow the modeling framework and
otation of Wan et al. [34], which, for convenience, is briefly
verviewed next. A clamped–clamped elastica admits either one
r two stable states, depending on its BCs. From the dimension-
ess governing equations, the following two stability-controlling
arameters emerge:

1 = sin θ1

√
L

L − d
, β2 = sin θ2

√
L

L − d
, (3)

where L is the total effective arclength of the elastica and, in
terms of the geometry of the woven domes, d =

√
U2 + z2

s the distance between clamps, and the imposed angles at the
xtremities are θ1 = ±α̃0−arctan (z/U) and θ2 = α̃−arctan (z/U)

(see Fig. 5a3). The ± sign in θ1 denotes the elastica solution for
pre snap-through (+α̃0 imposed at S = 0, hence a + sign) or
post snap-through (−α̃0 imposed at S = 0, hence a - sign). These
parameters reflect the relative strength of the angular (θ1, θ2) and
confinement (L − d) constraints imposed between the two ends
of the elastica [35].

Wan et al. [34] showed that a clamped–clamped elastica is
bistable (or monostable) inside (or outside) a closed region cen-
tered around (β1, β2) = (0, 0). However, in our case, β1 and
2 are functions of the indentation z. As such, our dome is not

characterized by a single point in the (β1, β2) space but, instead,
by a z-parametrized trajectory. Analogously to doubly curved
continuous shells, the indentation can give access to different
stable states [37]. In the inset of Fig. 5(b), we show the trajec-
tories of two configurations, one monostable ((κ, ∆R, ∆α) =

0.1, −0.01, 0.37), in green), and one bistable ((0.1, −0.27, 0.37),
in purple). In the latter, there is a trajectory jump related to the
sign change in θ1 before and after snap-through. The trajectory
for the monostable dome stays outside of the bistability bound-
ary (pink line), whereas the bistable dome crosses through into
it, suggesting a strong relation between the number of stable
configurations of the domes and elastica bistability.

Next, we validate the above elastica scenario over a wide range
of parameters, seeking to obtain a unique bistability criterion for
our system by considering a single point within the trajectory,
(β0

1 , β0
2 ). We pick z = 0 (shown by the ‘plus’ signs in the inset

of Fig. 5b) because it is nearly equidistant to the two stable
configurations. Moreover, this choice facilitates interpretation by
yielding simple expressions for β1 and β2 as functions of ∆α,
R, and κ . In the (β1, β2) space, the axes β1 + β2 = 0 and
1 − β2 = 0 are symmetry axes of the bistable region, and
here is no detriment in presenting the results in the simpler
|β1 − β2|, |β1 + β2|) parameter space.

The stability experiments and FEM simulations are carried
ut by systematically varying (κ, ∆R, ∆α), for a more compre-
ensive set of parameters than the representative cases shown
n Fig. 4, and attesting the bistability of the dome through the
resence of a point in the Fz(z) indentation curve with Fz = 0 and

dFz
dz < 0. For the geometry of each configuration, we evaluated
Eq. (3) with z = 0, to obtain a location in the (|β0

1 − β0
2 |, |β0

1 + β0
2 |

space. In the phase diagram shown in Fig. 5(c), the bistable
(and the monostable) domes are represented by the purple (and
the green) symbols (, respectively); the experimental (and FEM-
computed) data is represented by the closed (and open) symbols
(, respectively). The configurations showing more than two stable
states are also represented in purple. The stability-boundary
curve (pink solid line) obtained from the elastica analysis [34] pre-
dicts the monostability-to-bistability transition region observed
in the experiments and FEM remarkably well. However, deter-
mining the exact nature of the relationship between the (β1, β2)
trajectory upon indentation and the existence of stable configu-
rations of the domes remains an open question.
6

To establish a link between the above findings and the data
in Fig. 4, we express the stability parameters |β0

1 − β0
2 | and

|β0
1 + β0

2 | as functions of κ , ∆R and ∆α. We take the limits of
small angles (α ≪ 1, α0 ≪ 1), barely curved ribbons (κ ≪

1), and BCs close to the natural shape (∆R ≪ 1, ∆α ≪ 1).
Expanded to first order, the expressions simplify to |β0

1 − β0
2 | ∼

|∆α| and |β0
1 + β0

2 | ∼ |1 + a∆α + b∆R − cκ|, with positive
constants a, b, c of order 1. Pre-stressing the dome by increasing
∆α (or ∆R) causes |β0

1 − β0
2 | and |β0

1 + β0
2 | to deviate from 0,

ith the possibility of the values passing through the bistability-
onostability boundary. When that happens, the dome ceases

o exhibit bistable behavior, consistently with the experimen-
al observations. By contrast, increasing κ decreases |β0

1 + β0
2 |

hile not modifying |β0
1 − β0

2 | to first order. In that case, if
he dome were already in the bistability region for κ = 0,
hen it would remain bistable. Overall, the elastica-based reduced
odel enables us to rationalize many features of the behavior of
ur woven domes, in particular, providing predictions for their
tability landscape given a set of design parameters (κ, ∆R, ∆α).

. Conclusions

The present work recognizes woven domes as a new class
f discrete domes offering an interesting alternative to more
lassic architectures [31]. We found that the indentation response
f woven domes features highly nonlinear behavior, including
orce maximum, snap-through inversion, and bistability. These
eatures can be tuned smoothly by adjusting the rest shape and
Cs of the dome and are captured by the FEM simulations semi-
uantitatively. Furthermore, a clamped–clamped elastica-based
odel successfully predicts the parameter space and the asso-
iated boundary between monostable and bistable behavior. The
ross-sectional asymmetry of the constituent ribbons (here a ratio
f 16 to 1 between the width and the thickness) enforces bending
o a single plane, which may enhance reproducibility and reduce
he complexity of possible configurations when compared to
omes made out of beams with more symmetric cross-sections,
uch as rectangular [14,30] or circular [29]. This asymmetry also
nables continuous tuning of the dome’s rest shape with a sin-
le parameter κ , which, together with the boundary parameters
∆R, ∆α), offer a rich design space.

As in other types of discrete domes [29], a detailed descrip-
ion of the joints is required for quantitative predictions of the
ndentation response. To enable the accurate predictive design
f woven domes using FEM simulations, further work is needed
n modeling the specifics of the crossing points, including tak-
ng into account the over- and under-passing and the frictional
ontact between ribbons. Still, we highlight the prominence of
eometry in 3D woven domes, and hence the scalability of the
nderlying mechanism, together with the rich design space, with
he possibility of robust tuning of the response. Together, these
eatures suggest an enticing potential for applications, from large
rchitectural structures to micro-scale devices, well beyond the
raditional craft that motivated our study.
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ppendix A. Finite element simulations

A multi-step finite element (FE) simulation procedure is im-
lemented using the commercial software package ABAQUS 6.14
o gain deeper insight into the underlying phenomena and ex-
and the parameter space of the exploration. Each FE model
onsists of n = 5 number of identical ribbons placed around the
rigin. The geometry of the ribbons in each FE model (Fig. A.6a)
irrors that of the experiments, as described in Section 2, and is
arametrized by the in-plane curvature of the middle segment,
. The holes that accommodate the snap rivets in the exper-
ments are included in the FE geometry. At the crossings, the
nap rivets force the two overlapping ribbons to be co-planar,
condition that is enforced for both the inner and the outer
in pairs throughout the FE simulations. The ribbons are meshed
sing quadratic shell elements (S8R). Following a mesh sensitiv-
ty analysis, each ribbon is assigned eight elements width-wise,
eading to approximately 1600 elements per ribbon.

Three quasi-static simulation steps are performed sequentially
o the aforementioned model, considering geometric nonlinearity
hroughout. Step 1: The ribbons are weaved to attain the natural
est shape using the technique first proposed in Ref. [6]. Here,
e restricted our study to rest shapes with a positive integrated
aussian curvature. In these dome-shaped geometries, we can
mpose the BCs such that the end of the ribbons (indicated as
oundary edges in Fig. A.6a) do not move in the vertical direction,
.e. z = 0 during weaving. Weaving is performed by incrementally
educing to 0 the distances between the neighboring outer pins.
n the FE model, this is implemented by shrinking the wires as
ndicated in Fig. A.6b. Note that these zero-length constraints are
ropagated to the next simulation steps to maintain the woven
hape. Step 2: The prescribed BCs are imposed on the natural rest
hape in accordance with the experimental setup described in
ection 4. The prescribed radial displacements, ∆R, are imposed
n the translational degrees of freedom (DOFs) of the boundary
odes (Fig. A.6c), moving them towards, or away, from the origin.
he prescribed rotations are imposed on the in-plane rotational
OFs of the same set of nodes. Rotation with respect to the z-

axis remains unconstrained. Step 3: Having prescribed the BCs,
n indentation is applied as a vertically-downward incremental
isplacement on the inner ring of pins (Fig. A.6d), with a mag-
itude of −2zmax, where zmax is the initial height of the inner

pins after clamping. For models featuring an inversion of the
inner polygon, we assign a dissipated energy fraction of 0.0002
and a maximum ratio of stabilization to strain energy of 0.05 to
facilitate convergence during snap-through.

Compared to the experiments, the FE simulations provide a
vaster access to the parameter space, with the enlarged feasible
set of values of κ , ∆R, and ∆α, but also an estimation of the
deformation fields in the ribbons upon indentation. The geomet-
ric parameters z, U , α, L, and R are extracted directly from the
imulations and used to compute the FEM quantities in Fig. 5.

ppendix B. More details of the elastica model in Section 6

The woven dome comprises n = 5 ribbons, each of which is
urther divided into three parts. In our elastica framework, the
entral segment is modeled as an effective rigid boundary, while
 p

7

the first and last segments are considered as two independent
elasticas, such that a dome contains 2n = 10 identical elasticas.

The elastica approximation is computed in the frame (e, z)
(Fig. 5a), with the ribbons assumed inextensible, and the cen-
terline restricted to deform in the vertical plane (Fig. 5a1). The
arclength S starts at the crossing with the inner pentagon (S = 0),
and ends at the acrylic clamps (S = L), as shown in Fig. 5(a2).
While the elastica consists of two segments of arclength ℓ, the
total arclength L is an effective length because of the finite width
of the ribbons and the effective-clamp approximation at S = 0.
We define L = (2 − ε)ℓ, where ε = 0.067 is a small and
positive unknown parameter determined by fitting the response
around the second stable state (yielding L = 58mm). Even if
this correction seems small, the indentation response is sensitive
to the value of L, as illustrated in Fig. 5(b) by the shaded (pink)
regions surrounding the elastica prediction, whose extent corre-
sponds to variations in L by ±1% and ±3% (dark and light shades,
espectively).

At S = L, the BC is assumed naturally clamped, as in the ex-
eriments. At S = 0, given that the central segment is considered
igid away from the snap-through region, the BC is regarded as
n effective clamp (Fig. 5a3). These BCs impose the initial and
inal positions and angles of the elastica. The external clamps
mpose an angle α in the radial direction of the dome, but the
lane (e, z) of the elastica makes an angle π/6 with respect to

this radial direction (Fig. 5a2). This angle of π/6 is imposed by
the weaving pattern, and then enforced in the same plane as the
centerline of the ribbon. Hence, at S = L, the imposed angle α̃ is
sin α̃ ≡ sinα cos(π/6). At S = 0, the rigid segments remain in the
same shape of the rest dome, thus imposing an angle α0 in the
radial direction and translating into the angle α̃0 with sin α̃0 ≡

sinα0 cos(π/6) in the (e, z) plane of the elastica. The distance
separating the two ends, projected on a plane perpendicular to
the indentation direction z, is denoted by U and is assumed
constant. This quantity is directly linked to the imposed radius
R, the radial extent of the pentagon p = nℓ/2π , and the segment
length ℓ: U =

√
(R − p)2 + ℓ2.

Within an elastica framework, the positions of the center-
line are given by u(S)e + w(S)z , and γ (S) is the tangent angle.
The Cartesian coordinates and the tangent angle are linked by
the following relations: u(S) =

∫ s
0 cos(γ (S̃))dS̃ and w(S) =

s
0 sin(γ (S̃))dS̃. At equilibrium, the elastica must satisfy the ordi-
ary differential equation:

γ̈ + fe sin γ − fz cos γ = 0, (B.1)

here D is the ribbons’ bending stiffness, and the differentiation
˙) = d/dS is with respect to arclength. The unknown internal
orces, horizontal (fe) and vertical (fz), are constant and defined
ositive in the +e and −z direction, respectively. Before snap-

through, the clamped BCs at S = 0 are γ = α̃0, u = 0, w = z.
At S = L, γ = α̃, u = U and w = 0. Past snap-through, the only
modified BC is γ (S = 0) = −α̃0. Eq. (B.1) is solved numerically
using a shooting method: integrating Eq. (B.1) from S = 0 with
an initial guess of (γ̇ , fe, fz); these parameters are then varied
following a gradient descent (fsolve in Matlab R2020b), until
satisfying the expected BCs at S = L.

For a given indentation z, solving the elastica yields the cen-
terline position and the internal forces, of which fz is of particular
interest. To obtain the full indentation response, the Fz(z) curve
plotted in Fig. 5(b), the elastica is solved for decreasing values
of w(S = 0) = z, with γ (s = 0) = α̃0 before snap-through
(z < zCD) and γ (s = 0) = −α̃0 after snap-through (z > zCD).
ince the dome is composed of 2n = 10 independent elasticas, the
ndentation response is the resultant Fz(z) = 10fz(z). Examples of
he resulting centerline shapes and tangent angle profiles γ (S) are
lotted in Fig. B.7 for selected indentations.
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Fig. A.6. Framework and results for the FEM simulations. (a) Set up of the initial ribbon geometry, (b) Step 1 of the simulations: weaving the dome structure to its
natural rest shape, (c) Step 2 of the simulations: imposing prescribed displacements and rotations at the boundary, (d) Step 3 of the simulations: indentation of the
inner polygon with a prescribed vertical displacement.
Fig. B.7. (a) Predicted shapes for the external triangle in the (e, z) plane,
btained from the FEM simulations (dashed lines) and the elastica model (solid
ines), as quantified by the deformation of the centerline. Three stages of
ndentation are considered: one before snap-through (at z = zA) and the other
wo after snap-through (at z = 0 and zE ), represented by the green, purple,
nd orange lines, respectively. (b) Corresponding variation of the tangent angle,
, along the arclength, S, rescaled by the angle ±α̃0 imposed at S = 0 in
he elastica model. The parameters of the weaved dome are (κ, ∆R, ∆α) =

0.1, −0.21, 0.37). (For interpretation of the references to color in this figure
egend, the reader is referred to the web version of this article.)

ppendix C. Supplementary data

Video S1. Video (left panel) of the experimental indentation
f a clamped weaved dome with (right panel) the correspond-
ng mechanical response. The video is shown for the represen-
ative case shown in Fig. 3 with parameters (κ, ∆R, ∆α) =

0.1, −0.21, 0.37 rad.). The video is sped up by a factor of 4 (the
eal indentation speed is 1mm/s), except near the snap-through,
here the video is slowed down by a factor of 2.
Supplementary material related to this article can be found

nline at https://doi.org/10.1016/j.eml.2023.101968.
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