Area-enhanced hydrogel for evaporative cooling

Context

- Passive evaporative cooling can operate without grid access with low carbon footprint
- Architected hydrogels greatly improves vapor transport and enhances cooling performance

Objectives and Methodology

- Design and modeling of evaporative cooling performance of architected hydrogels
- 2.5-3D hydrogel optimized for evaporation
 - Molding/Additive manufacturing
 - Characterization of cooling performance

Supervisor: Prof. Zhengmao Lu, <u>zhengmao.lu@epfl.ch</u>

Contact: Gautier Rouaze gautier.rouaze@epfl.ch

D. Yee et al., Adv. Mater. Technol. 2021, 6, 2000791

Z. Lu et al. Joule 4, 2693-2701 (2020)

Nanoengineered surfaces for boiling heat transfer

Supervisor: Prof. Zhengmao Lu,

zhengmao.lu@epfl.ch

Contact: Sk Rameez Iqbal

rameez.iqbal@epfl.ch

Context

- Boiling: a phase-change phenomenon with broad applications:
 - thermal management, steam power generation, and nuclear reactor cooling.
- Simultaneously improving boiling efficiency and maximum heat flux remains a challenge.
- Our goal is to leverage nanoengineered surfaces to enhance boiling heat transfer

Objectives

- fabrication of nanoengineered surfaces
- characterization of the boiling curve on a flat/structured surface
- understanding the effect of nanoengineered surfaces on heat transfer enhancement.

Methodology

- Design of boiling heat transfer setup
- High-speed imaging.
- Calibration and usage of resistive temperature detector
- Image processing using MATLAB/Python
- General knowledge of micro/nanofabrication.
- Communication of research (through writings and slide presentation)

Boiling phenomena Image credit: Y. Song

Nanoengineered surface DF Hanks & Z. Lu et. al., ACS AMI 2020