Discrete Optimization 2024 (EPFL): Problem set of week 8

May 2, 2024

Reminder: The min-max theorem for zero-sum games with mixed strategies says that for every $m \times n$ matrix A we have

$$\min_{y} \max_{x} yAx = \max_{x} \min_{y} yAx,$$

where the minimum is over all $y = (y_1, \ldots, y_m) \ge 0$ such that $\sum y_i = 1$. The maximum is over all $x = (x_1, \ldots, x_n) \ge 0$ such that $\sum x_i = 1$.

1. Let A be an $m \times n$ matrix. Assume that there is an entry in A that is the minimum in its column and the maximum in its row. Prove that this entry is the value of the zero-sum game with for two players with mixed strategies.

Solution: Let the value of that entry be equal to M and assume it is in the *i*'th row and *j*'th columns.

By having player R choose the *i*'th row with probability 1, then no matter what player C chooses, the value of the game will be at most M because M is the largest in its row. This shows that $\min_y \max_x yAx \leq M$.

By having player C choose the j'th column with probability 1, then no matter what player R chooses, the value of the game will be at least M because M is the smallest in its columns. This shows that $\max_x \min_y yAx \ge M$.

We are done because we know that

 $\min_{y} \max_{x} yAx = \max_{x} \min_{y} yAx.$

2. Find $\max_x \min_y yAx$ for the matrix

$$A = \begin{pmatrix} 5 & 1 \\ 3 & 4 \end{pmatrix}$$

What is the (mixed) strategy for the column player to guarantee the maximum possible result?

Solution: We follow the example we did in class. Denoting x = (a, 1-a) and y = (b, 1-b) we find that $yAx = (5b-1)(a-\frac{3}{5})+3\frac{2}{5}$. From here it is not hard to see that the value of the game is $3\frac{2}{5}$ and the best strategy for the column player is to use the vector $(\frac{3}{5}, \frac{2}{5})$ in order to guarantee this optimal value.

3. Find the min-max value for the diagonal matrix with $\lambda_1, \ldots, \lambda_n$ on the main diagonal.

Solution: If $\lambda_i \geq 0$ and $\lambda_j \leq 0$ (possibly i = j), then the min-max value is equal to 0. This is because we can apply Problem 1 on the entry $a_{ij} = 0$ that is the largest in its column and smallest in its row.

Therefore, assume $\lambda_1, \ldots, \lambda_n > 0$.

Then $yAx = \sum x_i y_i \lambda_i$. Fixing y we have $\max_x \sum x_i y_i \lambda_i$ is when $x_i = 1$ for the *i* such that $y_i \lambda_i$ is maximum.

Then $\max_x yAx = \max_i y_i\lambda_i$. Therefore, if we want to find $\min_y \max_x yAx$ we better have y such that $\max_i y_i\lambda_i$ is minimum. Similar to what we did on Problem 2, this happens when all the $y_i\lambda_i$ are equal. Then $y_i = \frac{1}{\lambda_i}$ times a constant that does not depend on i. Because $\sum y_i = 1$, then we must have

$$y_i = \frac{1}{\sum \frac{1}{\lambda_j}} \frac{1}{\lambda_i}$$

Then the value of the min-max is $\frac{1}{\sum \frac{1}{\lambda_j}}$.

What is the λ_i 's are all negative?

In this case notice that we have (we use the fact that $\min f = -\max(-f)$)

$$\frac{1}{\sum \frac{1}{\lambda_j}} = -\min_y \max_x y(-A)x$$
$$= -\min_y \max_x -yAx$$
$$= -\min_y (-\min_x yAx)$$
$$= \max_y \min_x yAx$$
$$= \max_y \min_x xAy$$
$$= \min_x \max_y xAy$$
$$= \min_x \max_y yAx$$
$$= \min_y \max_x yAx$$

4. Show that in a zero-sum game with a matrix A with mixed strategies the following is true: If one player knows the mixed strategy of the other player, then the best response (strategy) for him is a pure strategy. That is, the best response is choosing just one row or column.

Solution: Assume for example that the Column player knows the strategy y_0 of the Row player. Then the Column player wants to maximize $\max_x y_0 Ax$ subject to $\sum x_i = 1$ and $x \ge 0$. However, this is a linear program. The simplex algorithm will find a vertex of the polyhedron $\sum x_i = 1$ and $x \ge 0$. The vertices of this polyhedron are the *n* vectors that have all their coordinates equal to 0 except one coordinate that is equal to 1. This gives a pure strategy.

5. Find a hyperplane separating the point v = (4,3,6) from the ball $\{(x,y,z) \mid (x-1)^2 + (y-2)^2 + (z-3)^2 \leq 16\}$. Solution: The radius of the ball is $\sqrt{16} = 4$ The center of the ball is u = (1,2,3). The closest point of the ball to v is w = u+4(v-u)/|v-u|. Let z be the midpoint of the segment [v,w], that is (v+w)/2. It is enough to take the hyperplane perpendicular to v - u through z.