# Discrete Optimization 2024 (EPFL): Problem set of week 8 

May 2, 2024

Reminder: The min-max theorem for zero-sum games with mixed strategies says that for every $m \times n$ matrix $A$ we have

$$
\min _{y} \max _{x} y A x=\max _{x} \min _{y} y A x
$$

where the minimum is over all $y=\left(y_{1}, \ldots, y_{m}\right) \geq 0$ such that $\sum y_{i}=1$. The maximum is over all $x=\left(x_{1}, \ldots, x_{n}\right) \geq 0$ such that $\sum x_{i}=1$.

1. Let $A$ be an $m \times n$ matrix. Assume that there is an entry in $A$ that is the minimum in its column and the maximum in its row. Prove that this entry is the value of the zero-sum game with for two players with mixed strategies.
Solution: Let the value of that entry be equal to $M$ and assume it is in the $i$ 'th row and $j$ 'th columns.

By having player $R$ choose the $i$ 'th row with probability 1 , then no matter what player $C$ chooses, the value of the game will be at most $M$ because $M$ is the largest in its row. This shows that $\min _{y} \max _{x} y A x \leq$ $M$.

By having player $C$ choose the $j$ 'th column with probability 1 , then no matter what player $R$ chooses, the value of the game will be at least $M$ because $M$ is the smallest in its columns. This shows that $\max _{x} \min _{y} y A x \geq M$.

We are done because we know that

$$
\min _{y} \max _{x} y A x=\max _{x} \min _{y} y A x .
$$

2. Find $\max _{x} \min _{y} y A x$ for the matrix

$$
A=\left(\begin{array}{ll}
5 & 1 \\
3 & 4
\end{array}\right)
$$

What is the (mixed) strategy for the column player to guarantee the maximum possible result?
Solution: We follow the example we did in class. Denoting $x=(a, 1-a)$ and $y=(b, 1-b)$ we find that $y A x=(5 b-1)\left(a-\frac{3}{5}\right)+3 \frac{2}{5}$. From here it is not hard to see that the value of the game is $3 \frac{2}{5}$ and the best strategy for the column player is to use the vector $\left(\frac{3}{5}, \frac{2}{5}\right)$ in order to guarantee this optimal value.
3. Find the min-max value for the diagonal matrix with $\lambda_{1}, \ldots, \lambda_{n}$ on the main diagonal.

Solution: If $\lambda_{i} \geq 0$ and $\lambda_{j} \leq 0$ (possibly $i=j$ ), then the min-max value is equal to 0 . This is because we can apply Problem 1 on the entry $a_{i j}=0$ that is the largest in its column and smallest in its row.
Therefore, assume $\lambda_{1}, \ldots, \lambda_{n}>0$.
Then $y A x=\sum x_{i} y_{i} \lambda_{i}$. Fixing $y$ we have $\max _{x} \sum x_{i} y_{i} \lambda_{i}$ is when $x_{i}=1$ for the $i$ such that $y_{i} \lambda_{i}$ is maximum.
Then $\max _{x} y A x=\max _{i} y_{i} \lambda_{i}$. Therefore, if we want to find $\min _{y} \max _{x} y A x$ we better have $y$ such that $\max _{i} y_{i} \lambda_{i}$ is minimum. Similar to what we did on Problem 2, this happens when all the $y_{i} \lambda_{i}$ are equal. Then $y_{i}=\frac{1}{\lambda_{i}}$ times a constant that does not depend on $i$. Because $\sum y_{i}=1$, then we must have

$$
y_{i}=\frac{1}{\sum \frac{1}{\lambda_{j}}} \frac{1}{\lambda_{i}} .
$$

Then the value of the min-max is $\frac{1}{\sum \frac{1}{\lambda_{j}}}$.
What is the $\lambda_{i}$ 's are all negative?
In this case notice that we have (we use the fact that $\min f=-\max (-f)$ )

$$
\begin{aligned}
\frac{1}{\sum \frac{1}{\lambda_{j}}} & =-\min _{y} \max _{x} y(-A) x \\
& =-\min _{y} \max _{x}-y A x \\
& =-\min _{y}\left(-\min _{x} y A x\right) \\
& =\max _{y} \min _{x} y A x \\
& =\max _{y} \min _{x} x A y \\
& =\min _{x} \max _{y} x A y \\
& =\min _{y} \max _{x} y A x
\end{aligned}
$$

4. Show that in a zero-sum game with a matrix $A$ with mixed strategies the following is true: If one player knows the mixed strategy of the other player, then the best response (strategy) for him is a pure strategy. That is, the best response is choosing just one row or column.
Solution: Assume for example that the Column player knows the strategy $y_{0}$ of the Row player. Then the Column player wants to maximize $\max _{x} y_{0} A x$ subject to $\sum x_{i}=1$ and $x \geq 0$. However, this is a linear program. The simplex algorithm will find a vertex of the polyhedron $\sum x_{i}=1$ and $x \geq 0$. The vertices of this polyhedron are the $n$ vectors that have all their coordinates equal to 0 except one coordinate that is equal to 1 . This gives a pure strategy.
5. Find a hyperplane separating the point $v=(4,3,6)$ from the ball $\left\{(x, y, z) \mid(x-1)^{2}+(y-2)^{2}+(z-3)^{2} \leq 16\right\}$.
Solution: The radius of the ball is $\sqrt{16}=4$ The center of the ball is $u=(1,2,3)$. The closest point of the ball to $v$ is $w=u+4(v-u) /|v-u|$. Let $z$ be the midpoint of the segment $[v, w]$, that is $(v+w) / 2$. It is enough to take the hyperplane perpendicular to $v-u$ through $z$.
