
Discrete Optimization 2024 (EPFL):
Problem set of week 8

May 2, 2024

Reminder: The min-max theorem for zero-sum games with mixed strate-
gies says that for every m× n matrix A we have

min
y

max
x

yAx = max
x

min
y

yAx,

where the minimum is over all y = (y1, . . . , ym) ≥ 0 such that
∑

yi = 1. The
maximum is over all x = (x1, . . . , xn) ≥ 0 such that

∑
xi = 1.

1. Let A be an m× n matrix. Assume that there is an entry in A that is
the minimum in its column and the maximum in its row. Prove that
this entry is the value of the zero-sum game with for two players with
mixed strategies.

Solution: Let the value of that entry be equal to M and assume it is
in the i’th row and j’th columns.

By having player R choose the i’th row with probability 1, then no
matter what player C chooses, the value of the game will be at most M
because M is the largest in its row. This shows that miny maxx yAx ≤
M .

By having player C choose the j’th column with probability 1, then
no matter what player R chooses, the value of the game will be at
least M because M is the smallest in its columns. This shows that
maxx miny yAx ≥ M .

We are done because we know that

min
y

max
x

yAx = max
x

min
y

yAx.
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2. Find maxx miny yAx for the matrix

A =

(
5 1
3 4

)
What is the (mixed) strategy for the column player to guarantee the
maximum possible result?

Solution: We follow the example we did in class. Denoting x = (a, 1−a)
and y = (b, 1− b) we find that yAx = (5b−1)(a− 3

5
)+32

5
. From here it

is not hard to see that the value of the game is 32
5
and the best strategy

for the column player is to use the vector (3
5
, 2
5
) in order to guarantee

this optimal value.

3. Find the min-max value for the diagonal matrix with λ1, . . . , λn on the
main diagonal.

Solution: If λi ≥ 0 and λj ≤ 0 (possibly i = j), then the min-max
value is equal to 0. This is because we can apply Problem 1 on the
entry aij = 0 that is the largest in its column and smallest in its row.

Therefore, assume λ1, . . . , λn > 0.

Then yAx =
∑

xiyiλi. Fixing y we have maxx
∑

xiyiλi is when xi = 1
for the i such that yiλi is maximum.

Then maxx yAx = maxi yiλi. Therefore, if we want to find miny maxx yAx
we better have y such that maxi yiλi is minimum. Similar to what we
did on Problem 2, this happens when all the yiλi are equal. Then
yi =

1
λi

times a constant that does not depend on i. Because
∑

yi = 1,
then we must have

yi =
1∑

1
λj

1

λi

.

Then the value of the min-max is 1∑ 1
λj

.

What is the λi’s are all negative?

In this case notice that we have (we use the fact that min f = −max(−f))
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1∑
1
λj

= −min
y

max
x

y(−A)x

= −min
y

max
x

−yAx

= −min
y

(−min
x

yAx)

= max
y

min
x

yAx

= max
y

min
x

xAy

= min
x

max
y

xAy

= min
y

max
x

yAx

4. Show that in a zero-sum game with a matrix A with mixed strategies
the following is true: If one player knows the mixed strategy of the other
player, then the best response (strategy) for him is a pure strategy.
That is, the best response is choosing just one row or column.

Solution: Assume for example that the Column player knows the strat-
egy y0 of the Row player. Then the Column player wants to maximize
maxx y0Ax subject to

∑
xi = 1 and x ≥ 0. However, this is a linear

program. The simplex algorithm will find a vertex of the polyhedron∑
xi = 1 and x ≥ 0. The vertices of this polyhedron are the n vectors

that have all their coordinates equal to 0 except one coordinate that is
equal to 1. This gives a pure strategy.

5. Find a hyperplane separating the point v = (4, 3, 6) from the ball
{(x, y, z) | (x− 1)2 + (y − 2)2 + (z − 3)2 ≤ 16}.
Solution: The radius of the ball is

√
16 = 4 The center of the ball is

u = (1, 2, 3). The closest point of the ball to v is w = u+4(v−u)/|v−u|.
Let z be the midpoint of the segment [v, w], that is (v + w)/2. It is
enough to take the hyperplane perpendicular to v − u through z.
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