
Discrete Optimization 2024 (EPFL):
Problem set of week 3

March 14, 2024

1. A set K in Rn is called convex if for every x and y in K and for every
0 ≤ λ ≤ 1 also the point λx + (1 − λ)y is in K. In other words, the
entire line segment with endpoints x and y is in K.

a) Prove that any intersection of convex sets is convex.

b) For any given −→a ∈ Rn and any b ∈ R prove algebraically (from
the algebraic definitions) that the half-space {−→x |< −→x ,−→a >≤ b} is
convex.

c) Conclude from a) and b) that every intersection of half-spaces is
convex.

Solution (only for part b. Parts a+c are not difficult). Assume
that both −→x and −→y belong to the half-space. Let 0 ≤ λ ≤ 1 and
consider λ−→x + (1− λ)−→y . We need to show that it also belongs to the
same half-space.

Indeed,

< λ−→x + (1− λ)−→y , a > = λ < −→x ,−→a > +(1− λ) < −→y ,−→a >

≤ λb+ (1− λ)b = b

Notice that it is crucial in the inequality that neither of λ, nor (1− λ)
is negative.

2. LetQ be the quadrangle in the plane whose vertices are (4, 3), (3, 4), (2, 3),

and (3, 2). Find a matrix A and a vector
−→
b such thatQ = {−→v = (x, y) |

A−→v ≤
−→
b }.
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Solution. The idea of the exercise is to develop an intuition for hy-
perplanes. In this sense a strategy to solve the exercise is to draw
the quadrangle and figure out the conditions on the hyperplanes (here
lines) between the adjacent vertices of the quadrangle and the induced
halfspace descriptions. For the adjacent vertices (2, 3) and (3, 2) the
induced halfspace is given by x+y ≥ 5 for (2, 3) and (3, 4) it is y ≤ x+1
for (3, 4) and (4, 3) it is x + y ≤ 7 and finally for (4, 3) and (3, 2) it is
y ≥ x− 1.

Plugging this into the desired matrix form leads to:

A =


1 1
1 −1
−1 −1
−1 1

 b =


7
1
−5
1


A way to prove that A and b are indeed a solution of the problem, one
can check that each vertex is the intersection of each two of the edges
induced by the inequalities.

3. Let B be the box in R3 defined by
B = {−→v = (x, y, z) | 1 ≤ x ≤ 5, − 2 ≤ y ≤ 6, 0 ≤ z ≤ 2}. Find a

matrix A and a vector
−→
b such that B = {−→v = (x, y, z) | A−→v ≤

−→
b }.

Solution. The box is defined by the intersection of the following 6
hyperplanes:

x ≤ 5, −x ≤ −1, y ≤ 6, −y ≤ 2, z ≤ 2, −z ≤ 0.

Put them into the matrix form we get:

A =


1 0 0
−1 0 0
0 1 0
0 −1 0
0 0 1
0 0 −1

 , b =


5
−1
6
2
2
0


4. Let P be the three dimensional pyramid with vertices (1, 1,−6), (1, 3,−4),

(−1,−2, 5), and (3, 5, 1). Find −→c ∈ R3 such that the function
⟨−→c , (x, y, z)⟩ attains its maximum on P precisely at the vertex (1, 3,−4).

Solution. There are infinitely many solutions here. One simple solu-
tion (perhaps the simplest) is to take c that defines a hyperplane parallel
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to the hyperplane through the three vertices (1, 1,−6), (−1,−2, 5), and
(3, 5, 1).

The direction of c should point to the same halfspace to which (1, 3,−4)
belongs. Therefore, we first find a vector perpendicular to both (1, 1,−6)−
(−1,−2, 5) and (3, 5, 1)− (−1,−2, 5).

One may want to take the vector (65,−36, 2). Then the three vertices
(1, 1,−6), (−1,−2, 5), and (3, 5, 1) belong to the hyperplane
{⟨(x, y, z), (65,−36, 2)⟩ = 17}.
We notice that {⟨(1, 3,−4), (65,−36, 2)⟩ = −51 < 17. This means that
−→c = −(65,−36, 2) = (−65, 36,−2) is a good choice.

5. Let P be the polyhedron defined by P = {v | A−→v ≤
−→
b }. Assume that

v1, . . . , vk are k points in P and v1 + . . .+ vk = 0. Show that 0 ∈ P .

Solution: We need to show that A
−→
0 ≤

−→
b . This is equivalent to

showing that no coordinate of
−→
b is negative. Assume to the contrary

that say b1 < 0. Then it follows that the first coordinate of each
of Av1, . . . , Avk is negative. We get a contradiction by noticing that
Av1 + . . . + Avk = A(v1 + . . . + vk) = A0 = 0 and the first coordinate

of
−→
0 is (equal to 0 and is) not negative.
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